
InformIT Online Books > LPI Linux Certification in a Nutshell

• Table of

Contents

LPI Linux Certification in a Nutshell
By Jeff Dean

Publisher : O'Reilly

Pub Date : May 2001

ISBN : 1-56592-748-6

Pages : 570

Slots : 1

 Preface

 The Linux Professional Institute

 Audience for This Book

 Organization

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments

 Part I: General Linux Exam 101

 Chapter 1. Exam 101 Overview

 Chapter 2. Exam 101 Study Guide

 Section 2.1. Exam Preparation

 Chapter 3. GNU and Unix Commands (Topic 1.3)

 Section 3.1. Objective 1: Work Effectively on the Unix Command Line

 Section 3.2. Objective 2: Process Text Streams Using Text-Processing Filters

 Section 3.3. Objective 3: Perform Basic File Management

 Section 3.4. Objective 4: Use Unix Streams, Pipes,and Redirects

 Section 3.5. Objective 5: Create, Monitor, and Kill Processes

 Section 3.6. Objective 6: Modify Process Execution Priorities

 Section 3.7. Objective 7: Making Use of Regular Expressions

 Chapter 4. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 2.4)

 Section 4.1. Objective 1: Create Partitions and Filesystems

 Section 4.2. Objective 2: Maintain the Integrity of Filesystems

 Section 4.3. Objective 3: Control Filesystem Mounting and Unmounting

 Section 4.4. Objective 4: Set and View Disk Quotas

 Section 4.5. Objective 5: Use File Permissions to Control Access to Files

 Section 4.6. Objective 6: Manage File Ownership

 Section 4.7. Objective 7: Create and Change Hard and Symbolic Links

 Section 4.8. Objective 8: Find System Files and Place Files in the Correct Location

 Chapter 5. Boot, Initialization, Shutdown, and Runlevels (Topic 2.6)

 Section 5.1. Objective 1: Boot the System

 Section 5.2. Objective 2: Change Runlevels and Shutdown or Reboot the System

file:///C|/Arquivos%20de%20programas/eDonkey200...tion%20in%20a%20Nutshell/_Table_of_Contents.htm (1 of 4) [3/9/2003 11:14:17]

http://www.oreillynet.com/cs/catalog/view/au/31?x-t=book.view

InformIT Online Books > LPI Linux Certification in a Nutshell

 Chapter 6. Documentation (Topic 1.8)

 Section 6.1. Objective 1: Use and Manage Local System Documentation

 Section 6.2. Objective 2: Find Linux Documentation on the Internet

 Section 6.3. Objective 3: Write System Documentation

 Section 6.4. Objective 4: Provide User Support

 Chapter 7. Administrative Tasks (Topic 2.11)

 Section 7.1. Objective 1: Manage Users and Group Accounts

 Section 7.2. Objective 2: Tune the User Environment

 Section 7.3. Objective 3: Configure and Use System Log Files

 Section 7.4. Objective 4: Automate System Administration Tasks

 Section 7.5. Objective 5: Maintain an Effective Data Backup Strategy

 Chapter 8. Exam 101 Review Questions and Exercises

 Section 8.1. GNU and Unix Commands (Topic 1.3)

 Section 8.2. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 2.4)

 Section 8.3. Boot, Initialization, Shutdown, and Runlevels (Topic 2.6)

 Section 8.4. Documentation (Topic 1.8)

 Section 8.5. Administrative Tasks (Topic 2.11)

 Chapter 9. Exam 101 Practice Test

 Section 9.1. Questions

 Section 9.2. Answers

 Chapter 10. Exam 101 Highlighter's Index

 Section 10.1. GNU and Unix Commands (Topic 1.3)

 Section 10.2. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 2.4)

 Section 10.3. Boot, Initialization, Shutdown, and Runlevels (Topic 2.6)

 Section 10.4. Documentation (Topic 1.8)

 Section 10.5. Administrative Tasks (Topic 2.11)

 Part II: General Linux Exam 102

 Chapter 11. Exam 102 Overview

 Chapter 12. Exam 102 Study Guide

 Section 12.1. Exam Preparation

 Chapter 13. Hardware and Architecture (Topic 1.1)

 Section 13.1. Objective 1: Configure Fundamental System Hardware

 Section 13.2. Objective 2: Set Up SCSI and NIC Devices

 Section 13.3. Objective 3: Configure Modems and Sound Cards

 Chapter 14. Linux Installation and Package Management (Topic 2.2)

 Section 14.1. Objective 1: Design a Hard Disk Layout

 Section 14.2. Objective 2: Install a Boot Manager

 Section 14.3. Objective 3: Make and Install Programs from Source

 Section 14.4. Objective 4: Manage Shared Libraries

file:///C|/Arquivos%20de%20programas/eDonkey200...tion%20in%20a%20Nutshell/_Table_of_Contents.htm (2 of 4) [3/9/2003 11:14:17]

InformIT Online Books > LPI Linux Certification in a Nutshell

 Section 14.5. Objective 5: Use Debian Package Management

 Section 14.6. Objective 6: Use Red Hat Package Manager (RPM)

 Chapter 15. Kernel (Topic 1.5)

 Section 15.1. Objective 1: Manage Kernel Modules at Runtime

 Section 15.2. Objective 2: Reconfigure, Build, and Install a Custom Kernel and Modules

 Chapter 16. Text-Editing, Processing, and Printing (Topic 1.7)

 Section 16.1. Objective 1: Perform Basic File Editing Operations Using vi

 Section 16.2. Objective 2: Manage Printers and Print Queues

 Section 16.3. Objective 3: Print Files

 Section 16.4. Objective 4: Install and Configure Local and Remote Printers

 Chapter 17. Shells, Scripting, Programming, and Compiling (Topic 1.9)

 Section 17.1. Objective 1: Customize and Use the Shell Environment

 Section 17.2. Objective 2: Customize or Write Simple Scripts

 Chapter 18. X (Topic 2.10)

 Section 18.1. An Overview of X

 Section 18.2. Objective 1: Install and Configure XFree86

 Section 18.3. Objective 2: Set Up xdm

 Section 18.4. Objective 3: Identify and Terminate Runaway X Applications

 Section 18.5. Objective 4: Install and Customize a Window Manager Environment

 Chapter 19. Networking Fundamentals (Topic 1.12)

 Section 19.1. Objective 1: Fundamentals of TCP/IP

 Section 19.2. Objective 3: TCP/IP Troubleshooting and Configuration

 Section 19.3. Objective 4: Configure and Use PPP

 Chapter 20. Networking Services (Topic 1.13)

 Section 20.1. Objective 1: Configure and Manage inetd and Related Services

 Section 20.2. Objective 2: Operate and Perform Basic Configuration of sendmail

 Section 20.3. Objective 3: Operate and Perform Basic Configuration of Apache

 Section 20.4. Objective 4: Properly Manage the NFS, SMB, and NMB Daemons

 Section 20.5. Objective 5: Set Up and Configure Basic DNS Services

 Chapter 21. Security (Topic 1.14)

 Section 21.1. Objective 1: Perform Security Administration Tasks

 Section 21.2. Objective 2: Set Up Host Security

 Section 21.3. Objective 3: Set Up User-Level Security

 Chapter 22. Exam 102 Review Questions and Exercises

 Section 22.1. Hardware and Architecture (Topic 1.1)

 Section 22.2. Linux Installation and Package Management (Topic 2.2)

 Section 22.3. Kernel (Topic 1.5)

 Section 22.4. Text Editing, Processing, and Printing (Topic 1.7)

 Section 22.5. Shells, Scripting, Programming, and Compiling (Topic 1.9)

 Section 22.6. X (Topic 2.10)

file:///C|/Arquivos%20de%20programas/eDonkey200...tion%20in%20a%20Nutshell/_Table_of_Contents.htm (3 of 4) [3/9/2003 11:14:17]

InformIT Online Books > LPI Linux Certification in a Nutshell

 Section 22.7. Networking Fundamentals (Topic 1.12)

 Section 22.8. Networking Services (Topic 1.13)

 Section 22.9. Security (Topic 1.14)

 Chapter 23. Exam 102 Practice Test

 Section 23.1. Questions

 Section 23.2. Answers

 Chapter 24. Exam 102 Highlighter's Index

 Section 24.1. Hardware and Architecture

 Section 24.2. Linux Installation and Package Management

 Section 24.3. Kernel

 Section 24.4. Text-Editing, Processing, and Printing

 Section 24.5. Shells, Scripting, Programming, and Compiling

 Section 24.6. X

 Section 24.7. Networking Fundamentals

 Section 24.8. Networking Services

 Section 24.9. Security

 Glossary

file:///C|/Arquivos%20de%20programas/eDonkey200...tion%20in%20a%20Nutshell/_Table_of_Contents.htm (4 of 4) [3/9/2003 11:14:17]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell

Preface

Objective certification of professionals is a time-honored tradition in many fields, including medicine and
law. As small computer systems and networks proliferated over the last decade, Novell and Microsoft
produced extremely popular certification products for their respective operating system and network
technologies. These two programs are often cited as having popularized a certification market where
products that had previously been highly specialized and relatively rare. These programs have become
so popular that a huge training and preparation industry has formed to service a constant stream of
new certification candidates.

Certification programs, offered by vendors such as Sun and Hewlett-Packard, have existed in the Unix
world for some time. However, since Solaris and HP-UX aren't commodity products, those programs
don't draw the crowds that the PC platform does. Linux, however, is different. Linux is both a
commodity operating system and is PC-based, and its popularity continues to grow at a rapid pace. As
Linux deployment increases, so too does the demand for qualified and certified Linux system
administrators.

A number of programs -- the Linux Professional Institute, Sair Linux and GNU Certification, the Red Hat
Certified Engineer (RHCE) program, and CompTIA's Linux+ -- have formed over the last few years to
service this new market. Each of these programs seeks to provide objective measurements of a Linux
administrator's skills, but they approach the problem in different ways.

The RHCE program requires that candidates pass a hands-on practical skills test, solving problems and
performing configuration tasks. Though more involved from an exam delivery point of view, this type of
test is very thorough and difficult to beat using purely good study habits. The Sair program is provided
by Sair, Inc., a for-profit company that is also a vendor for courseware and texts. The Linux+ exam,
scheduled for deployment in 2001, is an entry-level certification, which brings us to the LPI.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...20Certification%20in%20a%20Nutshell/00__Preface.htm [3/9/2003 11:14:19]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Preface

The Linux Professional Institute

The Linux Professional Institute, or LPI (http://www.lpi.org/), is a nonprofit organization formed around
the notion of certifying Linux administrators through a sort of open source process. The LPI seeks input
from the public for its exam Objectives and questions, and anyone is welcome to participate. It has both
paid and volunteer staff and receives funding from some major names in the computer industry. The
result is a vendor-neutral, publicly developed program that is offered at a reasonable price.

The LPI organizes its Linux Professional Institute Certification (LPIC) series into three levels: LPIC Levels
1, 2, and 3. Each level consists of two exams that are priced at $100 each. This book covers the LPIC
Level 1 exams, numbers 101 and 102.

LPI Level 1 Exams

The LPI offers its exams through Virtual University Enterprises (http://www.vue.com/). You may
establish an online account with VUE and resister for the exams using the company's web site. VUE has
more than two thousand testing centers worldwide, making the exams accessible in most areas. The
exams are presented in English using a PC-based automated examination program. Exam questions are
presented in multiple-choice single-answer, multiple-choice multiple-answer, and fill-in-the-blank styles.
However, a majority of the questions on the exams are multiple-choice single-answer.

Level 1 is aimed at junior to midlevel Linux administrators, who should be comfortable with Linux at the
command line as well as capable of performing simple tasks, including system installation and
troubleshooting. While Exams 101 and 102 are not constructed to be difficult or misleading, together
they encompass a wide body of material, making preparation important for success even for
experienced administrators.

Each of the exams covers a series of Topics, which are numbered using a level.topic notation (i.e., 1.2,
2.5, etc.). In the LPI's early stages of development, Topics were assigned to exams based on a different
scheme than we see today. When the scheme changed, the Topics were redistributed to Exams 101 and
102, but the pairing of Topic numbers to exams was dropped. As a result, we have 1.x and 2.x Topics in
both Level 1 Exams.

Each Topic contains a series of Objectives covering specific areas of expertise. The Level 1 Topics are
distributed between the two exams to create tests of similar length and difficulty without subject matter
overlap. As a result, there's no requirement for or advantage to taking them in sequence. Exam 101
tests five Topics in approximately 60 questions, and Exam 102 tests nine Topics in approximately 72
questions. Each exam is limited to 90 minutes.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/00-1.htm [3/9/2003 11:14:19]

http://www.lpi.org/
http://www.vue.com/

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Preface

Audience for This Book

The primary audience for this book is, of course, candidates seeking the LPIC Level 1 certification.
These may range from administrators of other operating systems looking for a Linux certification to
complement an MCSE or other certification to Unix administrators wary of a growing pool of Linux-
certified job applicants. In any case, this book will help you with the specific information you require to
be successful with the Level 1 exams.

Due to the breadth of knowledge required by the LPI Objectives and the book's 1-to-1 coverage, it also
makes an excellent reference for skills and methods required for the day-to-day use of Linux. If you
have a basic working understanding of Linux administration, the material in this book will help you fill in
gaps in your knowledge while at the same time preparing you for the LPI exams, should you choose to
take them.

This book should also prove to be a valuable introduction for new Linux users and administrators looking
for a broad, detailed introduction to Linux. Part of the LPI exam-creation process includes a survey of
Linux professionals in the field. The survey results drive much of the content found on the exams.
Therefore, unlike general-purpose introductory Linux books, all of the information in this book applies
directly to running Linux in the real world.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/00-2.htm [3/9/2003 11:14:20]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Preface

Organization

This book is designed to exactly follow the Topics and Objectives established by the LPI for Exams 101
and 102. That means that the presentation doesn't look like any other Linux book you've read. Instead,
you can directly track the LPI Objectives and easily measure your progress as you prepare.

The book is presented in two parts. Part I covers Exam 101 and Part II covers Exam 102. Each part
contains sections dedicated to the LPI Topics, and each of those sections contains information on all of
the Objectives set forth for the Topic. In addition, each part contains a practice exam (with answers),
review questions and exercises, and a handy "highlighter's index" that can help you review important
details.

There is also a glossary at the back of the book, which you can use to help familiarize yourself with
different Linux-related terms.

Parts 1 and 2: LPI Level 1 Exams 101 and 201

Part I and Part II each contain these sections:

Exam overview

Here you find an introduction to the exam along with details about the format of the questions.

Study guide

This section offers a few tips for preparing for the LPI Level 1 exams and introduces the
Objectives contained in the Topic sections that follow.

Topic sections

A separate section covers each of the Topic areas on the exam (five for Exam 101, nine for
Exam 102). These sections provide background information and in-depth coverage for each
Objective, with On the Exam tips dispersed throughout.

Review questions and exercises

This section reinforces important study areas with review questions. The purpose of this section
is to provide you with a series of exercises that can be used on a running Linux system to give
you valuable hands-on experience before you take the Level 1 exams.

Practice test

The practice test is designed to be similar in format and content to the actual LPI exams. You
should be able to attain at least an 80 percent score on the sample test before attempting the
live exam.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/00-3.htm (1 of 2) [3/9/2003 11:14:20]

InformIT Online Books > LPI Linux Certification in a Nutshell

Highlighter's index

This unique section contains highlights and important facts culled from the Topic sections. You
can use this as review and reference material prior to taking the actual exams.

Each Objective set forth by the LPI is assigned a numeric weight, which acts as an indicator of the
importance of the Objective. Weights run between 1 and 10, with higher numbers indicating more
importance. An Objective carrying a weight of 1 can be considered relatively unimportant and isn't likely
to be covered in much depth on the exam. Objectives with larger weights are sure to be covered on the
exam, so you should study these Topics closely. The weights of the Objectives are provided at the
beginning of each Topic section.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/00-3.htm (2 of 2) [3/9/2003 11:14:20]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell

Part I: General Linux Exam 101

Part I covers the Topics and Objectives for the LPI's General Linux Certification for Exam
101 and includes the following sections:

● Exam 101 Overview

● Exam 101 Study Guide

❍ GNU and Unix Commands

❍ Devices, Linux Filesystems, and the Filesystem Hierarchy Standard

❍ Boot, Initialization, Shutdown, and Runlevels

❍ Documentation

❍ Administrative Tasks
● Exam 101 Review Questions and Exercises

● Exam 101 Practice Test

● Exam 101 Highlighter's Index

file:///C|/Arquivos%20de%20programas/eDonkey2000/i...Certification%20in%20a%20Nutshell/01__Exam_101.htm [3/9/2003 11:14:21]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell

Part II: General Linux Exam 102

Part 2 covers the Topics and Objectives for the LPI's General Linux Certification for Exam
102 and includes the following sections:

● Exam 102 Overview

● Exam 102 Study Guide

❍ Hardware and Architecture

❍ Linux Installation and Package Management

❍ Kernel

❍ Text Editing, Processing, and Printing

❍ Shells, Scripting, Programming, and Compiling

❍ X

❍ Networking Fundamentals

❍ Networking Services

❍ Security
● Exam 102 Review Questions and Exercises

● Exam 102 Practice Test

● Exam 102 Highlighter's Index

file:///C|/Arquivos%20de%20programas/eDonkey2000/i...Certification%20in%20a%20Nutshell/11__Exam_102.htm [3/9/2003 11:14:21]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Preface

Conventions Used in This Book

This desktop quick reference follows certain typographical conventions:

Bold

Used for commands, programs, and options. All terms shown in bold are typed literally.

Italic

Used to show arguments and variables that should be replaced with user-supplied values. Italic
is also used to indicate filenames and directories and to highlight comments in examples.

Constant Width

Used to show the contents of files or the output from commands.

Constant Width Bold

Used in examples and tables to show commands or other text that should be typed literally by
the user.

Constant Width Italic

Used in examples and tables to show text that should be replaced with user-supplied values.

#, $

Used in some examples as the root shell prompt (#) and as the user prompt ($) under the

Bourne or bash shell.

On the Exam

These provide information about areas you should focus on when studying for the exam.

These signify a tip, suggestion, or general note.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/00-4.htm (1 of 2) [3/9/2003 11:14:22]

InformIT Online Books > LPI Linux Certification in a Nutshell

These indicate a warning or caution.

A final word about syntax: in many cases, the space between an option and its argument can be
omitted. In other cases, the spacing (or lack of spacing) must be followed strictly. For example, -wn (no
intervening space) might be interpreted differently from -w n. It's important to notice the spacing used
in option syntax.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/00-4.htm (2 of 2) [3/9/2003 11:14:22]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Preface

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). As a reader of this book and as an LPI
examinee, you can help us to improve future editions. Please let us know about any errors you find, as
well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

You can also send us messages electronically. To be put on the mailing list or to request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@ora.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions.
The site also includes a link to a forum where you can discuss the book with the author and other
readers. You can access this site at:

http://www.oreilly.com/catalog/lpicertnut

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com/

If you have taken one or both of the LPIC Level 1 exams after preparing with this book and find that
parts of this book could better address your exam experience, we'd like to hear about it. Of course, you
are under obligation to the LPI not to disclose specific exam details, but comments regarding the
coverage of the LPI Objectives, level of detail, and relevance to the exam will be most helpful. We take
your comments seriously and will do whatever we can to make this book as useful as it can be.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/00-5.htm [3/9/2003 11:14:22]

mailto:info@oreilly.com
mailto:bookquestions@ora.com
http://www.oreilly.com/catalog/lpicertnut
http://www.oreilly.com/

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Preface

Acknowledgments

I'd like to thank the LPI, its staff, its contributors, and its sponsors for creating a unique and valuable
community-based certification program. The LPI mission and organization are in line with the open
source community it serves, and the LPIC series of certificates are respected and credible achievements.

For their general good advice as well as some specific information on PC hardware, my thanks go to
Matt Welsh, Matthias Kalle Dalheimer, and Lar Kaufman, authors of Running Linux, Third Edition.
Likewise, Linux in a Nutshell, Third Edition, by Ellen Siever, Stephen Spainhour, Jessica P. Hekman, and
Stephen Figgins, is invaluable for reference information like bash programming details. I'm also
indebted to the many volunteer authors and editors contributing to the Linux Documentation Project.

A lot of important feedback came from technical reviewers Kara Prichard and Richard Fifarek, and my
hat's off to them for their detailed suggestions and corrections.

Of course, this book wouldn't be nearly as readable or as useful without the dedicated support of my
editor, Chuck Toporek. His guidance and encouragement kept me consistent, accurate, and motivated,
and the book wouldn't have been the same without him. Thanks, Chuck!

Thanks also to the others who helped with the completion of this book: Mary Brady, the production
editor; Claire Cloutier, the production manager; and Ellie Volckhausen, the cover designer.

Finally, I'd like to thank my lovely wife Monica, whose love, vision, and support made this project
possible in the first place, and my boys Austin and Alexander, my constant source of inspiration.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/00-6.htm [3/9/2003 11:14:23]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part I: General Linux Exam 101

Chapter 1. Exam 101 Overview

LPI Exam 101 is one of two exams required for the LPIC Level 1 certification. In total, 14 major Topic
areas are specified for Level 1; this exam tests your knowledge on 5 of them.

Exam Topics are numbered using a level.topic notation (e.g., 1.2, 2.5). In the LPI's early stages of
development, Topics were assigned to exams based on a different scheme than we see today. When the
scheme changed, the Topics were redistributed to Exams 101 and 102, but the pairing of Topic numbers
to exams was dropped. As a result, we have 1.x and 2.x Topics in both Level 1 exams.

The Level 1 Topics are distributed between the two exams to create tests of similar length and difficulty
without subject matter overlap. As a result, there's no requirement for or advantage to taking them in
sequence.

Each Topic contains a series of Objectives covering specific areas of expertise. Each of these Objectives
is assigned a numeric weight, which acts as an indicator of the importance of the Objective. Weights run
between 1 and 10, with higher numbers indicating more importance. An Objective carrying a weight of
1 can be considered relatively unimportant and isn't likely to be covered in much depth on the exam.
Objectives with larger weights are sure to be covered on the exam, so you should study these Topics
closely. The weights of the Objectives are provided at the beginning of each Topic section.

The Topics for Exam 101 are listed in Table 1-1.

Table 1-1. LPI Topics for Exam 101

Name Number of Objectives Description

Chapter 3 7

This Topic covers many GNU and Unix commands used during day-
to-day system administration activity. Objectives include command
syntax, text filters, file management, pipes, redirects, process
management, process execution priorities, and basic regular
expressions.

Chapter 4 8
Objectives for this Topic include the creation of partitions and
filesystems, filesystem integrity, mounting, quotas, permissions,
ownership, links, and file location tasks.

Chapter 5 2
This short Topic covers system boot, lilo, syslog, runlevels,
shutdown, and reboot.

Chapter 6 4

This is an overview of Linux documentation sources, such as
manpages, info pages, /usr/doc, Linux-related web sites, and the
generation of local documentation. It also includes some discussion
of user support.

Chapter 7 5
This core system administration Topic includes user and group
accounts, user environment issues, syslog, cron, at, and backup.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/01-0.htm (1 of 2) [3/9/2003 11:14:23]

InformIT Online Books > LPI Linux Certification in a Nutshell

As you can see from Table 1-1 the Topic numbers assigned by the LPI are not sequential. This is due to
various modifications made by the LPI to its exam program as it developed. The Topic numbers serve
only as reference and are not used on the exam.

Exam 101 lasts a maximum of 90 minutes and contains approximately 60 questions. The exam is
administered using a custom application on a PC in a private room with no notes or other reference
material. About 75 percent of the exam is made up of multiple-choice single-answer questions. These
questions have only one correct answer and are answered using radio buttons. Some of them present a
scenario needing administrative action. Others seek appropriate commands for a particular task or for
proof of understanding of a particular concept.

About 10 percent of the exam questions are multiple-choice multiple-answer questions, which are
answered using checkboxes. These questions can have multiple correct responses, each of which must
be checked. This is probably the most difficult question style because the multiple answers increase the
likelihood of mistakes. But they also are a good test of your knowledge of Unix commands, since an
incorrect response on any one of the possible answers causes you to miss the entire question. The exam
also has some fill-in-the-blank questions. These questions provide a one-line text area input box for you
to fill in your answer. These questions check your knowledge of concepts such as important files and
commands, plus common facts that you are expected to be aware of.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/01-0.htm (2 of 2) [3/9/2003 11:14:23]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part I: General Linux Exam 101

Chapter 3. GNU and Unix Commands (Topic 1.3)

This Topic covers the ever-important aspect of working interactively with Linux command-line utilities.
While it's true that GUI tools are already available to manage just about everything on a Linux system,
a firm understanding of basic use of command-line utilities is essential.

The family of commands that are part of Linux and Unix systems has a long history. Individuals or
groups that needed specific tools contributed many of the commands in the early days of Unix
development. Those that were popular became part of the system and were accepted as default tools
under the Unix umbrella. Today, Linux systems carry new, often more powerful GNU versions of these
historical commands.

This section covers LPI Topic 1.3, GNU and Unix Commands. Even the Topic name implies the confusion
that may exist regarding the origin of the commands we're using on GNU/Linux systems. Remember
that for software to be freely distributed as part of your Linux distribution, it cannot be proprietary and
must come with some form of redistribution ability in its licensing terms.

This LPI Topic has seven Objectives:

Objective 1: Work Effectively on the Unix Command Line

This Objective covers the essentials of working at the command line in a shell, including
environment variables, using the command history and editing facilities, invoking commands,
command substitution, and recursively executing commands. Weight: 4.

Objective 2: Process Text Streams Using Text-Processing Filters

There exists a diverse "toolbox" of interesting and powerful utilities from the GNU textutils
package, which can be used to manipulate text in various ways. This Objective covers those
utilities and how to use them. Weight: 7.

Objective 3: Perform Basic File Management

If you're used to an entirely GUI computing environment, performing basic file management
manually from the command line may be awkward at first. You'll find, however, that after
mastering a few simple commands you will achieve much finer control over file management
chores. This Objective covers simple and recursive file management, including the use of
wildcards (regular expressions). Weight: 2.

Objective 4: Use Unix Streams, Pipes, and Redirects

Among the most powerful concepts in the Linux and Unix worlds is the idea of creating text
streams. This powerful tool offers you the ability to succinctly string various commands (such as
those described in Objective 2) together into customized editing chains, which modify text in a
serial fashion. Objective 4 includes redirection and the use of the tee command. Weight: 3.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-0.htm (1 of 2) [3/9/2003 11:14:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

Objective 5: Create, Monitor, and Kill Processes

Every running program on a Linux system is a process. Some processes are short-lived, like
utility programs such as ls. Other processes, usually called daemons, are intended to run for
extended periods or even constantly; these include processes such as web or database server
software. Managing these processes is an important activity for a system administrator. This
Objective covers foreground and background processing, process monitoring, signaling, and how
to "kill" a process. Also covered are some of the commands used to manipulate running
processes. Weight: 5.

Objective 6: Modify Process Execution Priorities

When you launch a process, you may wish to instruct the system to lower or raise its scheduling
priority relative to the default. This action has the effect of giving more or less CPU time to your
process. This is accomplished with the nice command, which modifies the default scheduling
priority prior to running your command. This Objective covers these modifications. Weight: 2.

Objective 7: Perform Searches of Text Files Making Use of Regular Expressions

Many tools on your Linux system are capable of using regular expressions. At the most basic
level, regular expressions are simply wildcard-matching mechanisms, such as you've probably
used at the command line many times. While detailed use is beyond the scope of this book and
the LPI exams, regular expressions are a powerful solution to a range of problems. This
Objective covers basic regular expression usage with command-line tools such as sed and grep.
Weight: 3.

The tools and concepts discussed here represent important and fundamental aspects of working with
Linux, and are essential for your success on Exam 101.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-0.htm (2 of 2) [3/9/2003 11:14:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part I: General Linux Exam 101

Chapter 4. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 2.4)

Filesystem management is among the most critical activities that you must perform to maintain a stable
Linux system. In simple situations, after a successful installation, you may never have a problem or
need to manage filesystem specifics. However, understanding how to configure and maintain Linux
filesystems is essential to safely manage your system and to pass Exam 101. This section contains
these Objectives:

Objective 1: Create Partitions and Filesystems

Most Linux distributions will automate initial filesystem creation on your system for you.
However, subsequent management of partitions, particularly on large systems and multiboot
configurations, requires specific knowledge. This Objective involves the creation of disk
partitions using fdisk, and filesystem creation using mkfs. Weight: 3.

Objective 2: Maintain the Integrity of Filesystems

At one time or another, you will probably find yourself stuck with an ailing filesystem. It could
be a small problem resulting from a system crash, or it could be a total disk failure. Whatever
the cause, you must be prepared to work with fsck to repair problems. This Objective also
covers the handy du and df commands, which will help you with monitoring filesystem
properties. Weight: 5.

Objective 3: Control Filesystem Mounting and Unmounting

Under Linux, a filesystem is not available for use unless it is mounted. When the system boots,
it mounts its filesystems according to instructions in the important /etc/fstab file. This Objective
covers the management of this file, manual mounting of filesystems, and configuration of user-
mountable removable filesystems. Weight: 3.

Objective 4: Set and View Disk Quotas

When running a system with multiple users, you may find some of them competing for disk
space. Managing that problem gets much easier when you enforce disk quotas, which allocate
finite amounts of space to individual user accounts. Setup and management of quotas is covered
by this Objective. Weight: 1.

Objective 5: Use File Permissions to Control Access to Files

Linux file permissions are a critical part of any system's security policy. This Objective covers
permissions on files and directories, including special modes. Weight: 3.

Objective 6: Manage File Ownership

File ownership is a fundamental part of the access control described in Objective 5. This
Objective covers the management of user and group ownership. Weight: 2.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-0.htm (1 of 2) [3/9/2003 11:14:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

Objective 7: Create and Change Hard and Symbolic Links

The Linux filesystem allows the creation of filesystem links. Links allow multiple filenames to
point to the same file, a handy way of having the same file appear in more than one place or
under different names. This Objective covers both hard and soft (symbolic) links. Weight: 2.

Objective 8: Find System Files and Place Files in the Correct Location

Linux distributions share a common Filesystem Hierarchy Standard (FHS), which describes
where files are located in the filesystem and how they are named. This Objective covers that
standard, as well as methods of locating files. Weight: 2.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-0.htm (2 of 2) [3/9/2003 11:14:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part I: General Linux Exam 101

Chapter 5. Boot, Initialization, Shutdown, and Runlevels (Topic 2.6)

Even the most inexpensive PC has a fairly complex series of steps to execute on its way from idle
hardware to productive system. When a system is powered on, a computer's electronics are in a
random state and must be reset to a known condition. After this occurs, the CPU in the system begins
processing instructions at a specific, hardcoded memory location in Read-Only Memory (ROM). For PCs,
the ROM is usually called the Basic Input/Output System (BIOS). The startup instructions stored in the
BIOS perform basic initialization chores to discover and configure peripheral hardware. When the
system is initialized and ready, it begins looking in known locations for an operating system (or
operating system loader software). This could be stored on fixed or removable disk media, or even
placed in memory during initialization. Once an operating system is launched, it begins an initialization
sequence of its own.

This section covers the latter portions of the boot process, from the point where the BIOS looks for an

operating system, as required for Exam 101.[1] This Topic has two Objectives:

[1] The BIOS is covered in Chapter 13.

Objective 1: Boot the System

This Objective covers the Linux boot process, including boot-time kernel options, examining log
file events, and the dmesg and lilo commands. We also examine some boot-related
configuration files. Weight: 3.

Objective 2: Change Runlevels and Shutdown or Reboot System

Linux and many Unix systems share the concept of runlevels. A Linux runlevel describes a mode
of operation, such as single-user mode or multiuser mode. Runlevels and the associated
shutdown and system reboot topics are covered in this Objective. Weight: 3.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/05-0.htm [3/9/2003 11:14:25]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 13. Hardware and Architecture (Topic 1.1)

This brief Topic requires general knowledge of fundamental PC architecture facts, necessary before
attempting any operating system installation. It includes these Objectives:

Objective 1: Configure Fundamental System Hardware

This Objective includes PC basics such as BIOS configuration, interrupt request (IRQ)
assignments, and I/O addresses. Weight: 3.

Objective 2: Set Up SCSI and NIC Devices

This Objective covers the setup of Small Computer System Interface (SCSI) controllers and
network interfaces. Weight: 4.

Objective 3: Configure Modems and Sound Cards

Hardware compatibility can be a significant consideration for modems under Linux, particularly
with low-cost PCs. This Objective covers modem and sound issues. Weight: 3.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/13-0.htm [3/9/2003 11:14:25]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part I: General Linux Exam 101

Chapter 6. Documentation (Topic 1.8)

As system administrators, our ability to navigate through daily computing tasks, both common and
esoteric, depends to a large degree on our access to documentation. Even experts must have detailed
system information available and refer to it on a routine basis. It is appropriate then that the LPI has
made Linux documentation a minor but important part of Exam 101. There are four Objectives for
documentation:

Objective 1: Use and Manage Local System Documentation

This Objective covers two primary areas of documentation on Linux systems: the man (manual)
facility and files stored in /usr/doc. Weight: 5.

Objective 2: Find Linux Documentation on the Internet

Just as Linux itself is available via the Internet, a variety of documentation is also available.
Weight: 2.

Objective 3: Write System Documentation

As a system administrator, you'll no doubt be creating programs and utilities of your own, often
for consumption by other users. At those times, you'll also need to provide documentation for
your work and make it available using man and info pages. Weight: 1.

Objective 4: Provide User Support

One of the biggest challenges in the IT world is providing excellent end user support. A
methodical approach, which draws on your experience and available system documentation, is
needed to respond to the variety of problems that are presented to a help desk. Weight: 1.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/06-0.htm [3/9/2003 11:14:26]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part I: General Linux Exam 101

Chapter 7. Administrative Tasks (Topic 2.11)

As a system administrator in a multiuser environment, much of your activity is related to users and
their system accounts, the automation of routine tasks, and system backup. This chapter covers these
administrative aspects of Linux as required for Exam 101. This chapter has five Objectives:

Objective 1: Manage Users and Group Accounts and Related System Files

This Objective covers the management of user accounts and the commands used to create and
modify them. We also examine the files that store user account information. Weight: 7.

Objective 2: Tune the User Environment and System Environment Variables

A user's environment, including shell selection, environment variables, aliases, and the like, is
somewhat personal. Each user will want to customize her environment for individual tastes and
needs. However, a default setup is needed for new user accounts, and certain system setup
items must be provided to all users. This Objective covers the system /etc/profile (a system-
wide startup file for the bash shell) and the /etc/skel directory, used as an image for new user
accounts. Weight: 4.

Objective 3: Configure and Use System Log Files to Meet Administrative and Security Needs

This Objective covers the configuration and use of standard system logging with the syslog
system. Weight: 3.

Objective 4: Automate System Administration Tasks by Scheduling Jobs to Run in the Future

This Objective covers the use of the cron facility for automating routine system maintenance.
Weight: 4.

Objective 5: Maintain an Effective Data Backup Strategy

While many commercial tools exist in the market for system backup, you can form an effective
basic strategy with tools already available on your Linux system. This Objective covers basic
backup strategy using the tar program, including verification of backups and restoration of files.
Weight: 3.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/07-0.htm [3/9/2003 11:14:26]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part I: General Linux Exam 101

Chapter 2. Exam 101 Study Guide

Part I of this book contains a section for each of the five Topics found on LPI Exam 101. Each section
details certain Objectives, which are described here and on the LPI web site, http://www.lpi.org/p-obj-
101.html.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/02-0.htm [3/9/2003 11:14:27]

http://www.lpi.org/p-obj-101.html
http://www.lpi.org/p-obj-101.html
http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 2. Exam 101 Study Guide

2.1 Exam Preparation

LPI Exam 101 is thorough, but you should find it fairly straightforward if you have a solid foundation in
Linux concepts. You won't come across questions that intend to trick you, and you're unlikely to find
ambiguous questions.

Exam 101 mainly tests your knowledge of facts, including commands and their common options,
important file locations, configuration syntax, and common procedures. Your recollection of these
details, regardless of your level of Linux administration experience, will directly influence your results.

For clarity, the material in the following sections is presented in the same order as the LPI Topics and
Objectives. However, you may choose to study the Topics in any order you wish. To assist you with your
preparation, Table 2-1 through Table 2-5 list the Topics and Objectives found on Exam 101. Objectives
within each Topic occupy rows of the corresponding table, including the Objective's number, description,
and weight. The LPI assigns a weight for each Objective to indicate the relative importance of that
Objective on the exam on a scale of 1 to 10. We recommend that you use the weights to prioritize what
you decide to study in preparation for the exams. After you complete your study of each Objective,
simply check it off here to measure and organize your progress.

Table 2-1. GNU and Unix Commands (Topic 1.3)

Objective Weight Description

1 4 Section 3.1

2 7 Section 3.2

3 2 Section 3.3

4 3 Section 3.4

5 5 Section 3.5

6 2 Section 3.6

7 3 Section 3.7

Table 2-2. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 2.4)

Objective Weight Description

1 3 Section 4.1

2 5 Section 4.2

3 3 Section 4.3

4 1 Section 4.4

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/02-1.htm (1 of 2) [3/9/2003 11:14:27]

InformIT Online Books > LPI Linux Certification in a Nutshell

5 3 Section 4.5

6 2 Section 4.6

7 2 Section 4.7

8 2 Section 4.8

Table 2-3. Boot, Initialization, Shutdown, and Runlevels (Topic 2.6)

Objective Weight Description

1 3 Section 5.1

2 3 Section 5.2

Table 2-4. Documentation (Topic 1.8)

Objective Weight Description

1 5 Section 6.1

2 2 Section 6.2

3 1 Section 6.3

4 1 Section 6.4

Table 2-5. Administrative Tasks (Topic 2.11)

Objective Weight Description

1 7 Section 7.1

2 4 Section 7.2

3 3 Section 7.3

4 4 Section 7.4

5 3 Section 7.5

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/02-1.htm (2 of 2) [3/9/2003 11:14:27]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 3. GNU and Unix Commands (Topic 1.3)

3.1 Objective 1: Work Effectively on the Unix Command Line

Every computer system requires a human interface component. For Linux system administration, a text
interface is typically used. The system presents the administrator with a prompt, which at its simplest is
a single character such as $ or #. The prompt signifies that the system is ready to accept typed

commands, which usually occupy one or more lines of text. This interface is generically called the
command line.

It is the job of a program called a shell to provide the command prompt and to interpret commands.
The shell provides an interface layer between the Linux kernel and the human user, which is how it gets
its name. The original shell for Unix systems was written by Steve Bourne and was called simply sh.
The default Linux shell is bash, the Bourne-Again Shell, which is a GNU variant of sh. The popular tcsh
shell, a variant of the original csh (or C shell), is also provided. The bash shell is the subject of an
entire LPI Topic, covered in Chapter 17. At this point, we are primarily concerned with our interaction
with bash and the effective use of commands.

3.1.1 The Interactive Shell

The shell is a powerful programming environment, capable of automating nearly anything you can
imagine on your Linux system. The shell is also your interactive interface to your system. When you
first start a shell, it does some automated housekeeping to get ready for your use, and then presents a
command prompt. The command prompt tells you that the shell is ready to accept commands from its
standard input device, which is usually the keyboard. Shells can run standalone, as on a physical
terminal, or within a window in a GUI environment. Whichever the case, their use is the same.

3.1.1.1 Shell variable basics

During execution, bash maintains a set of shell variables that contain information important to the
execution of bash. Most of these variables are set when bash starts, but they can be set manually at
any time.

The first shell variable of interest in this Topic is called PS1 (which simply stands for Prompt String 1).
This special variable holds the contents of the command prompt that are displayed when bash is ready
to accept commands (there is also a PS2 variable, used when bash needs multiple-line input to
complete a command). You can easily display the contents of PS1, or any other shell variable, by using
the echo command with the variable name preceded by the $ symbol:

$ echo $PS1
\$

The \$ output tells us that PS1 contains the two characters \ and $. The backslash character tells the
shell not to interpret the dollar symbol in any special way (that is, as a metacharacter, described later in
this section). A simple dollar sign such as this was the default prompt for sh, but bash offers options to
make the prompt much more informative. On your system, the default prompt stored in PS1 is probably
something like:

[\u@\h \W]\$

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-1.htm (1 of 9) [3/9/2003 11:14:30]

InformIT Online Books > LPI Linux Certification in a Nutshell

Each of the characters preceded by backslashes have a special meaning to bash, while those without
backslashes are interpreted literally. In this example, \u is replaced by the username, \h is replaced by
the system's hostname, \W is replaced by the "bottom" portion of the current working directory, and

\$ is replaced by a $ character.[1] This yields a prompt of the form:

[1] Unless you are root, in which case \$ is replaced by #.

[jdean@linuxpc jdean]$

How your prompt is formulated is really just a convenience and does not affect how the shell interprets
your commands. However, adding information to the prompt, particularly regarding system, user, and
directory location, can make life easier when hopping from system to system and logging in as multiple
users (as yourself and root, for example). See the documentation on bash for more information on
customizing prompts.

Another shell variable that is extremely important during interactive use is PATH , which contains a list

of all the directories that hold commands or other programs you are likely to execute. A default path is
set up for you when bash starts. You may wish to modify the default to add other directories that hold
programs you need to run.

Every file in the Linux filesystem can be specified in terms of its location. The
less program, for example, is located in the directory /usr/bin. Placing
/usr/bin in your PATH enables you to execute less by simply typing less

rather than the explicit /usr/bin/less.

In order for bash to find and execute the command you enter at the prompt, the command must be
either:

● A bash built-in command that is part of bash itself

● An executable program located in a directory listed in the PATH variable

● Explicitly defined

The shell holds PATH and other variables for its own use. However, many of the shell's variables are

needed during the execution of programs launched from the shell (including other shells). For these
variables to be available, they must be exported, at which time they become environment variables.
Environment variables are passed on to programs and other shells, and together they are said to form

the environment in which the programs execute. PATH is always made into an environment variable.[2]
Exporting a shell variable to turn it into an environment variable is done using the export command:

[2] In the case of csh and tcsh, there are both shell and environment
variables for PATH; the shell takes care of keeping them synchronized.

$ export MYVAR

When a variable is exported to the environment, it is passed into the environment of all child processes.
That is, it will be available to all programs run by your shell.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-1.htm (2 of 9) [3/9/2003 11:14:30]

InformIT Online Books > LPI Linux Certification in a Nutshell

3.1.1.2 Entering commands at the command prompt

Commands issued to the shell on a Linux system generally consist of four components:

● A valid command (a shell built-in, a program or script found among directories listed in the
PATH, or an explicitly defined program)

● Command options, usually preceded by a dash

● Arguments

● Line acceptance (i.e., pressing the Enter key), which we assume in the examples

Each command has its own unique syntax, though most follow a fairly standard form. At minimum, a
command is necessary:

$ ls

This simple command lists files in the current working directory. It requires neither options nor
arguments. Generally, options are letters or words preceded by a single or double dash and are added
after the command and separated from it by a space:

$ ls -l

The -l option modifies the behavior of the ls program by listing files in a longer, more detailed format.
In most cases, single-dash options can be either combined or specified separately. To illustrate this,
consider these two equivalent commands:

$ ls -l -a
$ ls -la

By adding the -a option, ls does not hide files beginning with a dot (which it does by default). Adding
that option by specifying -la yields the same result. Some commands offer alternative forms for the
same option. In the preceding example, the -a option can be replaced with -- all:

$ ls -l --all

These double-dash full-word options are frequently found in programs from the GNU project. They
cannot be combined as the single-dash options can. Both types of options can be freely intermixed.
Although the longer GNU-style options require more typing, they are easier to remember and easier to
read in scripts than the single-letter options.

Adding an argument further refines the command's behavior:

$ ls -l *.c

Now the command will give a detailed listing only of C program source files (those with the .c

extension), if they exist, in the current working directory. In this example, if no .c files exist, no output

will be given.[3] Sometimes, options and arguments can be mixed in order:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-1.htm (3 of 9) [3/9/2003 11:14:30]

InformIT Online Books > LPI Linux Certification in a Nutshell

[3] If a Unix or GNU command has nothing of significance to tell you, it
most likely will remain silent. This brevity may take some users by
surprise, particularly if they are used to systems that yield messages
indicating something like "successful completion, but sorry, no results."

$ ls --all *.c -l

In this case, ls was able to determine that -l is an option and not another file descriptor.

Some commands, such as tar and ps, don't require the dash preceding an option because at least one
option is expected or required. Also, an option often instructs the command that the subsequent item
on the command line is a specific argument. For example:

$ tar cf mytarfile file1 file2 file3
$ tar -cf mytarfile file1 file2 file3

These equivalent commands use tar to create an archive file named mytarfile and put three files (file1,
file2, and file3) into it. In this case, the f option tells tar that archive filename mytarfile follows
immediately after the option.

Just as any natural language contains exceptions and variations, so does the syntax used for GNU and
Unix commands. You should have no trouble learning the essential syntax for the commands you need
to use often. The capabilities of the command set offered on Linux are extensive, making it highly
unlikely that you'll memorize all of the command syntax you need. Most systems administrators are
constantly learning about features they've never used in commands they use regularly. It is standard
practice to regularly refer to man or info pages and other documentation on commands you're using, so
feel free to explore and learn as you go.

3.1.1.3 Entering commands not in the PATH

Occasionally, you will need to execute a command that is not in your path and not built into your shell.
If this need arises often, it may be best to simply add the directory that contains the command to your
path. However, there's nothing wrong with explicitly specifying a command's location and name
completely. For example, the ls command is located in /bin. This directory is most certainly in your
PATH variable (if not, it should be!), which allows you to enter the ls command by itself on the

command line:

$ ls

The shell will look for an executable file named ls in each successive directory listed in your PATH

variable and will execute the first one it finds. Specifying the fully qualified filename for the command
eliminates the directory search and yields identical results:

$ /bin/ls

Any executable file on your system may be started in this way. However, it is important to remember
that some programs may have requirements during execution about what is listed in your PATH. A

program can be launched normally but may fail if it is unable to find a required resource if the PATH is

incomplete.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-1.htm (4 of 9) [3/9/2003 11:14:30]

InformIT Online Books > LPI Linux Certification in a Nutshell

3.1.1.4 Entering multiple-line commands interactively

In addition to its interactive capabilities, the shell also has a complete programming language of its
own. Many programming features can be very handy at the interactive command line as well. Looping
constructs, including for, until, and while are often used this way. When you begin a command such
as these, which normally spans multiple lines, bash prompts you for the subsequent lines until a valid
command has been completed. The prompt you receive in this case is stored in shell variable PS2,
which by default is >. For example, if you wanted to repetitively execute a series of commands each
time with a different argument from a known series, you could enter the following:

$...series of commands on arg1...
command output
$...series of commands on arg2...
command output
$...series of commands on arg2...
command output

Rather than entering each command manually, you can interactively use bash's for loop construct to do
the work for you. Note that indented style, such as what you might use in traditional programming, isn't
necessary when working interactively with the shell:

$ for var in arg1 arg2 arg3
> do
> echo $var
> ...series of commands...
> done
arg1
command output
arg2
command output
arg3
command output

Mixing the command-line world with the shell-scripting world in this way can make certain tasks
surprisingly efficient.

3.1.1.5 Entering command sequences

There may be times when it is convenient to place multiple commands on a single line. Normally, bash
assumes you have reached the end of a command (or the end of the first line of a multiple-line
command) when you press Return. To add more than one command to a single line, the commands can
be separated and entered sequentially with the command separator , a semicolon. Using this syntax,
the following commands:

$ ls
$ ps

are, in essence, identical to and will yield the same result as the following single-line command that
employs the command separator:

$ ls; ps

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-1.htm (5 of 9) [3/9/2003 11:14:30]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

Command syntax and the use of the command line is very important. Pay special attention
to the use of options and arguments and how they are differentiated. Also be aware that
some commands expect options to be preceded by a dash while other commands do not.

3.1.2 Command History and Editing

If you consider interaction with the shell as a kind of conversation, it's a natural extension to refer back
to things "mentioned" previously. You may type a long and complex command that you want to repeat,
or perhaps you need to execute a command multiple times with slight variation.

If you work interactively with the original Bourne shell, maintaining such a "conversation" can be a bit
difficult. Each repetitive command must be entered explicitly, each mistake must be retyped, and if your
commands scroll off the top of your screen, you have to recall them from memory. Modern shells such
as bash and tcsh include a significant feature set called command history, expansion, and editing.
Using these capabilities, referring back to previous commands is painless, and your interactive shell
session becomes much simpler and more effective.

The first part of this feature set is command history. When bash is run interactively, it provides access
to a list of commands previously typed. The commands are stored in the history list prior to any
interpretation by the shell. That is, they are stored before wildcards are expanded or command
substitutions are made. The history list is controlled by the HISTSIZE shell variable. By default,
HISTSIZE is set to 500 lines, but you can control that number by simply adjusting HISTSIZE's value. In
addition to commands entered in your current bash session, commands from previous bash sessions

are stored by default in a file called ~/.bash_history (or the file named in shell variable HISTFILE).[4]
To view your command history, use the bash built-in history command. A line number will precede
each command. This line number may be used in subsequent history expansion. History expansion uses
either a line number from the history or a portion of a previous command to reexecute that

command.[5] Table 3-1 lists the basic history expansion designators. In each case, using the

designator as a command causes a command from the history to be executed again.

[4] If you use multiple shells in a windowed environment (as just about
everyone does), the last shell to exit will write its history to
~/.bash_history. For this reason you may wish to use one shell invocation
for most of your work.

[5] History expansion also allows a fair degree of command editing using
syntax you'll find in the bash documentation.

Table 3-1. Command History Expansion Designators

Designator Description

!!
Often called bang-bang,[6] this command refers to the most recent command.

!n Refer to command n from the history. You'll use the history command to
display these numbers.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-1.htm (6 of 9) [3/9/2003 11:14:30]

InformIT Online Books > LPI Linux Certification in a Nutshell

!-n
Refer to the current command minus n from the history.

! string
Refer to the most recent command starting with string.

!? string
Refer to the most recent command containing string.

^ string1^string2 Quick substitution. Repeat the last command, replacing the first occurrence of
string1 with string2.

[6] The exclamation point is often called bang on Linux and Unix systems.

While using history substitution can be useful for executing repetitive commands, command history
editing is much more interactive. To envision the concept of command history editing, think of your
entire bash history (including that obtained from your ~/.bash_history file) as the contents of an
editor's buffer. In this scenario, the current command prompt is the last line in an editing buffer, and all
of the previous commands in your history lie above it. All of the typical editing features are available
with command history editing, including movement within the "buffer," searching, cutting, pasting, and
so on. Once you're used to using the command history in an editing style, everything you've done on
the command line becomes available as retrievable, reusable text for subsequent commands. The more
familiar you become with this concept, the more useful it can be.

By default, bash uses key bindings like those found in the Emacs editor for command history

editing.[7] If you're familiar with Emacs, moving around in the command history will be familiar and
very similar to working in an Emacs buffer. For example, the key command Ctrl-p (depicted as C-p) will
move up one line in your command history, displaying your previous command and placing the cursor at
the end of it. This same function is also bound to the up arrow key. The opposite function is bound to C-
n (and the down arrow). Together, these two key bindings allow you to examine your history line by
line. You may reexecute any of the commands shown simply by pressing Return when it is displayed.
For the purposes of Exam 101, you'll need to be familiar with this editing capability, but detailed
knowledge is not required. Table 3-2 lists some of the common Emacs key bindings you may find useful
in bash. Note that C- indicates the Ctrl key, while M- indicates the Meta key, which is usually Alt on PC

keyboards.[8]

[7] An editing style similar to the vi editor is also available.

[8] In unusual circumstances, such as on a terminal, using the meta key
means pressing the Escape (Esc) key, releasing it, and then pressing the
defined key. The Esc key is not a modifier, but serves to modify meta keys
when an Alt-style key is unavailable.

Table 3-2. Basic Command History Editing Emacs Key Bindings

Key Description

C-p Previous line (also up arrow)

C-n Next line (also down arrow)

C-b Back one character (also left arrow)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-1.htm (7 of 9) [3/9/2003 11:14:30]

InformIT Online Books > LPI Linux Certification in a Nutshell

C-f Forward one character (also right arrow)

C-a Beginning of line

C-e End of line

C-l Clear the screen, leaving the current line at the top of the screen

M-< Top of history

M-> Bottom of history

C-d Delete character from right

C-k Delete (kill) text from cursor to end of line

C-y Paste (yank) text previously cut (killed)

M-d Delete (kill) word

C-rtext Reverse search for text

C-stext Forward search for text

3.1.2.1 Command substitution

bash offers a handy ability to do command substitution. This feature allows you to replace the result of
a command with a script. For example, wherever $(command) is found, its output will be substituted.

This output could be assigned to a variable, as in the number of lines in the .bashrc file:

$ RCSIZE=$(wc -l ~/.bashrc)

Another form of command substitution is `command`. The result is the same, except that the backquote

syntax has some special rules regarding metacharacters that the $(command) syntax avoids.

3.1.2.2 Applying commands recursively through a directory tree

There are many times when it is necessary to execute commands recursively. That is, you may need to
repeat a command throughout all the branches of a directory tree. Recursive execution is very useful
but also can be dangerous. It gives a single interactive command the power to operate over a much
broader range of your system than your current directory, and the appropriate caution is necessary.
Think twice before using these capabilities, particularly when operating as the superuser.

Some of the GNU commands on Linux systems have built-in recursive capabilities as an option. For
example, chmod modifies permissions on files in the current directory:

$ chmod g+w *.c

In this example, all files with the .c extension in the current directory are modified with the group-write
permission. However, there may be a number of directories and files in hierarchies that require this
change. chmod contains the -R option (note the uppercase option letter; you may also use --
recursive), which instructs the command to operate not only on files and directories specified on the
command line, but also on all files and directories contained under the specified directories. For
example, this command gives the group-write permission to all files in a source-code tree named src:

$ chmod -R g+w src

Provided you have the correct privileges, this command will descend into each subdirectory in the src
directory and add the requested permission to each file and directory it finds. Other example commands
with this ability include cp (copy), ls (list files), and rm (remove files).

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-1.htm (8 of 9) [3/9/2003 11:14:30]

InformIT Online Books > LPI Linux Certification in a Nutshell

A more general approach to recursive execution through a directory is available by using the find
command. This is an extremely powerful command because it can tell you a lot about your system's file
structure. find is inherently recursive and is intended to descend through directories looking for files
with certain attributes or executing commands. At its simplest, find displays an entire directory
hierarchy when you simply enter the command with a target directory:

$ find src
...files and directories are listed recursively...

To get more specific, add the -name option to search the same directories for C files:

$ find src -name "*.c"

....c files are listed recursively[9]...

[9] This can be done recursively with the ls command as well.

find can also execute commands against its results with the -exec option, which can execute any
command against each successive element listed by find. During execution, a special variable {} is
replaced by these find results. The command entered after the -exec option must be terminated by a
semicolon; any metacharacters used -- including the semicolon -- must be either quoted or escaped. To
take the previous example a little further, rather than execute the chmod recursively against all files in
the src directory, find can execute it against the C files only, like this:

$ find src -name "*.c" -exec chmod g+w {} \;

The find command is capable of much more than this simple example and can locate files with
particular attributes such as dates, protections, file types, access times, and others. While the syntax
can be confusing, the results are worth some study of find.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-1.htm (9 of 9) [3/9/2003 11:14:30]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 17. Shells, Scripting, Programming, and Compiling (Topic 1.9)

Depending upon the computing environments you're used to, the concepts of shells and shell programs
(usually called scripts) may be a little foreign. In the Windows world, for example, native scripting
capabilities are limited to the command interpreter's simple batch command language. This facility has
only the most primitive automation capabilities, and many extensions and alternatives have appeared
on the market to fill the void. If you've used an AS/400 system, you had similar limitations for scripting.
On Linux systems, shells and their scripting languages are fundamental concepts used throughout the
system and they have widely ranging capabilities.

This chapter covers Shells, Scripting, Programming, and Compiling and its two Objectives:

Objective 1: Customize and Use the Shell Environment

This Objective covers your shell and basic scripting concepts, including environment variables,
functions, and script files that control the login environment. Weight: 4.

Objective 2: Customize or Write Simple Scripts

Customization of the many scripts found on a Linux system is important for its management and
automation. Topics for this Objective include shell syntax, checking the status of executed
programs, and issues surrounding the properties of script files. Weight: 5.

It is important for Linux administrators to become comfortable with at least one shell and its
programming language. This can be an area of some concern to those used to graphics-only
environments, where the use of a command interpreter is not a daily activity. As you'll see, becoming
adept at working with your favorite shell will empower you and will allow you to let your computer carry
a larger share of your daily responsibilities.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/17-0.htm [3/9/2003 11:14:30]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 3. GNU and Unix Commands (Topic 1.3)

3.2 Objective 2: Process Text Streams Using Text-Processing Filters

Many of the commands on Linux systems are intended to be used as filters, which modify text in helpful
ways. Text fed into the command's standard input or read from files is modified in some useful way and
sent to standard output or to a new file. Multiple commands can be combined to produce text streams,
which are modified at each step in a pipeline formation. This section describes basic use and syntax for
the filtering commands important for Exam 101. Refer to a Linux command reference for full details on
each command and the many other available commands.

cut

Syntax

cut options [files]

Description

Cut out (that is, print) selected columns or fields from one or more files. The source file is not changed.
This is useful if you need quick access to a vertical slice of a file. By default, the slices are delimited by a
tab.

Frequently used options

-b list

Print bytes in list positions.

-c list

Print characters in list columns.

-d delim

Set field delimiter for -f.

-f list

Print list fields.

Examples

Show usernames (in the first colon-delimited field) from /etc/passwd:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (1 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

$ cut -d: -f1 /etc/passwd

Show first column of /etc/passwd:

$ cut -c 1 /etc/passwd

expand

Syntax

expand [options] files

Description

Convert tabs to spaces. Sometimes the use of tab characters can make output that is attractive on one
output device look bad on another. This command eliminates tabs and replaces them with the
equivalent number of spaces. By default, tabs are assumed to be eight spaces apart.

Frequently used options

-t tabs

Specify tab stops, in place of default 8.

-i

Initial; convert only at start of lines.

fmt

Syntax

fmt [options] [files]

Description

Format text to a specified width by filling lines and removing newline characters. Multiple files from the
command line are concatenated.

Frequently used options

-u

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (2 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

Use uniform spacing: one space between words and two spaces between sentences.

-w width

Set line width to width. The default is 75 characters.

head

Syntax

head [options] [files]

Description

Print the first few lines of one or more files (the "head" of the file or files). When more than one file is
specified, a header is printed at the beginning of each file, and each is listed in succession.

Frequently used options

-c n

Print the first n bytes, or if n is followed by k or m, print the first n kilobytes or megabytes,
respectively.

-l n

Print the first n lines. The default is 10.

join

Syntax

join [options] file1 file2

Description

Print a line for each pair of input lines, one each from file1 and file2, that have identical join fields. This
function could be thought of as a very simple database table join, where the two files share a common
index just as two tables in a database would.

Frequently used options

-j1 field

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (3 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

Join on field of file1.

-j2 field

Join on field of file2.

-j field

Join on field of both file1 and file2.

Example

Suppose file1 contains the following:

1 one
2 two
3 three

and file2 contains:

1 11
2 22
3 33

Issuing the command:

$ join -j 1 file1 file2

yields the following output:

1 one 11
2 two 22
3 three 33

nl

Syntax

nl [options] [files]

Description

Number the lines of files, which are concatenated in the output. This command is used for numbering
lines in the body of text, including special header and footer options normally excluded from the line
numbering. The numbering is done for each logical page, which is defined as having a header, a body,
and a footer. These are delimited by the special strings \:\:\:, \:\:, and \:, respectively.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (4 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

Frequently used options

-b style

Set body numbering style to style, t by default.

-f style

Set footer number style to style, n by default.

-h style

Set header numbering style to style, n by default.

Styles can be in these forms:

A

Number all lines.

t

Only number non-empty lines.

n

Do not number lines.

pREGEXP

Only number lines that contain a match for regular expression REGEXP.

Example

Suppose file file1 contains the following text:

\:\:\:
header
\:\:
line1
line2
line3
\:
footer
\:\:\:
header
\:\:
line1
line2
line3

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (5 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

\:
footer

If the following command is given:

$ nl -h a file1

the output would yield numbered headers and body lines but no numbering on footer lines. Each new
header represents the beginning of a new logical page and thus a restart of the numbering sequence:

1 header

2 line1
3 line2
4 line3

footer

1 header

2 line1
3 line2
4 line3

footer

od

Syntax

od [options] [files]

Description

Dump files in octal and other formats. This program prints a listing of a file's contents in a variety of
formats. It is often used to examine the byte codes of binary files but can be used on any file or input
stream. Each line of output consists of an octal byte offset from the start of the file followed by a series
of tokens indicating the contents of the file. Depending on the options specified, these tokens can be
ASCII, decimal, hexadecimal, or octal representations of the contents.

Frequently used options

-t type

Specify the type of output. Typical types include:

A

Named character

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (6 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

c

ASCII character or backslash escape

O

Octal (the default)

x

Hexadecimal

Example

If file1 contains:

a1\n
A1\n

where \n stands for the newline character. The od command specifying named characters yields the
following output:

$ od -t a file1
00000000 a 1 nl A 1 nl
00000006

A slight nuance is the ASCII character mode. This od command specifying named characters yields the
following output with backslash-escaped characters rather than named characters:

$ od -t c file1
00000000 a 1 \n A 1 \n
00000006

With numeric output formats, you can instruct od on how many bytes to use in interpreting each
number in the data. To do this, follow the type specification by a decimal integer. This od command
specifying single-byte hex results yields the following output:

$ od -t x1 file1
00000000 61 31 0a 41 31 0a
00000006

Doing the same thing in octal notation yields:

$ od -t o1 file1
00000000 141 061 012 101 061 012
00000006

If you examine an ASCII chart with hex and octal representations, you'll see that these results match
those tables.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (7 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

paste

Syntax

paste [options] files

Description

Paste together corresponding lines of one or more files into vertical columns.

Frequently used options

-d'n'

Separate columns with character n in place of the default tab.

-s

Merge lines from one file into a single line. When multiple files are specified, their contents are
placed on individual lines of output, one per file.

For the following three examples, file1 contains:

1
2
3

and file2 contains:

A
B
C

Example 1

A simple paste creates columns from each file in standard output:

$ paste file1 file2
1 A
2 B
3 C

Example 2

The column separator option yields columns separated by the specified character:

$ paste -d'@' file1 file2

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (8 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

1@A
2@B
3@C

Example 3

The single-line option (-s) yields a line for each file:

$ paste -s file1 file2
1 2 3
A B C

pr

Syntax

pr [options] [file]

Description

Convert a text file into a paginated, columnar version, with headers and page fills. This command is
convenient for yielding nice output, such as for a line printer from raw uninteresting text files. The
header will consist of the date and time, the filename, and a page number.

Frequently used options

-d

Double space.

-h header

Use header in place of the filename in the header.

-l lines

Set page length to lines. The default is 66.

-o width

Set the left margin to width.

split

Syntax

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (9 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

split [option] [infile] [outfile]

Description

Split infile into a specified number of line groups, with output going into a succession of files, outfileaa,
outfileab, and so on (the default is xaa, xab, etc.). The infile remains unchanged. This command is
handy if you have a very long text file that needs to be reduced to a succession of smaller files. This
was often done to email large files in smaller chunks, because it was at one time considered bad
practice to send single large email messages.

Frequently used option

-n

Split the infile into n-line segments. The default is 1000.

Example

Suppose file1 contains:

1 one
2 two
3 three
4 four
5 five
6 six

Then the command:

$ split -2 file1 splitout_

yields as output three new files, splitout_aa, splitout_ab, and splitout_ac. The file splitout_aa contains:

1 one
2 two

splitout_ab contains:

3 three
4 four

and splitout_ac contains:

5 five
6 six

tac

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (10 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

tac [file]

Description

This command is named as an opposite for the cat command, which simply prints text files to standard
output. In this case, tac prints the text files to standard output with lines in reverse order.

Example

Suppose file1 contains:

1 one
2 two
3 three

Then the command:

$ tac file1

yields as output:

3 three
2 two
1 one

tail

Syntax

tail [options] [files]

Description

Print the last few lines of one or more files (the "tail" of the file or files). When more than one file is
specified, a header is printed at the beginning of each file, and each is listed in succession.

Frequently used options

-c n

This option prints the last n bytes, or if n is followed by k or m, the last n kilobytes or
megabytes, respectively.

-f

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (11 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

Follow the output dynamically as new lines are added to the bottom of a file.

-n m

Prints the last m lines. The default is 10.

-f

Continuously display a file as it is actively written by another process. This is useful for watching
log files as the system runs.

tr

Syntax

tr [options] [[string1 [string2]]

Description

Translate characters from string1 to the corresponding characters in string2. tr does not have file
arguments and therefore must use standard input and output. If string1 and string2 specify ranges (a-

z or A-Z), they should represent the same number of characters.

Frequently used options

-d

Delete characters in string1 from the output.

-s

Squeeze out repeated output characters in string1.

Example 1

To change all lowercase characters in file1 to uppercase, use either of these commands:

$ cat file1 | tr a-z A-Z

or:

$ tr a-z A-Z < file1

Example 2

To suppress repeated "a" characters from file1:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (12 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

$ cat file1 | tr -s a

Example 3

To remove all "a," "b," and "c" characters from file1:

$ cat file1 | tr -d abc

wc

Syntax

wc [options] [files]

Description

Print counts of characters, words, and lines for files. When multiple files are listed, statistics for each file
output on a separate line with a cumulative total output last.

Frequently used options

-c

Print the character count only.

-l

Print the line count only.

-w

Print the word count only.

Example 1

Show all counts and totals for file1, file2, and file3:

$ wc file[123]

Example 2

Count the number of lines in file1:

$ wc -l file1

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (13 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

xargs

Syntax

xargs [options] [command] [initial-arguments]

Description

Execute command followed by its optional initial-arguments and append additional arguments found on
standard input. Typically, the additional arguments are filenames in quantities too large for a single
command line. xargs runs command multiple times to exhaust all arguments on standard input.

Frequently used options

-n maxargs

Limit the number of additional arguments to maxargs for each invocation of command.

-p

Interactive mode. Prompt the user for each execution of command.

Example

Use grep to search a long list of files, one by one, for the word "linux":

$ find / -type f | xargs -n 1 grep linux

find searches for normal files (-type f) starting at the root directory. xargs executes grep once for
each of them due to the -n 1 option.

3.2.1 The Stream Editor, sed

Another filtering program found on nearly every Unix system is sed, the stream editor. It is called a
stream editor because it is intended as a filter, with text usually flowing from standard input, through
the utility, to standard output. Unlike the previously listed commands, sed is a programmable utility
with a range of capabilities. During processing, sed interprets instructions from a sed script, processing
the text according to those instructions. The script may be a single command or a longer list of
commands. It is important to understand sed and its use for Exam 101, although detailed knowledge is
not required or offered in this brief introduction.

The sed utility is usually used either to automate repetitive editing tasks or to process text in pipes of
Unix commands (see Objective 4). The scripts that sed executes can be single commands or more
complex lists of editing instructions. It is invoked using one of the following methods.

sed

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (14 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

sed [options] 'command1' [files]
sed [options] -e 'command1' [-e 'command2'...] [files]
sed [options] -f script [files]

Description

The first form invokes sed with a one-line command1. The second form invokes sed with two (or more)
commands. Note that in this case the -e parameter is required for all commands specified. The
commands are specified in quotes to prevent the shell from interpreting and expanding them. The last
form instructs sed to take editing commands from file script (which does not need to be executable). In
all cases, if files are not specified, input is taken from standard input. If multiple files are specified, the
edited output of each successive file is concatenated.

Frequently used options

-e cmd

The next argument is a command. This is not needed for single commands but is required for all
commands when multiple commands are specified.

-f file

The next argument is a script.

-g

Treat all substitutions as global.

The sed utility operates on text through the use of addresses and editing commands. The address is
used to locate lines of text to be operated upon, and editing commands modify text. During operation,
each line (that is, text separated by newlinecharacters) of input to sed is processed individually and
without regard to adjacent lines. If multiple editing commands are to be used (through the use of a
script file or multiple -e options), they are all applied in order to each line before moving on to the next
line.

Input to sed can come from standard input or from files. When input is received from standard input,
the original versions of the input text are lost. However, when input comes from files, the files
themselves are not changed by sed. The output of sed represents a modified version of the contents of
the files but does not affect them.

Addressing

Addresses in sed locate lines of text to which commands will be applied. The addresses can be:

● A line number (note that sed counts lines continuously across multiple input files).

● A line number with an interval. The form is n~s, where n is the starting line number and s is the
step, or interval, to apply. For example, to match every odd line in the input, the address

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (15 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

specification would be 1~2 (start at line 1 and match every two lines thereafter). This feature is
a GNU extension to sed.

● The symbol $, indicating the last line of the last input file.

● A regular expression delimited by forward slashes (/regex/). See Objective 7 for more
information on using regular expressions.

Zero, one, or two such addresses can be used with a sed command. If no addresses are given,
commands are applied to all input lines by default. If a single address is given, commands are applied
only to a line or lines matching the address. If two comma-separated addresses are given, an inclusive
range is implied. Finally, any address may be followed by the ! character, and commands are applied to
lines that do not match the address.

Commands

The sed command immediately follows the address specification if present. Commands generally consist
of a single letter or symbol, unless they have arguments. Following are some basic sed editing
commands to get you started.

d

Delete lines.

s

Make substitutions.This is a very popular sed command. The syntax is:

s/pattern/replacement/[flags]

The following flags can be specified for the s command:

g

Replace all instances of pattern, not just the first.

n

Replace n th instance of pattern; the default is 1.

p

Print the line if a successful substitution is done. Generally used with the -n command-line
option.

w file

Print the line to file if a successful substitution is done.

y

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (16 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

Translate characters. This command works in a fashion similar to the tr command, described
earlier.

Example 1

Delete lines 3 through 5 of file1:

$ sed '3,5d' file1

Example 2

Delete lines of file1 that contain a # at the beginning of the line:

$ sed '/^#/d' file1

Example 3

Translate characters:

y/abc/xyz/

Every instance of a is translated to x, b to y, and c to z.

Example 4

Write the @ symbol for all empty lines in file1 (that is, lines with only a newline character but nothing

more):

$ sed 's/^$/@/' file1

Example 5

Remove all double quotation marks from all lines in file1:

$ sed 's/"//g' file1

Example 6

Using sed commands from external file sedcmds, replace the third and fourth double quotation marks
with (and) on lines 1 through 10 in file1. Make no changes from line 11 to the end of the file. Script
file sedcmds contains:

1,10{
s/"/(/3
s/"/)/4
}

The command is executed using the -f option:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (17 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

$ sed -f sedcmds file1

This example employs the positional flag for the s (substitute) command. The first of the two commands
substitutes (for the third double-quote character. The next command substitutes) for the fourth
double-quote character. Note, however, that the position count is interpreted independently for each
subsequent command in the script. This is important because each command operates on the results of
the commands preceding it. In this example, since the third double quote has been replaced with (, it
is no longer counted as a double quote by the second command. Thus, the second command will
operate on the fifth double quote character in the original file1. If the input line starts out with:

""""""

after the first command, which operates on the third double quote, the result is:

""("""

At this point, the numbering of the double-quote characters has changed, and the fourth double quote
in the line is now the fifth character. Thus, after the second command executes, the output is:

""(")"

As you can see, creating scripts with sed requires that the sequential nature of the command execution
be kept in mind.

If you find yourself making repetitive changes to many files on a regular basis, a sed script is probably
warranted. Many more commands are available in sed than are listed here.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-2.htm (18 of 18) [3/9/2003 11:14:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 3. GNU and Unix Commands (Topic 1.3)

3.3 Objective 3: Perform Basic File Management

This section covers basic file and directory management, including filesystems, files and directories,
standard file management commands, their recursive capabilities where applicable, and wildcard
patterns.

3.3.1 Filesystem Objects

Nearly every operating system that has ever been devised structures its collection of stored objects in a

hierarchy,[10] which is a tree of objects containing other objects. This hierarchy allows a sane
organization of objects and allows identically named objects to appear in multiple locations -- this is
essential for multiuser systems like Linux. Information about each object in the filesystem is stored in a
table (which itself is part of the filesystem), and each object is numbered uniquely within that table.
Although there are a few special object types on Linux systems, the two most common are directories
and files.

[10] However, it wasn't so long ago that MS-DOS was "flat" and had no
hierarchy.

3.3.1.1 Directories and files

A directory is an object intended to contain other objects, while a file is an object intended to contain
information. At the top of all Linux filesystem hierarchies is a directory depicted simply by /; this is

known as the root directory.[11] Beneath / are named directories and files in an organized and well-
defined tree. To describe these objects, you simply refer to them by name separated by the / character.
For example, the object ls is an executable program stored in a directory called /bin under the root
directory; it is depicted simply as /bin/ls.

[11] Not to be confused with the username root, which is separate and
distinct. There's also often a directory named /root for the root user.
Keeping /, /root andthe root user straight in a conversation can be a
challenge.

3.3.1.2 Inodes

The identification information for a filesystem object is known as its inode. Inodes carry information
about objects, such as where they are located on disk, their modification time, security settings, and so
forth. Each Linux ext2 filesystem is created with a finite number of inodes, which is a number calculated
based on the number of objects contained by the filesystem. Multiple objects in the filesystem can share
the same inode; this concept is called linking.

3.3.1.3 File and directory management commands

Once a hierarchy is defined, there is a constant need to manage the objects in the filesystem. Objects
are constantly created, read, modified, copied, moved, and deleted, and wisely managing the filesystem
is one of the most important tasks of a system administrator. In this section, we discuss the basic

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-3.htm (1 of 9) [3/9/2003 11:14:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

command-line utilities used for file and directory management. While the GUI has tools for this task, the
spirit of the Linux system and the requirements of Exam 101 require your understanding of these
commands.

cp

Syntax

cp [options] file1 file2
cp [options] files directory

Description

In the first command form, copy file1 to file2. If file2 exists and you have appropriate privileges, it will
be overwritten without warning (unless you use the -i option). Both file1 and file2 can be any valid
filename, either fully qualified or in the local directory. In the second command form, copy one or more
files to directory. Note that the presence of multiple files implies that you wish to copy files to a
directory. If directory doesn't exist, an error message will be printed. This command form can get you in
trouble if you attempt to copy a single file into a directory that doesn't exist, as the command will be
interpreted as the first form and you'll end up with file2 instead of directory.

Frequently used options

-f

Force an overwrite of existing files in the destination.

-i

Prompt interactively before overwriting destination files. It is common practice (and advised) to
alias the cp command to cp -i to prevent accidental overwrites. You may find that this is
already done for you for user root on your Linux system.

-p

Preserve all information, including owner, group, permissions, and timestamps. Without this
option, the copied file or files will have the present date and time, default permissions, owner,
and group.

-r, -R

Recursively copy directories. You may use either upper- or lowercase for this option. If file1 is
actually a directory instead of a file and the recursive option is specified, file2 will be a copy of
the entire hierarchy under directory file1.

-v

Display the name of each file verbosely before copying.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-3.htm (2 of 9) [3/9/2003 11:14:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example 1

Copy the messages file to the local directory (specified by .):

$ cp /var/log/messages .

Example 2

Make an identical copy, including preservation of file attributes, of directory src in new directory src2:

$ cp -Rp src src2

Copy file1, file2, file5, file6, and file7 from the local directory into your home directory (under bash):

$ cp file1 file2 file[567] ~

On the Exam

Be sure to know the difference between a file destination and a directory destination and
how to force an overwrite of existing objects.

mkdir

Syntax

mkdir [options] directories

Description

Create one or more directories. You must have write permission in the directory where directories are to
be created.

Frequently used options

-m mode

Set the access mode for directories.

-p

Create intervening parent directories if they don't exist.

Examples

Create a read-only directory named personal:

$ mkdir -m 444 personal

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-3.htm (3 of 9) [3/9/2003 11:14:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

Create a directory tree in your home directory, as indicated with a leading tilde (~), using a single
command:

$ mkdir -p ~/dir1/dir2/dir3

In this case, all three directories are created. This is faster than creating each directory individually.

On the Exam

Verify your understanding of the tilde (~) shortcut for the home directory.

mv

Syntax

mv [options] source target

Description

Move or rename files and directories. For targets on the same filesystem (partition), moving a file
doesn't relocate the contents of the file itself. Rather, the directory entry for the target is updated with
the new location. For targets on different filesystems, such a change can't be made, so files are copied
to the target location and the original sources are deleted.

Note that mv is used to rename files and directories, because a rename
operation requires the same directory entry update as a move.

If a target file or directory does not exist, source is renamed to target. If a target file already exists, it is
overwritten with source. If target is an existing directory, source is moved into that directory. If source
is one or more files and target is a directory, the files are moved into the directory.

Frequently used options

-f

Force the move even if target exists, suppressing warning messages.

-i

Query interactively before moving files.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-3.htm (4 of 9) [3/9/2003 11:14:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

Remember that, from the filesystem's point of view on a single partition, renaming a file and
moving it to a different location are nearly identical operations. This eliminates the need for
a rename command.

rm

Syntax

rm [options] files

Description

Delete one or more files from the filesystem. To remove a file, you must have write permission in the
directory that contains the file, but you do not need write permission on the file itself. The rm command
also removes directories when the -d, -r, or -R option is used.

Frequently used options

-d

Remove directories even if they are not empty. This option is reserved for privileged users.

-f

Force removal of write-protected files without prompting.

-i

Query interactively before removing files.

-r, -R

If the file is a directory, recursively remove the entire directory and all of its contents, including
subdirectories.

rmdir

Syntax

rmdir [option] directories

Description

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-3.htm (5 of 9) [3/9/2003 11:14:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

Delete directories, which must be empty.

Frequently used option

-p

Remove directories and any intervening parent directories that become empty as a result. This
is useful for removing subdirectory trees.

On the Exam

Remember that recursive remove using rm -R removes directories too, even if they're not
empty.

touch

Syntax

touch [options] files

Description

Change the access and/or modification times of files. This command is used to refresh timestamps on
files. Doing so may be necessary, for example, to cause a program to be recompiled using the date-
dependant make utility.

Frequently used options

-a

Change only the access time.

-m

Change only the modification time.

-t timestamp

Instead of the current time, use timestamp in the form of [[CC]YY]MMDDhhmm[.ss]. For

example, the timestamp for January 12, 2001, at 6:45 p.m. is 200101121845.

3.3.2 File-Naming Wildcards

When working with files on the command line, you'll often run into situations in which you need to
perform operations on many files at once. For example, if you are developing a C program, you may
want to touch all of your .c files in order to be sure to recompile them the next time you issue the
make utility to build your program. There will also be times when you need to move or delete all the
files in a directory or at least a selected group of files. At other times, filenames may be long or difficult

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-3.htm (6 of 9) [3/9/2003 11:14:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

to type, and you'll want to find an abbreviated alternative to typing the filenames for each command
you issue.

In order to make these operations simpler, all shells[12] on Linux offer file-naming wildcards (Table 3-

3). Rather than explicitly specifying every file or typing long filenames, specifying wildcard characters in
place of portions of the filenames can usually do the work for you. For example, the shell expands
things like *.txt to a list of all the files that end in .txt. File wildcard constructs like this are called file
globs, and their use is awkwardly called globbing. Using file globs to specify multiple files is certainly a
convenience, and in many cases is required to get anything useful accomplished.

[12] Wildcards are expandedby the shell, not by commands. When a
command is entered with wildcards included, the shell first expands all the
wildcards (and other types of expansion) and passes the full result on to
the command. This process is invisible to you.

Table 3-3. Common File-Naming Wildcards

Wildcard Description

* Commonly thought to "match anything." It actually will match zero or more
characters (which includes "nothing"!). For example, x* matches files or

directories x, xy, xyz, x.txt, xy.txt, xyz.c, and so on.

? Match exactly one character. For example, x? matches files or directories xx,

xy, xz, but not x and not xyz. The specification x?? matches xyz, but not x

and xy.

[characters]
Match any single character from among characters listed between the
brackets. For example, x[yz] matches xy and xz.

[!characters]
Match any single character other than characters listed between the brackets.
For example, x[!yz] matches xa and x1 but does not match xy and does not

match xz.

[a-z]

Match any single character from among the range of characters listed between
the brackets and indicated by the dash (the dash character is not matched).
For example, x[0-9] matches x0 and x1, but does not match xx. Note that to

match both upper- and lowercase letters,[13] you specify [a-zA-Z]. Using

x[a-zA-Z] matches xa and xA.

[!a-z] Match any single character from among the characters not in the range listed
between the brackets.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-3.htm (7 of 9) [3/9/2003 11:14:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

{ frag1, frag2, frag3...}

Create strings frag1, frag2, frag3, etc. For example,
file_{one,two,three} yields the strings file_one, file_two, and

file_three. This is a special operator named brace expansion that can be

used to match filenames but isn't specifically a file wildcard operator and does
not examine directories for existing files to match. Instead, it will expand any
string.

For example, it can be used with echo to yield strings totally unrelated to
existing filenames:

$ echo string_{a,b,c}

string_a string_b string_c

[13] Linux filenames are case-sensitive.

Here are a few common applications for wildcards:

● If you remember part of a filename but not the whole thing, use wildcards with the portion you
remember to help find the file. For example, if you're working in a directory with a large number
of files and you know you're looking for a file named for Linux, you may enter a command like
this:

$ ls -l *inux*

● When working with groups of related files, wildcards can be used to help separate the groups.
For example, suppose you have a directory full of scripts you've written. Some are Perl scripts,
for which you've used an extension of .pl, and some are Python, with a .py extension. You may
wish to separate them into new separate directories for the two languages like this:

$ mkdir perl python
$ mv *.pl perl
$ mv *.py python

● Wildcards match directory names as well. Suppose you have a tree of directories starting with
contracting, where you've created a directory for each month (that is, contracting/january,
contracting/february, through contracting/december). In each of these directories are stored
invoices, named simply invoice_custa_01.txt, invoice_custa_02.txt, invoice_custb_01.txt, and
so on, where custa and custb are customer names of some form. To display all of the invoices,
wildcards can be used:

$ ls con*/*/inv*.txt

The first * matches tracting. The second matches all directories under the contracting directory
(january through december). The last matches all the customers and each invoice number for
each customer.

See the bash man or info pages for additional information on how bash handles expansions and on
other expansion forms.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-3.htm (8 of 9) [3/9/2003 11:14:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-3.htm (9 of 9) [3/9/2003 11:14:35]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 3. GNU and Unix Commands (Topic 1.3)

3.4 Objective 4: Use Unix Streams, Pipes,and Redirects

Among the many beauties of the Linux and Unix systems is the notion that everything is a file. Things
such as disk drives and their partitions, tape drives, terminals, serial ports, the mouse, and even audio
are mapped into the filesystem. This mapping allows programs to interact with many different devices
and files in the same way, simplifying their interfaces. Each device that uses the file metaphor is given a
device file, which is a special object in the filesystem that provides an interface to the device. The kernel
associates device drivers with various device files, which is how the system manages the illusion that
devices can be accessed as if they were files. Using a terminal as an example, a program reading from
the terminal's device file will receive characters typed at the keyboard. Writing to the terminal causes
characters to appear on the screen. While it may seem odd to think of your terminal as a file, the
concept provides a unifying simplicity to Linux and Linux programming.

3.4.1 Standard I/O and Default File Descriptors

Standard I/O is a capability of the shell, used with all text-based Linux utilities to control and direct
program input, output, and error information. When a program is launched, it is automatically provided
with three file descriptors. File descriptors are regularly used in programming and serve as a "handle" of
sorts to another file. Standard I/O creates the following file descriptors:

Standard input (abbreviated stdin)

This file descriptor is a text input stream. By default it is attached to your keyboard. When you
type characters into an interactive text program, you are feeding them to standard input. As
you've seen, some programs take one or more filenames as command-line arguments and
ignore standard input. Standard input is also known as file descriptor 0.

Standard output (abbreviated stdout)

This file descriptor is a text output stream for normal program output. By default it is attached
to your terminal (or terminal window). Output generated by commands is written to standard
output for display. Standard output is also known as file descriptor 1.

Standard error (abbreviated stderr)

This file descriptor is also a text output stream, but it is used exclusively for errors or other
information unrelated to the successful results of your command. By default standard error is
attached to your terminal just like standard output. This means that standard output and
standard error are commingled in your display, which can be confusing. You'll see ways to
handle this later. Standard error is also known as file descriptor 2.

Standard output and standard error are separated because it is often useful to process normal program
output differently than errors.

The standard I/O file descriptors are used in the same way as those created during program execution
to read and write disk files. They enable you to tie commands together with files and devices, managing
command input and output in exactly the way you desire. The difference is they are provided to the

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-4.htm (1 of 5) [3/9/2003 11:14:36]

InformIT Online Books > LPI Linux Certification in a Nutshell

program by the shell by default and do not need to be explicitly created.

3.4.2 Pipes

From a program's point of view there is no difference between reading text data from a file and reading
it from your keyboard. Similarly, writing text to a file and writing text to a display are equivalent
operations. As an extension of this idea, it is also possible to tie the output of one program to the input
of another. This is accomplished using a pipe (|) to join two or more commands together. For example:

$ grep "01523" order* | less

This command searches through all files whose names begin with order to find lines containing the
word 01523. By creating this pipe, the standard output of grep is sent to the standard input of less.
The mechanics of this operation are handled by the shell and are invisible to the user. Pipes can be used
in a series of many commands. When more than two commands are put together, the resulting
operation is known as a pipeline or text stream, implying the flow of text from one command to the
next.

As you get used to the idea, you'll find yourself building pipelines naturally to extract specific
information from text data sources. For example, suppose you wish to view a sorted list of inode
numbers from among the files in your current directory. There are many ways you could achieve this.
One way would be to use awk in a pipeline to extract the inode number from the output of ls, then

send it on to the sort command and finally to a pager for viewing:[14]

[14] Don't worry about the syntax or function of these commands at this
point.

$ ls -i * | awk '{print $1}' | sort -nu | less

The pipeline concept in particular is a feature of Linux and Unix that draws on the fact that your system
contains a diverse set of tools for operating on text. Combining their capabilities can yield quick and
easy ways to extract otherwise hard to handle information.

3.4.3 Redirection

Each pipe symbol in the previous pipelines example instructs the shell to feed output from one
command into the input of another. This action is a special form of redirection, which allows you to
manage the origin of input streams and the destination of output streams. In the previous example,
individual programs are unaware that their output is being handed off to or from another program
because the shell takes care of the redirection on their behalf.

Redirection can also occur to and from files. For example, rather than sending the output of an inode list
to the pager less, it could easily be sent directly to a file with the > redirection operator:

$ ls -i * | awk '{print $1}' | sort -nu > in.txt

By changing the last redirection operator, the shell creates an empty file (in.txt), opens it for writing,
and the standard output of sort places the results in the file instead of on the screen. Note that, in this
example, anything sent to standard error is still displayed on the screen.

Since the > redirection operator creates files, the >> redirection operator can be used to append to
existing files.For example, you could use the following command to append a one-line footnote to in.txt:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-4.htm (2 of 5) [3/9/2003 11:14:36]

InformIT Online Books > LPI Linux Certification in a Nutshell

$ echo "end of list" >> in.txt

Since in.txt already exists, the quote will be appended to the bottom of the existing file. If the file didn't
exist, the >> operator would create the file and insert the text "end of list" as its contents.

It is important to note that when creating files, the output redirection operators are interpreted by the
shell before the commands are executed. This means that any output files created through redirection
are opened first. For this reason, you cannot modify a file in place, like this:

$ grep "stuff" file1 > file1 # don't do it!

If file1 contains something of importance, this command would be a disaster because an empty file1
would overwrite the original. The grep command would be last to execute, resulting in a complete data
loss from the original file1 file because the file that replaced it was empty. To avoid this problem, simply
use an intermediate file and then rename it:

$ grep "stuff" file1 > file2
$ mv file2 file1

Standard input can also be redirected. The input redirection operator is <. Using a source other than the

keyboard for a program's input may seem odd at first, but since text programs don't care about where
their standard input streams originate, you can easily redirect input. For example, the following
command will send a mail message with the contents of the file in.txt to user jdean:

$ Mail -s "inode list" jdean < in.txt

Normally, the Mail program prompts the user for input at the terminal. However with standard input
redirected from the file in.txt, no user input is needed and the command executes silently. Table 3-4
lists the common standard I/O redirections for the bash shell, specified in the LPI Objectives.

The redirection syntax may be significantly different if you use another shell.

Table 3-4. Standard I/O Redirections for the bash shell

Redirection Function Syntax for bash

Send stdout to file.

$ cmd > file
$ cmd 1> file

Send stderr to file.
$ cmd 2> file

Send both stdout and stderr to file.
$ cmd > file 2>&1

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-4.htm (3 of 5) [3/9/2003 11:14:36]

InformIT Online Books > LPI Linux Certification in a Nutshell

Send stdout to file1 and stderr to file2.
$ cmd > file1 2> file2

Receive stdin from file.
$ cmd < file

Append stdout to file.

$ cmd >> file
$ cmd 1>> file

Append stderr to file.
$ cmd 2>> file

Append both stdout and stderr to file.
$ cmd >> file 2>&1

Pipe stdout from cmd1 to cmd2.
$ cmd1 | cmd2

Pipe stdout and stderrfrom cmd1 to cmd2.
$ cmd1 2>&1 | cmd2

On the Exam

Be prepared to demonstrate the difference between filenames and command names in
commands using redirection operators. Also, check the syntax on commands in redirection
questions to be sure about which command or file is a data source and which is a
destination.

3.4.4 Using the tee Command

Sometimes, you'll want to run a program and send its output to a file while at the same time viewing
the output on the screen. The tee utility is helpful in this situation.

tee

Syntax

tee [options] files

Description

Read from standard input and write both to one or more files and to standard output (analogous to a
tee junction in a pipe).

Option

-a

Append to files rather than overwriting them.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-4.htm (4 of 5) [3/9/2003 11:14:36]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example

Suppose you're running a pipeline of commands cmd1, cmd2, and cmd3:

$ cmd1 | cmd2 | cmd3 > file1

This sequence puts the ultimate output of the pipeline into file1. However, you may also be interested in
the intermediate result of cmd1. To create a new file_cmd1 containing those results, use tee:

$ cmd1 | tee file_cmd1 | cmd2 | cmd3 > file1

The results in file1 will be the same as in the original example, and the intermediate results of cmd1
will be placed in file_cmd1.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-4.htm (5 of 5) [3/9/2003 11:14:36]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 3. GNU and Unix Commands (Topic 1.3)

3.5 Objective 5: Create, Monitor, and Kill Processes

This Objective looks at the management of processes. Just as file management is a fundamental system
administrator's function, the management and control of processes is also essential for smooth system
operation. In most cases, processes will live, execute, and die without intervention from the user
because they are automatically managed by the kernel. However, there are times that a process will die
for some unknown reason and need to be restarted. Or, some process may "run wild" and consume
system resources, requiring that it be terminated. You will also need to instruct running processes to
perform operations, such as rereading a configuration file.

3.5.1 Processes

Each program running on your system is considered to be a process by the kernel. Your shell is a
process, and each command you type into the shell starts one or more processes during its execution.
Attributes and concepts associated with processes include:

Lifetime

Each process "lives" as it executes. Short commands such as ls will execute for a very short
time, generate results, and terminate on their own. User programs such as web browsers run
for extended periods until terminated by the user. Daemons such as web servers run
continuously from boot to shutdown or restart. When a process terminates, it is said to die
(which is why the program used to manually signal a process to stop execution is called kill;
succinct, though admittedly morbid).

Process ID (PID)

Every process has a number assigned to it when it starts. PIDs are integer numbers unique
among all running processes.

User ID (UID) and Group ID (GID)

Processes must have associated privileges, and a process' UID and GID are associated with the
user who started the process. This limits the process' access to objects in the filesystem.

Parent process

The first process started by the kernel at system start time is a program called init. This process
has PID 1 and is the ultimate parent of all other processes on the system. Your shell is a
descendant of init and the parent process to commands started by the shell, which are its child

processes, or subprocesses.[15]

[15] Note that shell's built-in commands, such as alias, bg, cd, echo, jobs, and test,
do not start a child process but are executed in the shell process itself. See the bash
manpage for a full list of built-in commands.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (1 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

Parent process ID (parent PID)

This is the PID of the process that created the process in question. If that parent process has
vanished, the parent PID will be 1, which is the PID of init.

Environment

Each process holds a list of variables and their associated values. Collectively, this list is known
as the process' environment and the variables are environment variables. The environment is
inherited from the parent process unless it is replaced through the execution of startup scripts.

Current working directory

A default directory is associated with each process, which is where the process will seek and
write files unless they are explicitly specified to be elsewhere in the filesystem.

Processes are often referred to as tasks. Linux is a multitasking operating
system, in that it runs many processes simultaneously. However, even
though the terms process and task may be synonymous in this context, don't
confuse multiprocessing with multitasking. Multiprocessing generally refers
to systems with multiple central processing units, a definition that has little
to do with system processes. Given the correct hardware and a
multiprocessing kernel, Linux has multiprocessing capability.

3.5.2 Process Monitoring

At any time, there could be tens or even hundreds of processes running together on your Linux system.
Monitoring these processes is done using three convenient utilities: ps, pstree, and top.

ps

Syntax

ps [options]

Description

This command generates a one-time snapshot of the current processes on standard output.

Frequently used options

-a

Show processes that are owned by other users and attached to a terminal. Normally, only the
current user's processes are shown.

-f

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (2 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

"Forest" mode, which is used to display process family trees. For example, using this option will
display all running child web servers (httpd) in a hierarchical diagram under the parent web

server.[16]

[16] There is also a separate command called pstree that does this nicely.

-l

Long format, which includes priority, parent PID, and other information.

-u

User format, which includes usernames and the start time of processes.

-w

Wide output format, used to eliminate the default output line truncation. Useful for the -f option.

-x

Include processes without controlling terminals. Often needed to see daemon processes and
others not started from a terminal session.

-C cmd

Display instances of command name cmd.

-U usr

Display processes owned by username usr.

Examples

Simply entering the ps command with no options will yield a brief list of processes owned by you and
attached to your terminal:

$ ps

Use the -a, -u, and -x options to include processes owned by others and not attached to terminals as
well as to display them in the "user" mode. The command is valid with or without the dash:

$ ps -aux
$ ps aux

In this case, the dash is optional. However, certain ps options require the dash. (See the manpage for
details.)

If you are interested in finding process information on a particular command, use the -C option. This

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (3 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

command displays all web server processes:

$ ps u -C httpd

You'll note that the -C option requires the dash, but the u option won't work with it if a dash is included.
This confusion exists because the ps command as implemented on Linux understands options in three
differing forms:

Unix98 options

These may be grouped and must be preceded by a dash.

BSD options

These may be grouped and must not be used with a dash.

GNU long options

These options are preceded by two dashes.

All of these option types may be freely intermixed. Instead of the -C option, you may wish to use ps
with other options that you usually use and pipe the output to grep, searching for process names, PIDs,
or anything else you know about the process:

$ ps -aux | grep httpd

In this case, the result would be the same list of httpd servers, as well as the grep command itself.

pstree

Syntax

pstree [options] [pid|user]

Description

The pstree command is similar to the "forest" mode of ps -f. This command displays a hierarchical list
of processes in a tree format. pstree is very handy for understanding how parent/child process
relationships are set up.

If pid is specified, the displayed tree is rooted at that process. Otherwise, it is rooted at the init process,
which has PID 1. If user (a valid username) is specified, trees for all processes owned by user are
shown. The tree is represented using characters that appear as lines, such as | for vertical lines and +
for intersections (VT100 line-drawing characters, displayed as solid lines by most terminals, are
optional). The output looks similar to this:

httpd-+-httpd
 |-httpd

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (4 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

 |-httpd
 |-httpd
 `-httpd

By default, visually identical branches of the tree are merged to reduce output. Merged lines are
preceded by a count indicating the actual number of similar processes. The preceding example is
normally displayed on a single line:

httpd---5*[httpd]

This behavior can be turned off with the -c option.

Frequently used options

-a

Display command-line arguments used to launch processes.

-c

Disable the compaction of identical subtrees.

-G

Use the VT100 line-drawing characters instead of plain characters to display the tree. This yields
a much more pleasing display but may not be appropriate for printing or paging programs.

-h

Highlight the ancestry of the current process (usually the shell). The terminal must support
highlighting for this option to be meaningful.

-n

The default sort order for processes with the same parent is alphanumerically by name. This
option changes this behavior to a numeric sort by PID.

-p

Include PIDs in the output.

Example

Display a process tree including PIDs:

pstree -p
init(1)-+-atd(356)
 |-crond(370)
 |-gpm(526)
 |-httpd(540)-+-httpd(544)

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (5 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

 | |-httpd(545)
 | |-httpd(546)
 | |-httpd(547)
 | |-httpd(548)
 |-inetd(384)
 |-login(691)-bash(699)-startx(711)-xinit(718)
 -+-X(719)
 |-lpd(412)
 |-mdrecoveryd(5)
 |-mingetty(692)
 |-mingetty(693)
 |-named(398)
 |-nfsd(467)---lockd(475)---rpciod(476)
 |-nfsd(468)
 |-portmap(284)

top

Syntax

top [command-line options]

Description

The top command also offers output similar to ps, but in a continuously updated display. This is useful
in situations in which you need to watch the status of one or more processes or to see how they are
using your system.

In addition, a header of useful uptime, load, CPU status, and memory information is displayed. By
default, the process status output is generated with the most CPU-intensive processes at the top of the
listing (and is named for the "top" processes). In order to format the screen, top must understand how
to control the terminal display. The type of terminal (or terminal window) in use is stored in the
environment variable TERM. If this variable is not set or contains an unknown terminal type, top may
not execute.

Popular command-line options

Dashes are not required for top options:

-b

Run in batch mode. This is useful for sending output from top to other programs or to a file. It
executes the number of iterations specified with the -n option and terminate. This option is also
useful if top cannot display on the terminal type you are using.

-d delay

Specify the delay in seconds between screen updates. The default is five seconds.

-i

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (6 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

Ignore idle processes, listing only the "interesting" ones taking system resources.

-n num

Display num iterations and then exit, instead of running indefinitely.

-q

Run with no delay. If the user is the superuser, run with highest possible priority. This option
causes top to update continuously and will probably consume any idle time your CPU had.
Running top -q as superuser will seriously affect system performance and is not recommended.

-s

Run in secure mode. Some of top's interactive commands can be dangerous if running as the
superuser. This option disables them.

Frequently used interactive options

Once top is running interactively, it can be given a number of commands via the keyboard to change its
behavior. These commands are single-key commands, some of which cause top to prompt for input:

Ctrl-L

Repaint the screen.

h

Generate a help screen.

k

Kill a process. You will be prompted for the PID of the process and the signal to send it (the
default signal is 15, SIGTERM). See Section 3.5.4.

n

Change the number of processes to show. You will be prompted to enter an integer number. The
default is 0, which indicates that the screen should be filled.

q

Quit the program.

r

Renice a process (change its priority). You will be prompted for the PID of the process and the
value to nice it to (see nice and renice in Objective 6). Entering a positive value causes a
process to lose priority. If the superuser is running top, a negative value may be entered,

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (7 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

causing a process to get a higher than normal priority. This command is not available in secure
mode.

s

Change the delay in seconds between updates. You will be prompted for the delay value, which
may include fractions of seconds (i.e., 0.5).

Example 1

Simply executing top without options gives a full status display updated every five seconds:

$ top

Use the q command to quit.

Example 2

To run top with a faster refresh rate, use the interval option, specified here with a one-second refresh:

$ top -d 1

Example 3

To have top update constantly, you could specify -d 0, or use the -q option. Here, this feature is used
to watch only nonidle processes, which will include top itself:

$ top -qi

Example 4

You may wish to use top to log its output to a file. Use the -b (batch) option for this purpose. In this
batch example, the -i option eliminates idle processes, the -n option, with its argument, indicates five
iterations, and the -d option indicates a one-second interval. Results will be redirected to file1. This
command will take five seconds to execute and does not use the optional dashes:

$ top bin 5 d 1 > file1

The single-key interactive commands can be used when top is running interactively. For example, if you
type the h command, top yields a help screen. By entering the n command, top prompts you for the
number of lines you wish to display.

On the Exam

The parent/child relationship of the processes on a Linux system is important. Be sure to
understand how these relationships work and how to view them. Note that the init process
always has PID 1 and is the ultimate ancestor of all system processes.

Using top to change the "nice" (priority modifier) value for a process is discussed in Objective 6.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (8 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

3.5.3 Signaling Active Processes

Each process running on your system listens for signals, simple messages sent to the process either by
the kernel or by a user. The messages are sent through interprocess communication. They are single-
valued, in that they don't contain strings or command-like constructs. Instead, signals are numeric
integer messages, predefined and known by processes. Most have an implied action for the process to
take. When a process receives a signal, it can (or may be forced) to take action. For example, if you are
executing a program from the command line that appears to hang, you may elect to type Ctrl-C to
abort the program. This action actually sends an INTERRUPT signal to the process, telling it to stop

running.

There are about 30 signals defined in Linux. Each signal has a name and a number (the number is sent
to the process, the name is only for our convenience). Many signals are used by the kernel, and some
are useful for users. Table 3-5 lists popular signals for interactive use.

Table 3-5. Frequently Used Interactive Signals

Signal Name[17] Number Meaning and Use

HUP
1

Hang up. This signal is sent automatically when you log out or
disconnect a modem. It is also used by many daemons to cause the
configuration file to be reread.

INT
2 Interrupt; stop running. This signal is sent when you type Ctrl-C.

KILL
9

Kill; stop unconditionally and immediately. Sending this signal is a
drastic measure, as it cannot be ignored by the process. This is the
"emergency kill" signal.

TERM
15

Terminate, nicely if possible. This signal is used to ask a process to exit
gracefully.

TSTP
18

Stop executing, ready to continue. This signal is sent when you type Ctrl-
Z. (See Section 3.5.5 for more information.)

[17] Signal names will often be specified with a "SIG" prefix. That is, signal
HUP is the same as signal SIGHUP.

As you can see from Table 3-5 some signals are invoked by pressing well-known key combinations such
as Ctrl-C and Ctrl-Z. You can also use the kill command to send any message. The kill command is
implemented both as a shell built-in command and as a standalone binary command.

kill

Syntax

kill [-s sigspec | -sigspec] [pids]
kill -l [signum]

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (9 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

Description

In the first form, kill is used with an optional sigspec. This is a signal value, specified as either an
integer or the signal name (such as SIGHUP, or simply HUP). The sigspec is case-insensitive but
usually specified with uppercase letters. You may use -s sigspec or simply -sigspec to make up the
signal value or name. If a sigspec is not given, then SIGTERM (signal 15, "exit gracefully") is assumed.
The sigspec is followed by one or more pids to which the signal is to be sent. In the second form with
the -l option, kill lists the valid signal names. If signum (an integer) is present, only the signal name for
that number will be displayed.

Examples

This command displays the signal name SIGTERM, the name of signal 15, and the default when kill is
used to signal processes:

$ kill -l 15

All of these commands will send a SIGTERM signal to the processes with PIDs 1000 and 1001:

$ kill 1000 1001
$ kill -15 1000 1001
$ kill -SIGTERM 1000 1001
$ kill -sigterm 1000 1001
$ kill -TERM 1000 1001
$ kill -s 15 1000 1001
$ kill -s SIGTERM 1000 1001

If those two processes are playing nicely on your system, they'll comply with the SIGTERM signal and
terminate when they're ready (after they clean up whatever they're doing). Not all processes will
comply, however. A process may be hung in such a way that it cannot respond, or it may have signal
handling code written to trap the signal you're trying to send. To force a process to die, use the
strongest kill:

$ kill -9 1000 1001
$ kill -KILL 1000 1001

These equivalent commands send the KILL signal to the process, which the process cannot ignore. The
process will terminate immediately without regard to closing files or other cleanup procedures. Because

of this, using the KILL signal is a last resort.[18] See Section 3.5.4.

[18] There are situations in which the KILL signal won't stop a process.
Most of them are hardware-related, such as a process trying to write to an
unavailable NFS server or waiting for a tape device to complete rewinding.

The inetd superdaemon will respond to the HUP signal by rereading its configuration file. If you've
made changes to that file and want inetd to reconfigure itself, send it the HUP signal:

$ kill -HUP `cat /var/run/inetd.pid`

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (10 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

Note that kill is used for sending all kinds of signals, not just termination signals. Also, be
aware of the difference between the PID you intend to kill and the signal you wish to send it.
Since they're both integers, they can sometimes be confused.

The backward quotes are replaced by the shell with the contents of the file inetd.pid, which inetd
creates when it starts.

3.5.4 Terminating Processes

Based on the type of service that has failed, you can use ps or top to identify one or more processes
that may have a problem. Once you know the PID for the process that's causing the problem, you can
use the kill command to stop the process nicely with SIGTERM (kill -15 [PID]), escalating the signal
to higher strengths if necessary until the process terminates.

Occasionally you may see a process displayed by ps or top that is listed as a
zombie. These are processes that are stuck while trying to terminate and are
appropriately said to be in the zombie state. Just as in the cult classic film
Night of the Living Dead, you can't kill zombies, because they're already
dead!

If you have a recurring problem with zombies, there may be a bug in your system software or in an
application

Killing a process may also kill all of its child processes. For example, killing a shell may kill all the
processes initiated from that shell, including other shells.

3.5.5 Shell Job Control

Linux and most modern Unix systems offer job control , which is the ability of your shell (with support
of the kernel) to place executing commands in the background where they can be executed. A program
is said to be in the foreground when it is attached to your terminal. When executing in the background,
you have no input to the process other than sending it signals. When a process is started in the
background, you create a job. Each job is assigned a job number, starting at 1 and numbering
sequentially.

The basic reason to create a background process is to keep your terminal or terminal window session
free. There are many instances when a long-running program will never produce a result from standard
output or standard error, and your shell will simply sit idle waiting for the program to finish.
Noninteractive programs can be placed in the background by adding the & character to the command.
For example, if you start netscape from the command line, you don't want the shell to sit and wait for
it to terminate. The shell will respond by starting the browser in the background and will give you a new
command prompt. It will also issue the job number, denoted in square brackets, along with the PID. For
example:

$ netscape &
[1] 1748

Here, Netscape is started as a background process. Netscape is assigned to job 1 (as denoted by [1]),

and is assigned PID 1748. If you start a program and forget the & character, you can still put it in the

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (11 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

background by first stopping it by typing Ctrl-Z:

^Z
[1]+ Stopped netscape

Then issue the bg command to restart the job in the background:

$ bg
[1]+ netscape &

Putting interactive programs in the background can be quite useful. Suppose you're logged into a
remote Linux system, running Emacs in text mode. Realizing that you need to drop back to the
command line, you elect not to terminate the editor but instead simply press Ctrl-Z. This stops Emacs

and puts it in the background and returns you a command prompt.[19] When you're finished, you can
go back into Emacs by issuing the fg command, which puts your stopped job back into the foreground.

[19] This example ignores the fact that Emacs is capable of hosting a shell
itself, which would probably eliminate your need to use job control to get to
the command line.

Background jobs and their status can be listed by issuing the jobs command. Stopped jobs can be
brought to the foreground with the fg command and optionally placed into the background with the Ctrl-
Z and bg sequence.

bg

Syntax

bg [jobspec]

Description

Place jobspec in the background, as if it had been started with &. If jobspec is not present, then the
shell's notion of the current job is used, as indicated by the plus sign (+) in output from the jobs
command. Using this command on a job that is stopped will allow it to run in the background.

fg

Syntax

fg [jobspec]

Description

This command places the specified job in the foreground, making it the current job. If jobspec is not

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (12 of 13) [3/9/2003 11:14:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

present, then the shell's notion of the current job is used.

jobs

Syntax

jobs [options] [jobspecs]

Description

List the active jobs. If jobspecs are included, output is restricted to information about those jobs.

Frequently used option

-l

Also list PIDs.

On the Exam

Be sure to know how to display background jobs and how to switch among them.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-5.htm (13 of 13) [3/9/2003 11:14:38]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 3. GNU and Unix Commands (Topic 1.3)

3.6 Objective 6: Modify Process Execution Priorities

Certain tasks on the system require more execution time than others, and thus deserve to be allocated
more frequent execution and longer time slices by the kernel. For this reason, each process is given an
execution priority. Usually, you don't need to worry about execution priority because the kernel handles
it automatically. Each process' priority level is constantly and dynamically raised and lowered by the
kernel according to a number of parameters, such as how much system time it has already consumed
and its status (perhaps waiting for I/O -- such processes are favored by the kernel). Linux gives you the
ability to bias the kernel's priority algorithm, favoring certain processes over others.

The priority of a process can be determined by examining the PRI column in the results produced from
issuing either the top or ps -l commands. The values displayed are relative; the higher the priority
number, the more CPU time the kernel offers to the process. The kernel does this by managing a queue
of processes. Those with high priority are given more time, and those with low priority are given less
time. On a heavily loaded system, a process with a very low priority may appear stalled.

3.6.1 nice

One of the parameters used by the kernel to assign process priority is supplied by the user and is called

a nice number. The nice command[20] is used to assign a priority number to the process. It is so
named because it normally causes programs to execute with lower priority levels than with their default.
Thus, the process is being "nice" to other processes on the system by yielding CPU time. With this
scheme, more "niceness" implies a lower priority, and less niceness implies a higher priority.

[20] Some shells, not including bash, have a built-in nice command.

By default, user processes are created with a nice number of zero. With this setting, nice doesn't sway
the kernel's prioritization scheme one way or another. Positive numbers lower the priority, and negative
numbers raise the priority. Nice numbers range from -20 to +19. Any user can start a process with a
positive nice number, but only the superuser (root) can lower a process' nice number to raise its
priority. For example, if you have a long-running utility program but don't want to impact interactive
performance, a positive nice number will lower the job's priority and improve interactive performance.

nice

Syntax

nice [-n adjustment] [command]
nice [-adjustment] [command]

Description

The nice command is used to alter another command's nice number at start time. For normal users,
adjustment is an integer from 1 to 19. If you're the superuser, the adjustment range is from -20 to 19.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-6.htm (1 of 3) [3/9/2003 11:14:39]

InformIT Online Books > LPI Linux Certification in a Nutshell

If an adjustment number is not specified, the process' nice number defaults to 10. The command
consists of any command that you might enter on the command line, including all options, arguments,
redirections, and the background character &.

If both adjustment and command are omitted, nice displays the current scheduling priority, which is
inherited.

Example 1

The following command starts a program in the background with reduced priority, using the default nice
number of 10:

$ nice somecmd -opt1 -opt2 arg1 arg2 &

Example 2

As superuser, you can start programs with elevated priority. These equivalent commands start the vi
editor with a higher priority, which may be necessary for administrative purposes if the system is
exceptionally slow:

nice --10 vi /etc/hosts.deny
nice -n -10 vi /etc/hosts.deny

Note the double dash (-- 10) in the first form. The first dash indicates that an option follows, while the
second dash indicates a negative number.

Be careful when using nice on interactive programs such as editors, word processors, or browsers.
Assigning a program a positive nice number will most likely result in sluggish performance. Remember,

the higher the positive number, the lower the resulting priority level.[21] For that reason, you should
try not to assign positive nice numbers to foreground jobs on your terminal. If the system gets busy,
your terminal could hang awaiting CPU time, which has been sacrificed by nice.

[21] The actual scheduling priority used by the kernel is dynamic and takes
into account many more factors than the nice value.

3.6.1.1 Changing nice numbers on running processes

The nice command only works to change the nice number for new processes at the time that they're
started. To modify a running program, use the renice command.

renice

Syntax

renice [+|-]nicenumber [option] targets

Description

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-6.htm (2 of 3) [3/9/2003 11:14:39]

InformIT Online Books > LPI Linux Certification in a Nutshell

Alter the nicenumber to set the scheduling priority of one or more running target processes. By default,
renice assumes that the targets are numeric PIDs. One or more options may also be used to interpret
targets as processes owned by specific users.

Frequently used options

-u

Interpret targets as usernames, affecting all processes owned by those users.

-p

Interpret targets as PIDs (the default).

Examples

This command will lower the priority of the process with PID 501 by increasing its nice number to the
maximum:

$ renice 20 501

The following command can be used to increase the priority of all of user jdean's processes as well as
the process with PID 501:

renice -10 -u jdean -p 501

In this command, -10 indicates a nice value of negative 10, thus giving PID 501 a higher priority on
the system. A dash isn't used for the nice value because the dash could be confused for an option, such
as -u.

On the Exam

Be sure to know the range and meaning of nice numbers and how to change them for new
and existing processes. Also note that nice and renice specify their numbers differently.
With nice, a leading dash can indicate a nice number (e.g., -10), including a negative one
with a second dash (e.g., -- 10). On the other hand, renice does not need the hyphen.

The renice command is handy for managing groups of processes, particularly to affect user processes
by username. In addition, if you're observing processes in top, you may change nice numbers for them
interactively from within the top program (discussed in Objective 5) by using the single-keystroke r
command. You will be prompted for the PID of the process whose nice number you wish to change and
for the new nice number (if you are the superuser, you may enter negative values). The new nice
number will be displayed by top in the column labeled NI for the process you specify.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/03-6.htm (3 of 3) [3/9/2003 11:14:39]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 3. GNU and Unix Commands (Topic 1.3)

3.7 Objective 7: Making Use of Regular Expressions

In Objective 3, filename globbing with wildcards is described, which enables us to list or find files with
common elements (i.e., filenames or file extensions) at once. File globs make use of special characters
such as *, which have special meanings in the context of the command line. There are a handful of shell

wildcard characters understood by bash, enough to handle the relatively simple problem of globbing
filenames. Other problems aren't so simple, and extending the glob concept into any generic text form
(files, text streams, program string variables, etc.) can open up a wide new range of capability. This is
done using regular expressions.

Two tools that are important for the LPIC Level 1 exams and that make use of regular expressions are
grep and sed. These tools are useful for text searches. There are many other tools that make use of
regular expressions, including the awk, Perl, and Python languages and other utilities, but you don't
need to be concerned with them for the purpose of the LPIC Level 1 exams.

3.7.1 Using grep

A long time ago, as the idea of regular expressions was catching on, the line editor ed contained a
command to display lines of a file being edited that matched a given regular expression. The command
is:

g/regular expression/p

That is, "on a global basis, print the current line when a match for regular expression is found," or more
simply, "global regular expression print." This function was so useful that it was made into a standalone
utility named, appropriately, grep. Later, the regular expression grammar of grep was expanded in a
new command called egrep (for "extended grep"). You'll find both commands on your Linux system
today, and they differ slightly in the way they handle regular expressions. For the purposes of Exam
101, we'll stick with grep, which can also make use of the "extended" regular expressions when used
with the -E option. You will find some form of grep on just about every Unix or Unix-like system
available.

grep

Syntax

grep [options] regex [files]

Description

Search files or standard input for lines containing a match to regular expression regex. By default,
matching lines will be displayed and nonmatching lines will not be displayed. When multiple files are
specified, grep displays the filename as a prefix to the output lines (use the -h option to suppress
filename prefixes).

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (1 of 12) [3/9/2003 11:14:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

Frequently used options

-c

Display only a count of matched lines, but not the lines themselves.

-h

Display matched lines, but do not include filenames for multiple file input.

-i

Ignore uppercase and lowercase distinctions, allowing abc to match both abc and ABC.

-n

Display matched lines prefixed with their line numbers. When used with multiple files, both the
filename and line number are prefixed.

-v

Print all lines that do not match regex. This is an important and useful option. You'll want to use
regular expressions, not only to select information but also to eliminate information. Using -v
inverts the output this way.

Examples

Since regular expressions can contain both metacharacters and literals, grep can be used with an
entirely literal regex. For example, to find all lines in file1 that contain either Linux or linux, you could
use grep like this:

$ grep -i linux file1

In this example, the regex is simply "linux." The uppercase L in "Linux" is matched by the command-
line option -i. This is fine for literal expressions that are common. However, in situations in which regex
includes regular expression metacharacters that are also shell special characters (such as $ or *), the
regex must be quoted to prevent shell expansion and pass the metacharacters on to grep.

As a simplistic example of this, suppose you have files in your local directory named abc, abc1, and
abc2. When combined with bash's echo expression, the abc* wildcard expression lists all files that
begin with abc, as follows:

$ echo abc*
abc abc1 abc2

Now suppose that these files contain lines with the strings abc, abcc, abccc, and so on, and you wish to
use grep to find them. You can use the shell wildcard expression abc* to expand to all the abc files as
displayed with echo above, and you'd use an identical regular expression abc* to find all occurrences

of lines containing abc, abcc, abccc, etc. Without using quotes to prevent shell expansion, the command
would be:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (2 of 12) [3/9/2003 11:14:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

$ grep abc* abc*

After shell expansion, this yields:

$ grep abc abc1 abc2 abc abc1 abc2 # no!

This is not what you intended! grep would search for the literal expression abc, because it appears as
the first command argument. Instead, quote the regular expression with single or double quotes to

protect it:[22]

[22] The difference between single quotes and double quotes on the
command line is subtle and is explained later in this section.

$ grep 'abc*' abc*

or:

$ grep "abc*" abc*

After expansion, both examples yield the same results:

$ grep abc* abc abc1 abc2

Now this is what you're after. The three files abc, abc1, and abc2 will be searched for the regular
expression abc*. It is good to stay in the habit of quoting regular expressions on the command line to
avoid these problems -- they won't be at all obvious because the shell expansion is invisible to you
unless you use the echo command.

On the Exam

The use of grep and its options is common. You should be familiar with what each option
does, as well as the concept of piping the results of other commands into grep for
matching.

3.7.2 Using sed

In Objective 2, we introduce sed, the stream editor. In that section, we talk about how sed uses
addresses to locate text upon which it will operate. Among the addressing mechanisms mentioned is the
use of regular expressions delimited between slash characters. Let's recap how sed can be invoked.

sed

Syntax

sed [options] 'command1' [files]

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (3 of 12) [3/9/2003 11:14:42]

http://safari.informit.com/#

InformIT Online Books > LPI Linux Certification in a Nutshell

sed [options] -e 'command1' [-e 'command2'] [files]
sed [options] -f script [files]

Description

Note that command1 is contained within single quotes. This is necessary for the same reasons as with
grep. The text in command1 must be protected from evaluation and expansion by the shell.

The address part of a sed command may contain regular expressions, which are enclosed in slashes.
For example, to show the contents of file1 except for blank lines, the sed delete (d) command could be
invoked like this:

$ sed '/^$/ d' file1

In this case, the regular expression ^$ matches blank lines and the d command removes those
matching lines from sed's output.

3.7.2.1 Quoting

As shown in the examples for grep and sed, it is necessary to quote regular expression metacharacters
if you wish to preserve their special meaning. Failing to do this can lead to unexpected results when the
shell interprets the metacharacters as file globbing characters. There are three forms of quoting you
may use to preserve special characters:

\ (an unquoted backslash character)

By applying a backslash before a special character, it will not be interpreted by the shell but will
be passed through unaltered to the command you're entering. For example, the *
metacharacter may be used in a regular expression like this:

$ grep abc* abc abc1 abc2

Here, files abc, abc1, and abc2 are searched for the regular expression abc*.

Single quotes

Surrounding metacharacters with the single-quote character also protects them from
interpretation by the shell. All characters inside a pair of single quotes are assumed to have
their literal value.

Double quotes

Surrounding metacharacters with the double-quote character has the same effect as single
quotes, with the exception of the $, ' (single quote), and \ (backslash) characters. Both $ and

' retain their special meaning within double quotes. The backslash retains its special meaning

when followed by $, ', another backslash, or a newline.

In general, single quotes are safest for preserving regular expressions.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (4 of 12) [3/9/2003 11:14:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

Pay special attention to quoting methods used to preserve special characters, because the
various forms don't necessarily yield the same result.

3.7.3 Regular Expressions

Linux offers many tools for system administrators to use for processing text. Many, such as sed and the
awk and Perl languages, are capable of automatically editing multiple files, providing you with a wide
range of text-processing capability. To harness that capability, you need to be able to define and
delineate specific text segments from within files, text streams, and string variables. Once the text
you're after is identified, you can use one of these tools or languages to do useful things to it.

These tools and others understand a loosely defined pattern language. The language and the patterns
themselves are collectively called regular expressions (often abbreviated just regexp or regex). While
regular expressions are similar in concept to file globs, many more special characters exist for regular
expressions, extending the utility and capability of tools that understand them.

Regular expressions are the topic of entire books (such as Jeffrey E. F. Friedl's excellent and very
readable Mastering Regular Expressions, published by O'Reilly & Associates). Exam 101 requires the use
of simple regular expressions and related tools, specifically to perform searches from text sources. This
section covers only the basics of regular expressions, but it goes without saying that their power
warrants a full understanding. Digging deeper into the regular expression world is highly recommended
when you have the chance.

3.7.3.1 Regular expression syntax

It would not be unreasonable to assume that some specification defines how regular expressions are
constructed. Unfortunately, there isn't one. Regular expressions have been incorporated as a feature in
a number of tools over the years, with varying degrees of consistency and completeness. The result is a
cart-before-the-horse scenario, in which utilities and languages have defined their own flavor of regular
expression syntax, each with its own extensions and idiosyncrasies. Formally defining the regular
expression syntax came later, as did efforts to make it more consistent. Regular expressions are defined
by arranging strings of text, or patterns. Those patterns are composed of two types of characters:

Metacharacters

Like the special file globbing characters, regular expression metacharacters take on a special
meaning in the context of the tool in which they're used. There are a few metacharacters that
are generally thought of to be among the "extended set" of metacharacters, specifically those
introduced into egrep after grep was created. Now, most of those can also be handled by grep
using the -E option. Examples of metacharacters include the ^ symbol, which means "the
beginning of a line," and the $ symbol, which means "the end of a line." A complete listing of
metacharacters follows in Table 3-6, Table 3-7, and Table 3-8.

Literals

Everything that is not a metacharacter is just plain text, or literal text.

It is often helpful to consider regular expressions as their own language, where literal text acts as words
and phrases. The "grammar" of the language is defined by the use of metacharacters. The two are
combined according to specific rules (which, as mentioned earlier, may differ slightly among various
tools) to communicate ideas and get real work done. When you construct regular expressions, you use

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (5 of 12) [3/9/2003 11:14:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

metacharacters and literals to specify three basic ideas about your input text:

Position anchors

A position anchor is used to specify the position of one or more character sets in relation to the
entire line of text (such as the beginning of a line).

Character sets

A character set matches text. It could be a series of literals, metacharacters that match
individual or multiple characters, or combinations of these.

Quantity modifiers

Quantity modifiers follow a character set and indicate the number of times the set should be
repeated. These characters "give elasticity" to a regular expression by allowing the matches to
have variable length.

The next section lists commonly used metacharacters. The examples given with the metacharacters are
very basic, intended just to demonstrate the use of the metacharacter in question. More involved
regular expressions are covered later.

3.7.4 Regular Expression Examples

Now that the gory details are out of the way, here are some examples of simple regular expression
usage that you may find useful.

3.7.4.1 Anchors

Anchors are used to describe position information. Table 3-6 lists anchor characters.

Table 3-6. Regular Expression Position Anchors

Regular Expression Description

^ Match at the beginning of a line. This interpretation makes sense only when the
^ character is at the lefthand side of the regex.

$ Match at the end of a line. This interpretation makes sense only when the $

character is at the righthand side of the regex.

Example 1

Display all lines from file1 where the string "Linux" appears at the start of the line:

$ grep '^Linux' file1

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (6 of 12) [3/9/2003 11:14:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example 2

Display lines in file1 where the last character is an "x":

$ grep 'x$' file1

Display the number of empty lines in file1 by finding lines with nothing between the beginning and the
end:

$ grep -c '^$' file1

Display all lines from file1 containing only the word "null" by itself:

$ grep '^null$' file1

3.7.4.2 Groups and ranges

Characters can be placed into groups and ranges to make regular expressions more efficient, as shown
in Table 3-7.

Table 3-7. Regular Expression Character Sets

Regular Expression Description

[abc]
[a-z]

Single-character groups and ranges. In the first form, match any single
character from among the enclosed characters a, b, or c. In the second form,

match any single character from among the range of characters bounded by a

and z. The brackets are for grouping only and are not matched themselves.

[^abc]

[^a-z]

Inverse match. Match any single character not among the enclosed characters a,

b, and c or in the range a-z. Be careful not to confuse this inversion with the

anchor character ^, described earlier.

\<word\>
Match words. Words are essentially defined as being character sets surrounded
by whitespace and adjacent to the start of line, the end of line, or punctuation
marks. The backslashes are required and enable this interpretation of < and >.

. (the single dot) Match any single character except a newline.

\
As mentioned in the section on quoting earlier, turn off (escape) the special
meaning of the character that follows, turning metacharacters in to literals.

Example 1

Display all lines from file1 containing either "Linux," "linux," "TurboLinux," and so on:

$ grep '[Ll]inux' file1

Example 2

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (7 of 12) [3/9/2003 11:14:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

Display all lines from file1 which contain three adjacent digits:

$ grep '[0-9][0-9][0-9]' file1

Example 3

Display all lines from file1 beginning with any single character other than a digit:

$ grep '^[^0-9]' file1

Example 4

Display all lines from file1 that contain the whole word "Linux" or "linux," but not "LinuxOS" or
"TurboLinux":

$ grep '\<[Ll]inux\>' file1

Example 5

Display all lines from file1 with five or more characters on a line (excluding the newline character):

$ grep '.....' file1

Example 6

Display all nonblank lines from file1 (i.e., that have at least one character):

$ grep '.' file1

Example 7

Display all lines from file1 that contain a period (normally a metacharacter) using escape:

$ grep '\.' file1

3.7.4.3 Modifiers

Modifiers change the meaning of other characters in a regular expression. Table 3-8 lists these
modifiers.

Table 3-8. Regular Expression Modifiers

Regular Expression Description

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (8 of 12) [3/9/2003 11:14:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

* Match an unknown number (zero or more) of the single character (or single-
character regex) that precedes it.

? Match zero or one instance of the preceding regex. This modifier is an
"extended" feature and available in grep only when the -E command-line option
is used.

+ Match one or more instances of the preceding regex. This modifier is an
"extended" feature and available in grep only when the -E command-line option
is used.

\{n,m\}

Match a range of occurrences of the single character or regex that precedes this
construct. \{n\} matches n occurrences,\{n,\} matches at least n

occurrences, and \{n,m\} matches any number of occurrences between n and

m, inclusively. The backslashes are required and enable this interpretation of{

and }.

| Alternation. Match either the regex specified before or after the vertical bar. This
modifier is an "extended" feature and available in grep only when the -E
command-line option is used.

Example 1

Display all lines from file1 that contain "ab," "abc," "abcc," "abccc," and so on:

$ grep 'abc*' file1

Example 2

Display all lines from file1 that contain "abc," "abcc," "abccc," and so on, but not "ab":

$ grep 'abcc*' file1

Example 3

Display all lines from file1 that contain two or more adjacent digits:

$ grep '[0-9][0-9][0-9]*' file1

Example 4

Display lines from file1 that contain "file" (because ? can match zero occurrences), file1, or file2:

$ grep -E 'file[12]?' file1

Example 5

Display all lines from file1 containing at least one digit:

$ grep -E '[0-9]+' file1

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (9 of 12) [3/9/2003 11:14:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example 6

Display all lines from file1 that contain "111," "1111," or "11111" on a line by itself:

$ grep '^1\{3,5\}$' file1

Example 7

Display all lines from file1 that contain any three-, four-, or five-digit number:

$ grep '\<[0-9]\{3,5\}\>' file1

Example 8

Display all lines from file1 that contain "Happy," "happy," "Sad," "sad," "Angry," or "angry":

$ grep -E '[Hh]appy|[Ss]ad|[Aa]ngry' file1

3.7.4.4 Basic regular expression patterns

Example 1

Match any letter:

[A-Za-z]

Example 2

Match any symbol (not a letter or digit):

[^0-9A-Za-z]

Example 3

Match an uppercase letter, followed by zero or more lowercase letters:

[A-Z][a-z]*

Example 4

Match a U.S. Social Security Number (123-45-6789) by specifying groups of three, two, and four digits
separated by dashes:

 [0-9]\{3\}-[0-9]\{2\}-[0-9]\{4\}

Example 5

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (10 of 12) [3/9/2003 11:14:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

Match a dollar amount, using an escaped dollar sign, zero or more spaces or digits, an escaped period,
and two more digits:

\$[0-9]*\.[0-9]\{2\}

Example 6

Match the month of June and its abbreviation, "Jun." The question mark matches zero or one instance
of the e :

June?

3.7.4.5 Using regular expressions as addresses in sed

These examples are commands you would issue to sed. For example, the commands could take the
place of command1 in this usage:

$ sed [options] 'command1' [files]

These commands could also appear in a standalone sed script.

Example 1

Delete blank lines:

/^$/d

Example 2

Delete any line that doesn't contain #keepme::

/#keepme/!d

Example 3

Delete lines containing only whitespace (spaces or tabs). In this example, tab means the single tab
character and is preceded by a single space:

/^[tab]*$/d

Example 4

Delete lines beginning with periods or pound signs:

/^[.#]/d

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (11 of 12) [3/9/2003 11:14:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example 5

Substitute a single space for any number of spaces wherever they occur on the line:

s/ */ /g

Example 6

Substitute def for abc from line 11 to 20, wherever it occurs on the line:

11,20s/abc/@@@/g

Example 7

Translate the characters a, b, and c to the @ character from line 11 to 20, wherever they occur on the
line:

11,20y/abc/@@@/

On the Exam

Make certain you are clear about the difference between file globbing and the use of regular
expressions.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/03-7.htm (12 of 12) [3/9/2003 11:14:42]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 4. Devices, Linux Filesystems, and the
Filesystem Hierarchy Standard (Topic 2.4)

4.1 Objective 1: Create Partitions and Filesystems

In many PCs, disk organization schemes use a single disk containing a single filesystem. This filesystem
contains all data on the computer, mixing system files and user files together. On MS-DOS and Windows
systems, that volume is usually labeled C: and thought of as the C drive. If additional space is made
available, it is seen as one or more additional volumes, each with a separate drive letter. If these
separate drives are intended for user data, it is the user's responsibility to remember which drive letter
to use when storing files. While this simplicity has some value for most users, others prefer the ability
to create filesystems across multiple partitions, devices, and even multiple computers. Linux offers this
ability.

4.1.1 Disk Drives Under Linux

Linux supports many types of disk devices and formats. Any SCSI or IDE hard disk will work with Linux,
as will floppy disks, CD-ROMs, CD-Rs, Zip® and Jaz® disks, and other types of removable media. These
media can contain the standard Linux ext2 filesystem, FAT, FAT32, NTFS, as well as other filesystem
types. This flexibility makes Linux coexist nicely with other operating systems on multiboot systems.

The most commonly found hard disks on PCs are IDE (Integrated Device Electronics) drives. These disks
feature a relatively simple system interface, and most of the "smarts" of the disk are onboard the disk
itself. The IDE standard allows disk manufacturers to sell their product at a very attractive price point.
Also used on PCs are Small Computer System Interface (SCSI, pronounced "scuzzy") drives. SCSI is an
older standard for connecting peripherals; however, modern SCSI versions are quite fast and flexible.

In general, IDE disks offer reasonable performance at a low price point, which is highly desirable for
consumer products. A single IDE interface is capable of attaching two disk drives to a system. One
device is named master and the other is the slave (an unfortunate naming convention). Most PCs have
a primary and secondary IDE interface. Together, these interfaces allow up to four devices (primary
master, primary slave, secondary master, and secondary slave). At a minimum, these devices will
include a hard disk and a CD-ROM, leaving two available positions for CD-R, Zip, tape, or other IDE
devices. Adding additional IDE controllers or specialized IDE subsystems can further expand a PC's
capabilities.

Compared to IDE, SCSI offers excellent performance, lower CPU utilization, and a much more flexible
connection scheme capable of handling up to 15 devices on a single bus. These conveniences allow
SCSI systems to grow as space requirements increase without major hardware reconfiguration.
Unfortunately, SCSI usually implies higher cost, which reduces demand for SCSI in the cost-sensitive PC
market.

Typically, IDE is considered appropriate for desktop use. SCSI is usually specified for servers, for high-
performance workstations, and in situations in which expansion capability is a concern.

4.1.1.1 Hard disk devices

By default, Linux defines IDE device files as follows:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (1 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

/dev/hda

Primary master IDE (often the hard disk)

/dev/hdb

Primary slave IDE

/dev/hdc

Secondary master IDE (often a CD-ROM)

/dev/hdd

Secondary slave IDE

SCSI device files are similar, except that there is no four-device limitation:

/dev/sda

First SCSI drive

/dev/sdb

Second SCSI drive

/dev/sdc

Third SCSI drive (and so on)

Under Linux, a typical PC with a single hard disk on the primary IDE interface and a single CD-ROM on
the secondary IDE interface would have disk drive /dev/hda and CD-ROM /dev/hdc.

On the Exam

You should be prepared to identify IDE and SCSI devices based on their device filenames.

4.1.1.2 Disk partitions

On each disk in a PC, there may be between 1 and 16 partitions. A partition can be thought of as a
container on the disk, into which a filesystem (or in one circumstance, more partitions) can be placed.
Unlike MS-DOS, which assigns letter names to partitions, each partition under Linux is assigned an
integer number on the disk, which is appended to the disk's device name. For example, the first
partition on IDE disk /dev/hda is /dev/hda1. There are three types of partitions found on PCs:

Primary partitions

This type of partition contains a filesystem. At least one primary partition must exist, and up to
four can exist on a single physical disk. If all four primary partitions exist, they are numbered as

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (2 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

follows:

❍ /dev/hda1

❍ /dev/hda2

❍ /dev/hda3

❍ /dev/hda4

One of these primary partitions may be marked active, in which case the PC BIOS will be able to
select it for boot.

Extended partitions

An extended partition is a variant of the primary partition but cannot contain a filesystem.
Instead, it contains logical partitions. Only one extended partition may exist on a single physical
disk. If an extended partition exists, it takes one of the four possible spots for primary
partitions, leaving room for only three primary partitions. The partitions on a disk with one
primary partition and the sole extended partition are numbered as follows:

❍ /dev/hda1 (primary)

❍ /dev/hda2 (extended)

Logical partitions

Logical partitions exist within the extended partition. 1 to 12 logical partitions may be created.
Logical partitions are numbered from 5 to 16. The partitions on a disk with one primary
partition, the sole extended partition, and four logical partitions are numbered as follows:

❍ /dev/hda1 (primary)

❍ /dev/hda2 (extended)

❍ /dev/hda5 (logical)

❍ /dev/hda6 (logical)

❍ /dev/hda7 (logical)

❍ /dev/hda8 (logical)

Under this PC partitioning scheme, a maximum of 15 partitions with filesystems may exist on a single
physical disk (3 primary plus 12 logical), more than enough for any Linux installation. In practice, the
last example is typical for a Linux installation. It is unlikely that all of the 15 possible partitions on a disk
would be necessary just to support Linux.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (3 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

Be sure that you understand how partition numbering works. In particular, pay attention to
the differences in numbering between primary, extended, and logical partitions.

4.1.1.3 The root filesystem and mount points

As a Linux system boots, the first filesystem that becomes available is the top level, or root filesystem,

denoted with a single forward slash.[1] In a simple installation, the root filesystem could contain nearly
everything on the system. However, such an arrangement could lead to system failure if the root
filesystem fills to capacity. Instead, multiple partitions are typically defined, each containing one of the
directories under /. As the Linux kernel boots, the partitions are mounted to the root filesystem, and
together create a single unified filesystem. (Mounting is the subject of Objective 3.) Everything on the
system that is not stored in a mounted partition is stored locally in /. The mounted filesystems are
placed on separate partitions and possibly multiple disk drives.

[1] The root filesystem /, often called the root directory, shouldn't be
confused with the root superuser account or the superuser's home
directory, /root. The distinct directories / and /root are unrelated and are
not required to share the same disk partition.

The choice of which directories are placed into separate partitions is both a personal and technical
decision. Here are some guidelines for individual partitions:

/ (the root directory)

Since the only filesystem mounted at the start of the boot process is /, certain directories must
be part of it in order to be available for the boot process. These include:

/bin and /sbin

Contain required system binary programs
/dev

Contains device files
/etc

Contains boot configuration information
/lib

Contains program libraries

These directories are always part of the single / partition. See the description of the FHS in
Objective 8 for more on the requirements for the root filesystem.

/boot

This directory holds static files used by the boot loader, including kernel images. On systems
where kernel development activity occurs regularly, making /boot a separate partition
eliminates the possibility that / will fill with kernel images and associated files during
development.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (4 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

/home

User files are usually placed in a separate partition. This is often the largest partition on the
system and may be located on a separate physical disk or disk array.

/tmp

This directory is often a separate partition used to prevent temporary files from filling.

/var

Log files are stored here. Just like /tmp, log files could grow unchecked unless they are rotated
regularly, filling.

/usr

This directory holds a hierarchy of directories containing user commands, source code, and
documentation. It is often quite large, making it a good candidate for its own partition. Because
much of the information stored under /usr is static, some users prefer that it be mounted as
read-only, making it impossible to corrupt.

In addition to the preceding six partitions listed, a /swap partition is also necessary for a Linux system
to enable virtual memory. For information on determining the size of a swap partition, see Chapter 14
later in this book.

Using these guidelines at installation time, the disk partitions for an IDE-based system with two physical
disks on the primary IDE controller might look as described in Table 4-1.

Table 4-1. An Example Partitioning Scheme

Partition Type Mounted Filesystem Size

/dev/hda1 Primary / 300 MB

/dev/hda2 Extended - -

/dev/hda5 Logical /boot 300 MB

/dev/hda6 Logical /opt 300 MB

/dev/hda7 Logical /tmp 300 MB

/dev/hda8 Logical /usr 600 MB

/dev/hda9 Logical /var 300 MB

/dev/hda10 Logical (/swap partition) 128 MB

/dev/hdb1 Primary /home 6 GB

See Figure 4-1 later in this chapter for a graphical depiction of this partitioning scheme.

Once a disk is partitioned, it can be difficult or risky to change the partition sizes. Commercial and open
source tools are available for this task, but a full backup is recommended prior to their use.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (5 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

4.1.1.4 Managing partitions

Linux has two basic options for partitioning disk drives. The fdisk command is a text-based program
that is easy to use and exists on every Linux distribution. It is also required for Exam 101. Another
option you may wish to explore after mastering fdisk is cfdisk, which is still a text-mode program but
which uses the curses system to produce a GUI-style display.

fdisk

Syntax

fdisk [device]

Description

Manipulate or display the partition table for device using a command-driven interactive text interface.
device is a physical disk such as /dev/hda, not a partition such as /dev/hda1. If omitted, device defaults
to /dev/hda. Interactive commands to fdisk are a single letter followed by a carriage return. The
commands do not take arguments, but start an interactive dialog. Commands that operate on a
partition will request the partition number, which is an integer. For primary and extended partitions, the
partition number is from 1 to 4. For logical partitions, which are available only if the extended partition
already exists to contain them, the partition number is from 5 to 16.

When making changes to the partition table, fdisk accumulates changes without writing them to the
disk, until it receives the write command.

4.1.1.5 Frequently used commands

a

Toggle the bootable flag on/off for a primary partition.

d

Delete a partition. You are prompted for the partition number to delete. If you delete a logical
partition when higher numbered logical partitions exist, the partition numbers are decremented
to keep logical partition numbers contiguous.

l

List the known partition types. A table of partition types is printed.

m

Display the brief help menu for these commands.

n

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (6 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

Add a new partition. You are prompted for the partition type (primary, extended, or logical).[2]
For primary and extended partitions, you are asked for the partition number (1- 4). For logical
partitions, the next logical partition number is selected automatically. You are then prompted for
the starting disk cylinder for the partition and are offered the next free cylinder as a default.
Finally, you are prompted for the last cylinder or a size, such as "+300M." By default, new
partitions are assigned as Linux ext2, type 83. To create another partition type, such as a swap
partition, first create the partition with the n command, then change the type with the t
command.

[2] Note that fdisk displays options for extended and primary partition types if an
extended partition does not yet exist. If the extended partition already exists, fdisk
displays options for logical and primary partition types.

p

Display the partition table as it exists in memory. This depiction will differ from the actual
partition table on disk if changes have not been saved.

q

Quit without saving changes.

t

Change a partition's system ID. This is an octal number that indicates the type of filesystem the
partition is to contain. Linux ext2 partitions are type 83, and Linux swap partitions are type 82.

w

Write (save) the partition table to disk and exit. No changes are saved until the w command is
issued.

Example 1

Display the existing partition table on /dev/hda without making any changes:

fdisk /dev/hda
Command (m for help): p

Disk /dev/hda: 255 heads, 63 sectors, 1027 cylinders
Units = cylinders of 16065 * 512 bytes

 Device Boot Start End Blocks Id System
/dev/hda1 * 1 250 2008093+ 83 Linux
/dev/hda2 251 280 240975 82 Linux swap
/dev/hda3 281 1027 6000277+ 5 Extended
/dev/hda5 281 293 104391 83 Linux
/dev/hda6 294 306 104391 83 Linux
/dev/hda7 307 319 104391 83 Linux

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (7 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

Command (m for help): q

#

In this configuration, /dev/hda has two primary partitions, /dev/hda1, which is bootable, and
/dev/hda2, which is the swap partition. The disk also has an extended partition /dev/hda3, which
contains three logical partitions, /dev/hda5, /dev/hda6, and /dev/hda7. All other primary and logical
partitions are Linux ext2 partitions.

Example 2

Starting with a blank partition table, create a bootable primary partition of 300 MB on /dev/hda1, the
extended partition on /dev/hda2 containing the remainder of the disk, a logical partition of 200 MB on
/dev/hda5, a logical swap partition of 128 MB on /dev/hda6, and a logical partition on /dev/hda7
occupying the remainder of the extended partition:

fdisk /dev/hda

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-1027, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-1027,
 default 1027): +300M

Command (m for help): a
Partition number (1-4): 1

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
e
Partition number (1-4): 2
First cylinder (40-1027, default 40):
Using default value 40
Last cylinder or +size or +sizeM or +sizeK (40-1027,
 default 1027):<return>
Using default value 1027

Command (m for help): n
Command action
 l logical (5 or over)
 p primary partition (1-4)
l
First cylinder (40-1027, default 40):
Using default value 40
Last cylinder or +size or +sizeM or +sizeK (40-1027,
 default 1027): +200M

Command (m for help): n
Command action
 l logical (5 or over)

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (8 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

 p primary partition (1-4)
l
First cylinder (79-1027, default 79):
Using default value 79
Last cylinder or +size or +sizeM or +sizeK (79-1027,
 default 1027): +128M

Command (m for help): t
Partition number (1-6): 6
Hex code (type L to list codes): 82
Changed system type of partition 6 to 82 (Linux swap)

Command (m for help): n
Command action
 l logical (5 or over)
 p primary partition (1-4)
l
First cylinder (118-1027, default 118):
Using default value 118
Last cylinder or +size or +sizeM or +sizeK (118-1027,
 default 1027):<return>
Using default value 1027

Command (m for help): p

Disk /dev/hda: 255 heads, 63 sectors, 1027 cylinders
Units = cylinders of 16065 * 512 bytes

 Device Boot Start End Blocks Id System
/dev/hda1 * 1 39 313236 83 Linux
/dev/hda2 40 1027 7936110 5 Extended
/dev/hda5 40 65 208813+ 82 Linux swap
/dev/hda6 66 82 136521 83 Linux
/dev/hda7 83 1027 7590681 83 Linux

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

#

Note the use of defaults for the partition start cylinders and for end cylinder selections, indicated by
<return> in this example. Other partition sizes are specified in megabytes using responses such as
+128M .

At boot time, the BIOS of many PCs can access only the first 1024 cylinders of the disk. The Linux
kernel, however, has no such limitation, but the BIOS must be able to load the boot loader LILO and the
entire kernel image into memory. Thus, the entire contents of /boot, either as part of / or as a separate
partition, must be located within the 1024-cylinder boundary. In April 2000, Version 0.21.4.2 of LILO
was released; which is within the 1024-cylinder limit. If you have a Linux distribution that includes a
newer version of LILO, you may not need to worry about this issue. Check your LILO documentation to
be sure.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (9 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

If you are attempting to create partitions for other operating systems with
the Linux fdisk utility, you could run into a few problems. As a rule, it is
safest to prepare the partitions for an operating system using the native
tools of that operating system.

As you might expect, using fdisk on a working system can be dangerous,
because one errant w command can render your disk useless. Use extreme
caution when working with the partition table of a working system, and be
sure you know exactly what you intend to do and how to do it.

On the Exam

You should understand disk partitions and the process of creating them using fdisk.

4.1.1.6 Creating filesystems

Once a disk is partitioned, filesystems may be created in those partitions using the mkfs utility. Usually,
partitions intended for use with Linux will use the native second extended filesystem, or ext2. MS-DOS

filesystems can also be created.[3] In reality, mkfs is a front-end program for filesystem-specific
creation tools named mkfs.ext2 and mkfs.msdos, which are in turn linked to mke2fs and mkdosfs,
respectively. mkfs offers a unified front-end, while the links provide convenient names. The choice of
which executable to call is up to you.

[3] You can also use mkfs to create filesystems of type minix, in the rare
event that you encounter such a requirement.

mkfs

Syntax

mkfs [-t fs_type] [fs_options] device

Description

Make a filesystem of type fs_type on device. The fs_type is either ext2 or msdos. If fs_type is omitted,
ext2 is used by default. When called by mkfs, these programs are passed any fs_options included on
the command line. See the manpages for mke2fs and mkdosfs for full details on their individual
options.

Frequently used fs_options

-c

Check device for bad blocks (mke2fs and mkdosfs).

-L label

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (10 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

Set the volume label for the filesystem (mke2fs only).

-n label

Set the 11-character volume label for the filesystem (mkdosfs only).

-q

Uses mkfs in quiet mode, resulting in very little output (mke2fs only).

-v

Used to enter verbose mode (mke2fs and mkdosfs).

Example 1

Using defaults, quietly create an ext2 partition on /dev/hda3:

mkfs -q /dev/hda3
mke2fs 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
#

Example 2

Create an ext2 filesystem labeled rootfs on existing partition /dev/hda3, checking for bad blocks and
with full verbose output:

mkfs -t ext2 -L rootfs -cv /dev/hda3
mke2fs 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
Linux ext2 filesystem format
Filesystem label=rootfs
26208 inodes, 104422 blocks
5221 blocks (5.00%) reserved for the super user
First data block=1
Block size=1024 (log=0)
Fragment size=1024 (log=0)
13 block groups
8192 blocks per group, 8192 fragments per group
2016 inodes per group
Superblock backups stored on blocks:
 8193, 16385, 24577, 32769, 40961, 49153,
 57345, 65537, 73729, 81921, 90113, 98305

Checking for bad blocks (read-only test): done
Writing inode tables: done
Writing superblocks and filesystem accounting
 information: done

#

Additional options are available in the mke2fs and mkdosfs programs, which may be needed to fine-
tune specific filesystem parameters for special situations. In most cases, the default parameters are
appropriate and adequate.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (11 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

An additional command not specifically cited in the LPI Objectives for this Topic is mkswap. This
command prepares a partition for use as Linux swap space and is needed if you plan to fully configure a
disk from scratch. It is also needed if you need to add an additional swap partition.

mkswap

Syntax

mkswap device

Description

Prepare a partition for use as swap space. This command can also set up swap space in a file on another
filesystem.

Example

On an existing partition, which should be set to type 82 (Linux swap), ready swap space:

mkswap /dev/hda5
Setting up swapspace version 1, size = 139792384 bytes
#

Running any of the filesystem creation programs is, like fdisk, potentially dangerous. All data in any
previously existing filesystems in the specified partition will be deleted. Since mkfs does not warn you
prior to creating the filesystem, be certain that you are operating on the correct partition.

On the Exam

The exam is likely to contain general questions about using mkfs, though details such as
inode allocation are beyond the scope of the LPIC Level 1 exams.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-1.htm (12 of 12) [3/9/2003 11:14:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 14. Linux Installation and Package Management (Topic 2.2)

Many resources describe Linux installation.[1] Despite its title, however, this section's Topic and
Objectives do not provide an overview for the installation of any particular Linux distribution. Rather,
they focus on four installation topics and two packaging tools as required for LPI Exam 102:

[1] One excellent resource is Running Linux, Third Edition, by Matt Welsh,
Matthias Kalle Dalheimer, and Lar Kaufman (O'Reilly & Associates).

Objective 1: Design a Hard Disk Layout

The layout and partitioning of disks is a fundamental concept for almost all computer platforms.
Unlike other operating systems though, Linux uses multiple partitions in a unified filesystem.
This Objective covers this filesystem layout. Weight: 2.

Objective 2: Install a Boot Manager

Booting Linux is a process started by a boot manager. This Objective covers the use of LILO.
Weight: 2.

Objective 3: Make and Install Programs from Source

The unique advantages of open source software allow the distribution of programs in source
code form. This Objective covers compiling and installing programs from source code.
(Objectives 5 and 6 deal with binary package management.) Weight: 2.

Objective 4: Manage Shared Libraries

One of the efficiencies of modern operating systems is the concept of shared libraries of system
software. This Objective provides an overview of shared libraries and their configuration.
Weight: 3.

Objective 5: Use Debian Package Management.

This topic covers the management of Debian Linux binary packages. Weight: 5.

Objective 6: Use Red Hat Package Manager (RPM)

This topic covers the management of RPM binary packages. Weight: 8.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/14-0.htm [3/9/2003 11:14:45]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 4. Devices, Linux Filesystems, and the
Filesystem Hierarchy Standard (Topic 2.4)

4.5 Objective 5: Use File Permissions to Control Access to Files

Filesystem security is a fundamental requirement for any multiuser operating system. The system's
files, such as the kernel, configuration files, and programs, must be protected from accidents and
tampering by unauthorized people. Users' files must be protected from modification by other users and
sometimes must be kept completely private. In general, a form of access control must be implemented
to allow secure operations.

4.5.1 Linux Access Control

Native Linux filesystem access control is implemented using a set of properties, maintained separately
for each file. These properties are collectively called the access mode, or simply the mode, of the file.
The mode is a part of the file's inode, the information retained in the filesystem that describes the file. A
file's mode controls access by these three classes of users:

User

The user that owns the file.

Group

The group that owns the file.

Other

All other users on the system.

Like the mode, user and group ownership properties are a part of the inode, and both are assigned
when a file is created. Usually, the owner is the user who created the file. The file's group is usually set

to its creator's default group.[6] Group ownership adds flexibility in situations in which a team shares
files. The "other" users are those who aren't members of the file's group and are not the file's owner.
For each of these three user classes, the access mode defines three types of permissions, which apply
differently for files and directories. The permissions are listed in Table 4-2.

[6] On some Linux distributions, the default group for all new accounts is
set to a general users group. However, if everyone is in the same group by
default, group permissions don't offer added security. For this reason, other
distributions define a unique default group for every user.

Table 4-2. File Permissions

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (1 of 12) [3/9/2003 11:14:47]

InformIT Online Books > LPI Linux Certification in a Nutshell

Permission Mnemonic File Permission Directory Permission

Read
r

Examine the contents of the file. List directory contents.

Write
w

Write to, or change, the file. Create and remove files in the directory.

Execute
x

Run the file as a program.
Read and write files contained in the
directory.

These three permissions apply to the three different classes of users: user, group, and other. Each has
read, write, and execute capabilities, as shown in Figure 4-1.

Figure 4-1. Access Mode bits

All of the permissions are binary (either granted or not granted) and are thought of as single binary bits
in the access mode. When written, the permissions use the mnemonic in Table 4-2 for the true state

and a hyphen for the false state. To represent only the read permission, for example, r-- would be

used. Read and execute together, typical for directories, would be denoted r-x. These notations are

usually offered in sets of three, such as:

rw-rw-r--

A file with this setting would give read/write permission to the user and group, and read-only
permission to everyone else.

In addition to the nine bits for user, group, and other, the access mode contains three more bits, which
control special attributes for executable files and directories:

SUID (Set User ID)

The SUID property is for executable files only and has no effect on directories. Normally the user
who launches a program owns the resulting process. However, if an executable file has its SUID
bit set, the file's owner owns the resulting process, no matter who launched it. When SUID is
used, the file's owner is usually root. This offers anyone temporary root access for the duration
of the command. An example of an SUID program is lpr, the line print command. This command
needs special access to manipulate the print spools, and runs as user root.

Using the SUID bit in cases like lpr enhances security by allowing access to secure functions
without giving away the root password. On the other hand, SUID can be a security risk if access

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (2 of 12) [3/9/2003 11:14:47]

InformIT Online Books > LPI Linux Certification in a Nutshell

is granted unwisely.

SGID (Set Group ID)

The SGID property works the same way as SUID for executable files, setting the process group
owner to the file's group. In addition, the SGID property has a special effect on directories.
When SGID is set on a directory, new files created within that directory are assigned the same
group ownership as the directory itself. For example, if directory /home/fin has the group
finance and has SGID enabled, then all files under /home/fin are created with group ownership
of finance, regardless of the creator's group. This is an important attribute for teams, ensuring
that shared files all have the same group ownership.

Sticky

At one time, the sticky property (more commonly known as the sticky bit), applied to executable
programs, flagging the system to keep an image of the program in memory after the program
finished running. This capability increased performance for subsequent uses by eliminating the
programs' load phase, and was applied to programs that were large or were run frequently.
Modern virtual memory techniques have made this use unnecessary, and under Linux there is
no need to use the sticky bit on executable programs.

When applied to a directory, the sticky bit offers additional security for files within the directory.
Regardless of file permissions, the only users who can rename or delete the files from a
directory with the sticky bit set are the file owner, the directory owner, and root. When used in a
team environment, the sticky bit allows groups to create and modify files but allows only file
owners the privilege of deleting or renaming them.

Like the other access controls, these special properties are binary and are considered bits in the access
mode.

4.5.1.1 The mode bits

The special, user, group, and other permissions can be represented in a string of 12 binary bits, as
shown in Figure 4-2.

Figure 4-2. Changing permission bits to an octal number.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (3 of 12) [3/9/2003 11:14:47]

InformIT Online Books > LPI Linux Certification in a Nutshell

It is common to refer to these bits in four sets of three, translated into four octal (base-8) digits. The
first octal digit represents the special permissions SUID, SGID, and sticky. The other three represent the
read, write, and execute permissions, respectively, in each of the user, group, and other user classes.
Octal notation is used as shorthand for binary strings like the access mode, and each group of three bits
has 23 = 8 possible values, listed in Table 4-3.

Table 4-3. Octal Numbers

Octal Value Binary Equivalent

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

The read permission by itself is r--, which can be thought of as binary 100, or octal 4. Adding the write

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (4 of 12) [3/9/2003 11:14:47]

InformIT Online Books > LPI Linux Certification in a Nutshell

permission yields rw-, or binary 110, which is octal 6. Figure 4-3 shows how to total bit values into the

octal equivalents.[7]

[7] Memorizing, or even writing, the binary-to-octal equivalents may be
easier on the exam than adding bit values. Use the technique that works
best for you.

To turn the mode bits 110111101001 into an octal representation, first separate them into chunks of

three bits: 110, 111, 101, and 001. The first group, representing the special permissions, is 110. This

can be thought of as 4 + 2 + = 6. The second group, representing user permissions, is 111, or 4 + 2 +

1 = 7. The third group, representing group permissions, is 101, or 4 + + 1 = 5. The last group,

representing other permissions, is 001, or + + 1 = 1. The mode string for this example can then be

written as the octal 6751.

This is the form used to display the file mode in the output from the stat command. Here, the octal
access mode for the lpr command is 4755:

stat /usr/bin/lpr
 File: "/mnt/hd/usr/bin/lpr"
 Size: 235672 Filetype: Regular File
 Mode: (4755/-rwsr-xr-x) Uid: (0/ root) Gid: (0/ root)
Device: 3,1 Inode: 176133 Links: 1
Access: Tue Aug 10 23:57:11 1999(00144.11:34:49)
Modify: Tue Aug 10 23:57:11 1999(00144.11:34:49)
Change: Wed Dec 8 20:59:02 1999(00024.13:32:58)

The special permissions are represented in this example by octal 4, or binary 100, indicating that the
SUID permission is set (-rws). The user permission is octal 7, or binary 111, indicating read, write, and

execute for the file's owner (in this case, root). Both the group and other permissions are set to octal 5,
or binary 101, indicating read and execute, but not write.

4.5.1.2 The mode string

As mentioned earlier, the user, group, and other permissions are often spelled out in symbolic mode
descriptions such as rwxr-xr-x. This notation is found in the output of the ls -l and stat commands.

As you can see in the access mode for lpr, this scheme is modified slightly in the presence of special
permissions. Instead of adding three more bits to the left of rwxr-xr-x, the SUID permission is

indicated in the string by changing the user execute position from x to s. SGID permission is handled

the same way. The sticky permission is indicated by replacing x in the other execute position with T. For

example, an executable program with mode 6755 would have the following equivalent symbolic mode:

rwsr-sr-x

A directory with mode 1774 would have this equivalent string:

rwxr-xr-T

While this layering of special permissions may appear to obscure the underlying execute permissions, it
makes sense. The special permissions are relatively rare in the filesystem, so depicting the three extra
bits would waste space on your terminal or terminal window. In addition, the special permissions are

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (5 of 12) [3/9/2003 11:14:47]

InformIT Online Books > LPI Linux Certification in a Nutshell

used only for executable programs and directories, where the underlying executable permission is

understood to be set.[8]

[8] For the purists among us, note that the special bits may be set without
setting the execute permission, although to do so is meaningless. In this
case, the string's s and t values are replaced with S and T, respectively.

Figure 4-3. Hard and symbolic links

4.5.2 Setting Access Modes

New files are created with a default access mode to automatically set the permission levels. But just
because a permission level is set automatically doesn't mean that you have to live with what you're
given. Access modes on existing files can be changed or modified.

4.5.2.1 New files

When new files are created, the protection bits are set according to the user's default setting. That
default is established using the umask command, probably in a startup script. This command accepts
only one argument, which is a three-digit octal string that masks the user, group, and other permission
bits for newly created files and directories. Without a value, umask reports the current value:

$ umask

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (6 of 12) [3/9/2003 11:14:47]

InformIT Online Books > LPI Linux Certification in a Nutshell

22

When provided with an integer, umask sets the value for the current shell:

$ umask 2
$ umask
2

A umask of 22 can be rewritten as 022, or as 000010010 in binary.

The process of creating the initial mode for newly created files begins with a raw initial mode string, as
defined in Table 4-4.

Table 4-4. Initial Access Modes

Form For Files For Directories

Symbolic
rw-rw-rw- rwxrwxrwx

Binary
110110110 111111111

Octal
 6 6 6 7 7 7

The special bits are always turned off and are not masked by the umask. When a file is created, the
umask is subtracted from 666; for directories, it is subtracted from 777. This calculation yields the
effective protection mode for the file or directory. For example, a umask of 2 (002) is applied to a new
file, masking the write permission for group and other user classes:

 110 110 110
 - 000 010 010

 110 100 100

This is the same as mode 644, or rw-r--r--.

Using the same mask on a directory yields a similar result:

 111 111 111
- 000 010 010

 111 101 101

This is the same as mode 755 or rwxr-xr-x, which is appropriate for directories. A umask of 002 or

022 is typical, though if you wish to ensure maximum privacy, a umask of 077 blocks all access except
for the superuser. To set a custom umask, enter the umask command in a startup script, such as
.bash_ profile. Here's an example of the umask in action:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (7 of 12) [3/9/2003 11:14:47]

InformIT Online Books > LPI Linux Certification in a Nutshell

$ umask 27
$ touch afile
$ mkdir adir
$ ls -ld adir afile
drwxr-x--- 2 jdean jdean 1024 Jan 2 20:31 adir
-rw-r----- 1 jdean jdean 0 Jan 2 20:31 afile

In this case, the umask of 27 makes the file afile read-only to members of the group and disallows
access to the file to all others.

In the previous example, the command ls -ld adds an extra letter at the beginning of the mode string
for the adir directory. This symbol indicates the type of file being listed and is not part of the access
mode. The letter d indicates a directory, a - indicates a file, the letter l indicates a symbolic link, a b
indicates a block device (such as a disk), and a c indicates a character device (such as a terminal).

4.5.2.2 Changing access modes

Access modes can be changed with the chmod command, which accepts either octal or symbolic access
mode specifications. Octal bits, as shown in the previous section, are specified explicitly. However, some
people prefer to use symbolic forms because they usually modify an existing mode instead of
completely replacing it. Symbolic mode specifications have three parts, made up of individual
characters, as shown in Table 4-5.

Table 4-5. Symbolic Modes for the chmod Command

Category Mode Description

User class
u

User.

g

Group.

o

Other.

a

All classes.

Operation
 -

Take away permission.

 +

Add permission.

 =

Set permission exactly.

Permissions
 r

Read permission.

 w

Write permission.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (8 of 12) [3/9/2003 11:14:47]

InformIT Online Books > LPI Linux Certification in a Nutshell

 x

Execute permission.

 X Execute permission for directories and files with another execute permission, but

not plain files.

 s

SUID or SGID permissions.

 t

Sticky bit.

The individual user class characters and permissions characters may be grouped to form compound
expressions, such as ug for user and group combined or rw for read and write. Here are some
examples of symbolic mode specifications:

u+x

Add execute permission for the user.

go-w

Remove write permission from group and other classes.

o+t

Set the sticky bit.

a=rw

Set read and write, but not execute, permissions for everyone.

a+X

Give everyone execute permission for directories and for those files with any existing execute
permission.

The chmod command is used to modify the mode.

chmod

Syntax

chmod [options] symbolic_mode[,symbolic_mode]... files
chmod [options] octal_mode files
chmod [options] --reference=rfile files

Description

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (9 of 12) [3/9/2003 11:14:47]

InformIT Online Books > LPI Linux Certification in a Nutshell

Modify the access mode on files. In the first form, use one or more comma-separated symbolic_mode
specifications to modify files. In the second form, use an octal_mode to modify files. In the third form,
use the mode of rfile as a template to be applied to files.

Frequently used options

-c

Like verbose mode, but report only changes.

-R

Use recursive mode, descending through directory hierarchies under files and making
modifications throughout.

-v

Use verbose behavior, reporting actions for all files.

Example 1

Set the mode for a file to rw-r--r--, using an octal specification:

$ chmod 644 afile
$ ls -l afile
-rw-r--r-- 1 jdean jdean 0 Jan 2 20:31 afile

Example 2

Set the same permission using a symbolic specification, using the verbose option:

$ chmod -v u=rw,go=r afile
mode of afile retained as 0644 (rw-r--r--)

Example 3

Recursively remove all permissions for other on a directory:

$ chmod -v o-rwx adir
mode of adir retained as 0770 (rwxrwx---)
mode of adir/file1 changed to 0660 (rw-rw----)
mode of adir/file2 changed to 0660 (rw-rw----)
mode of adir/file3 changed to 0660 (rw-rw----)
mode of adir/file4 changed to 0660 (rw-rw----)
mode of adir/dir1 changed to 0770 (rwxrwx---)
mode of adir/dir1/file6 changed to 0660 (rw-rw----)
mode of adir/dir1/file5 changed to 0660 (rw-rw----)
mode of adir/dir2 changed to 0770 (rwxrwx---)

Example 4

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (10 of 12) [3/9/2003 11:14:47]

InformIT Online Books > LPI Linux Certification in a Nutshell

Set the sticky bit on a directory:

$ chmod -v +t adir
mode of adir changed to 1770 (rwxrwx--T)

4.5.3 Setting Up a Workgroup Directory

The steps you may use to create a useful workgroup directory for a small team of people are briefly
described here. The goals of the directory are as follows:

● The workgroup is to be called sales and has members jdoe, bsmith, and jbrown.

● The directory is /home/sls.

● Only the creators of files in /home/sls should be able to delete them.

● Members shouldn't need to worry about file ownership, and all group members require full
access to files.

● Nonmembers should have no access to any of the files.

The following steps will satisfy the goals:

1. Create the new group:

groupadd sales

2. Add the existing users to the group:

usermod -G sales jdoe
usermod -G sales bsmith
usermod -G sales jbrown

3. Create a directory for the group:

mkdir /home/sls

4. Set the ownership of the new directory:

chgrp sales /home/sls

5. Protect the directory from others:

chmod 770 /home/sls

6. Set the SGID bit to ensure that the sales group will own all new files. Also set the sticky bit to
protect files from deletion by non-owners:

chmod g+s,o+t /home/sls

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (11 of 12) [3/9/2003 11:14:47]

InformIT Online Books > LPI Linux Certification in a Nutshell

7. Test it:

su - jdoe
$ cd /home/sls
$ touch afile
$ ls -l afile
-rw-rw-r-- 1 jdoe sales 0 Jan 3 02:44 afile
$ exit
su - bsmith
cd /home/sls
rm afile
rm: cannot unlink `afile': Operation not permitted

After the ls command, we see that the group ownership is correctly set to sales. After the rm
command, we see that bsmith cannot delete afile, which was created by jdoe. We also note that
although afile has mode 664, the directory containing it has mode 770, preventing other users from
reading the file.

On the Exam

For the exam, you should be prepared to answer questions on file and directory permissions
in both symbolic and numeric (octal) forms. You should also be able to translate between
the two forms given an example.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-5.htm (12 of 12) [3/9/2003 11:14:47]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 4. Devices, Linux Filesystems, and the
Filesystem Hierarchy Standard (Topic 2.4)

4.2 Objective 2: Maintain the Integrity of Filesystems

Over the course of time, active filesystems can develop problems, such as:

● A filesystem fills to capacity, causing programs or perhaps the entire system to fail.

● A filesystem is corrupted, perhaps due to a power failure or system crash.

● A filesystem runs out of inodes, meaning that new filesystem objects cannot be created.

Carefully monitoring and checking Linux filesystems on a regular basis can help prevent and correct
these types of problems.

4.2.1 Monitoring Free Disk Space and Inodes

A read/write filesystem isn't much good if it grows to the point that it won't accept any more files. This
could happen if the filesystem fills to capacity or runs out of inodes.

Inodes are the data structures within filesystems that describe files on disk. Every filesystem contains a
finite number of inodes, set when the filesystem is created. This number is also the maximum number
of files that the filesystem can accommodate. Because filesystems are created with a huge number of
inodes, you'll probably never create as many files as it would take to run out of inodes. However, it is
possible to run out of inodes if a partition contains many small files.

It is important to prevent space and inode shortages from occurring on system partitions. The df
command gives you the information you need on the status of both disk space utilization and inode
utilization.

df

Syntax

df [options] [directories]

Description

Display overall disk utilization information for mounted filesystems on directories. Usually, directories
are device files for partitions, such as /dev/hda1, but using another file or directory name yields
information on the partition that holds the file or directory. If directories are omitted, information for
mounted filesystems on all devices in /etc/fstab are displayed.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-2.htm (1 of 8) [3/9/2003 11:14:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

Frequently used options

-h

Displays results in a human-readable format, including suffixes such as M (megabytes) and G

(gigabytes).

-i

Displays information on remaining inodes rather than the default disk space information.

Example 1

Check disk space utilization on all filesystems:

df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 387M 56M 311M 15% /
/dev/sda5 296M 5.2M 276M 2% /boot
/dev/sda9 1.9G 406M 1.4G 22% /home
/dev/sda6 53M 12M 39M 23% /root
/dev/sda10 99M 104k 93M 0% /tmp
/dev/sda8 972M 507M 414M 55% /usr
/dev/sda7 296M 9.3M 272M 3% /var

This example shows that of the seven filesystems mounted by default, none exceeds 55 percent
capacity.

Example 2

Check the same filesystems for inode utilization:

df -i
Filesystem Inodes IUsed IFree IUse% Mounted on
/dev/sda1 102800 7062 95738 7% /
/dev/sda5 78312 29 78283 0% /boot
/dev/sda9 514000 934 513066 0% /home
/dev/sda6 14056 641 13415 5% /root
/dev/sda10 26104 60 26044 0% /tmp
/dev/sda8 257040 36700 220340 14% /usr
/dev/sda7 78312 269 78043 0% /var

Among these partitions, the largest consumption of inodes is a mere 14 percent. It is clear that none of
the filesystems is anywhere near consuming the maximum number of inodes available. Note that the
/usr partition (with 14 percent of inodes used) has used 55 percent of the disk space. With utilization
like this, the /usr volume will most likely fill to capacity long before the inodes are exhausted.

Example 3

Quickly determine which partition the current working directory (represented simply by a single dot) is
located:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-2.htm (2 of 8) [3/9/2003 11:14:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

df .
/dev/sda1 102800 7062 95738 7% /

When a filesystem is nearing capacity, files may simply be deleted to make additional space available.
However, in the rare case in which an inode shortage occurs, the filesystem must be recreated with a
larger number of inodes unless a significant number of files can be deleted.

4.2.2 Monitoring Disk Usage

Have you ever found yourself wondering, "Where did all the disk space go?" Some operating systems
make answering this question surprisingly difficult using only native tools. On Linux, the du command
can help display disk utilization information on a per-directory basis and perhaps answer that question.
du recursively examines directories and reports detailed or summarized information on the amount of
space consumed.

du

Syntax

du [options] [directories]

Description

Display disk utilization information for directories. If directories are omitted, the current working
directory is searched.

Frequently used options

-a

Shows all files, not just directories.

-c

Produces a grand total for all listed items.

-h

Displays results in a human-readable format, including suffixes such as M (megabytes) and G

(gigabytes).

-s

Prints a summary for each of the directories specified, instead of totals for each subdirectory
found recursively.

-S

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-2.htm (3 of 8) [3/9/2003 11:14:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

Excludes subdirectories from counts and totals, limiting totals to directories.

Example 1

Examine disk utilization in /etc/rc.d:

du /etc/rc.d
882 /etc/rc.d/init.d
1 /etc/rc.d/rc0.d
1 /etc/rc.d/rc1.d
1 /etc/rc.d/rc2.d
1 /etc/rc.d/rc3.d
1 /etc/rc.d/rc4.d
1 /etc/rc.d/rc5.d
1 /etc/rc.d/rc6.d
904 /etc/rc.d

Example 2

Display utilization by files in /etc, including subdirectories beneath it:

du -s /etc
13002 /etc

Example 3

Display utilization by files in /etc, but not in subdirectories beneath it:

du -Ss /etc
1732 /etc

Example 4

Show a summary of all subdirectories under /home, with human-readable output:

du -csh /home/*
42k /home/bsmith
1.5M /home/httpd
9.5M /home/jdean
42k /home/jdoe
12k /home/lost+found
1.0k /home/samba
11M total

This result shows that 11 MB of total disk space is used.

Example 5

Show the same summary, but sort the results to display in order of largest to smallest disk utilization:

du -cs /home/* | sort -nr

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-2.htm (4 of 8) [3/9/2003 11:14:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

11386 total
9772 jdean
1517 httpd
42 jdoe
42 bsmith
12 lost+found
1 samba

This result shows that user jdean is consuming the largest amount of space. Note that the human-
readable format does not sort in this way, since sort is unaware of the human-readable size
specifications.

4.2.3 Checking Filesystem Integrity

No matter how stable, computers do fail, even due to something as simple as a power cable being
accidentally unplugged. Unfortunately, such an interruption can make a mess of a filesystem. If a disk
write operation is aborted before it completes, the data in transit could be lost, and the portions of the
disk that were allocated for it are left marked as used. In addition, filesystem writes are cached in
memory, and a power loss or other crash prevents the kernel from synchronizing the cache with the
disk. Both of these scenarios lead to inconsistencies in the filesystem and must be corrected to ensure
reliable operation.

Filesystems are checked with fsck. Like mkfs, fsck is a front-end to filesystem- specific utilities --
including fsck.ext2, which is a link to the e2fsck program (see its manpage for detailed information).

Part of the information written on disk to describe a filesystem is known as the superblock, written in
block 1 of the partition. If this area of the disk is corrupted, the filesystem is inaccessible. Because the
superblock is so important, copies of it are made in the filesystem at regular intervals, by default every
8192 blocks. The first superblock copy is located at block 8193, the second copy is at block 16385, and
so on. As you'll see, fsck can use the information in the superblock copies to restore the main
superblock.

fsck

Syntax

fsck [options] [-t type] [fs-options] filesystems

Description

Check filesystems for errors and optionally correct them. By default, fsck assumes the ext2 filesystem
type and runs interactively, pausing to ask for permission before applying fixes.

Frequently used options for fsck

-A

Run checks on all filesystems specified in /etc/fstab. This option is intended for use at boot time,
before filesystems are mounted.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-2.htm (5 of 8) [3/9/2003 11:14:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

-N

Don't execute, but show what would be done.

-t type

Specify the type of filesystem to check; the default is ext2. The value of type determines which
filesystem-specific checker is called.

Frequently used options for e2fsck

-b superblock

Use an alternative copy of the superblock. In interactive mode, e2fsck automatically uses
alternative superblocks. Typically, you'll try -b 8193 in non-interactive mode to restore a bad
superblock.

-c

Check for bad blocks.

-f

Force a check, even if the filesystem looks clean.

-p

Automatically repair the filesystem without prompting.

-y

Answers "yes" to all interactive prompts, allowing e2fsck to be used noninteractively.

Example 1

Check the ext2 filesystem on /dev/hda5, which is not mounted:

fsck /dev/hda5
[/sbin/fsck.ext2 --] fsck.ext2 /dev/hda5
Parallelizing fsck version 1.14 (9-Jan-1999)
e2fsck 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
/dev/hda5: clean, 1011/34136 files, 4360/136521 blocks

The partition was clean, so fsck didn't really check it.

Example 2

Force a check:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-2.htm (6 of 8) [3/9/2003 11:14:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

fsck -f /dev/hda5
Parallelizing fsck version 1.14 (9-Jan-1999)
e2fsck 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/hda5: 1011/34136 files (0.1% non-contiguous),
 4360/136521 blocks

Example 3

Force another check, this time with verbose output:

fsck -fv /dev/hda5
Parallelizing fsck version 1.14 (9-Jan-1999)
e2fsck 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information

 1011 inodes used (2%)
 1 non-contiguous inodes (0.1%)
 # of inodes with ind/dind/tind blocks: 0/0/0
 4360 blocks used (3%)
 0 bad blocks

 1000 regular files
 2 directories
 0 character device files
 0 block device files
 0 fifos
 0 links
 0 symbolic links (0 fast symbolic links)
 0 sockets

 1002 files

Example 4

Allow fsck to automatically perform all repairs on a damaged filesystem by specifying the -y option to
run the command automatically:

[root@smp /mnt]# fsck -y /dev/hda5
Parallelizing fsck version 1.14 (9-Jan-1999)
e2fsck 1.14, 9-Jan-1999 for EXT2 FS 0.5b, 95/08/09
Couldn't find ext2 superblock, trying backup blocks...
/dev/hda5 was not cleanly unmounted, check forced.
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-2.htm (7 of 8) [3/9/2003 11:14:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

Block bitmap differences: +1 +2 +3 +4
Fix? yes

Inode bitmap differences: +1 +2 +3 +4 +5 +6
Fix? yes

/dev/hda5: ***** FILE SYSTEM WAS MODIFIED *****
/dev/hda5: 1011/34136 files (0.1% non-contiguous),
 4360/136521 blocks

When Linux boots, the kernel performs a check of all filesystems in /etc/fstab using the -A option to

fsck.[4] Any filesystems that were not cleanly unmounted are checked. If that check finds any
significant errors, the system drops into single-user mode so you can run fsck manually. Unfortunately,
unless you have detailed knowledge of the inner workings of the filesystem, there's little you can do
other than to have fsck do all of the repairs. As a result, it is common to use the -y option and hope for
the best.

[4] Unless the /etc/fstab entry contains the noauto option.

On the Exam

Familiarity with du, df, and fsck is important. Be sure you understand the differences
between the commands and when each is used.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-2.htm (8 of 8) [3/9/2003 11:14:48]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 4. Devices, Linux Filesystems, and the
Filesystem Hierarchy Standard (Topic 2.4)

4.3 Objective 3: Control Filesystem Mounting and Unmounting

As discussed in Objective 1, the Linux directory hierarchy is usually made up of multiple partitions, each
joined to the root filesystem. Filesystems on removable media, such as CD-ROMs, Zip disks, and floppy
disks, are joined in the same way, but usually on a temporary basis. Each of these separate filesystems
is mounted to the parent filesystem as a directory (or mount point) in the unified hierarchy.

Directories intended as mount points usually don't contain files or other directories. Instead, they're just
empty directories created solely to mount a filesystem. If a directory that already contains files is used
as a mount point, its files are obscured and unavailable until the filesystem is unmounted. Typical
mount points include the directories /usr, /home, /var, and others.

4.3.1 Managing the Filesystem Table

Since the Linux filesystem hierarchy is spread across separate partitions and/or multiple drives, it is
necessary to automatically mount those filesystems at boot time. In addition, removable media and
filesystems on remote NFS servers may be used regularly with recurring mount properties. All of this
information is recorded in the /etc/fstab file. Filesystems defined in this file are checked and mounted
when the system boots. Entries in this file are consulted for default information when users wish to
mount removable media.

The /etc/fstab file (see Example 4-1) is plain text and consists of lines with six fields:

Device

This field specifies the device file of the partition holding the filesystem -- for example,
/dev/hda1. This field cannot contain a whole device, such as /dev/hda.

Mount point

This field specifies the directory upon which the filesystem is to be mounted. For example, if
/dev/hda1 contains the root filesystem, it is mounted at /. The root filesystem will contain
additional directories intended as mount points for other filesystems. For example, /boot may be
an empty directory intended to mount the filesystem that contains kernel images and other
information required at boot time.

Filesystem type

Next, the type of filesystem is specified. These include some ext2 filesystems, as well as swap,
iso9660 (CD-ROM), and others.

Mount options

This field contains a comma-separated list of options. Some options are specific to particular

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-3.htm (1 of 8) [3/9/2003 11:14:50]

InformIT Online Books > LPI Linux Certification in a Nutshell

filesystem types. Options are described later in this Objective.

Dump frequency

The dump program, a standard Unix backup utility, may consult /etc/fstab for information on
how often to dump each filesystem. This field holds an integer, usually set to 1 for ext2
filesystems and to for others.

Pass number for fsck

This field is used by the fsck utility when the -A option is specified, usually at boot time. It is a
flag that may contain only the values 0, 1, or 2.

● A 0 instructs fsck not to check the filesystem.

● A 1 should be entered for the root filesystem and instructs fsck to check that filesystem first.

● A 2 instructs fsck to check corresponding filesystems after those with a 1.

Example 4-1. Sample /etc/fstab File

/dev/sda1 / ext2 defaults 1 1
/dev/sda5 /boot ext2 defaults 1 2
/dev/sda9 /home ext2 defaults 1 2
/dev/sda6 /root ext2 defaults 1 2
/dev/sda10 /tmp ext2 defaults 1 2
/dev/sda8 /usr ext2 defaults 1 2
/dev/sda7 /var ext2 defaults 1 2
/dev/sda11 swap swap defaults 0 0
/dev/fd0 /mnt/floppy ext2 noauto,users 0 0
/dev/hdc /mnt/cdrom iso9660 noauto,ro,users 0 0
/dev/hdd /mnt/zip vfat noauto,users 0 0
fs1:/share /fs1 nfs defaults 0 0

The fstab in Example 4-1 depicts a system with a single SCSI disk, /dev/sda. The first partition,
/dev/sda1, contains an ext2 root filesystem. Partition /dev/sda11 is swap. Partitions /dev/sda5 through
/dev/sda10 contain ext2 partitions for /boot, /home, /root, /tmp, /usr, and /var, respectively. All of the
local ext2 partitions are to be checked by fsck and dumped. Entries for the floppy disk (/dev/fd0), CD-
ROM (/dev/hdc), and IDE Zip drive (/dev/hdd) hold appropriate mount properties, making manual
mounting of these devices simple. Finally, this example shows a remote NFS mount of directory /share
of system fs1. It is mounted locally at /fs1.

The /etc/fstab file is automatically created when Linux is installed and is based on the partitioning and
mount point configuration specified. This file can be changed at any time to add devices and options,
tailoring the filesystem to meet your specific needs.

On the Exam

You should memorize the functions of each column in /etc/fstab and be prepared to answer
questions on each.

4.3.2 Mounting Filesystems

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-3.htm (2 of 8) [3/9/2003 11:14:50]

InformIT Online Books > LPI Linux Certification in a Nutshell

Filesystems are mounted using the mount command. At boot time, those filesystems with a nonzero
pass number in /etc/fstab are checked and automatically mounted. Later, you can run mount manually
to add other filesystems to the filesystem hierarchy.

mount

Syntax

mount [command_line_options] device
mount [command_line_options] directory
mount [command_line_options] device directory

Description

Used to mount filesystems onto the filesystem hierarchy. The first and second forms consult /etc/fstab
and mount the filesystem located on device or intended to be attached to directory, respectively. In
both cases, information necessary to complete the mount operation is taken from /etc/fstab. The third
form is independent of /etc/fstab and mounts the filesystem on device at mount point directory.

The mount command accepts two kinds of options: command-line and mount. The command-line
options provide general direction for the mount command. The mount options, which are generally
alphanumeric words, word fragments, or abbreviations, are used to specify additional information about
the device being mounted.

Command-line options

-a

Mounts all of the partitions specified in /etc/fstab, except those with the noauto option.

-h

Displays help on the mount command.

-o mount_options

Specifies mount options on the command line.

-r

Mounts the filesystem as read-only.

-t fstype

Specifies that the filesystem to be mounted is of type fstype. This option is typically used
interactively, when no entry for the mount exists in /etc/fstab.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-3.htm (3 of 8) [3/9/2003 11:14:50]

InformIT Online Books > LPI Linux Certification in a Nutshell

-v

Sets verbose mode.

-w

Mounts the filesystem read/write mode.

Mount options

A number of parameters are available as options for mounting filesystems. These options may be
specified in /etc/fstab or as arguments of the -o command-line mount argument. These options modify
the way mount configures the mounted filesystem. Some of the options can provide added security by
controlling some operations on the filesystem. Others protect the filesystem from damage. Here is a
partial list:

async

Establishes asynchronous I/O to the mounted filesystem. The opposite is sync.

auto

Enables a mount specification in /etc/fstab to be processed with the -a command-line option, as
needed at boot time. The opposite is noauto.

defaults

Implies rw, suid, dev, exec, auto, nouser, and async. It is commonly found on /etc/fstab entries
for ext2 mount points.

dev

Interprets character or block special devices on the filesystem.

exec

Enables the execution of programs contained on the mounted partition. The opposite is noexec.

noauto

Prohibits automatic mounting with the -a option. This is usually specified for removable media.

noexec

Prohibits the execution of executable programs, a potential security measure.

nosuid

Prohibits the effect of suid or sgid bits on executable files.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-3.htm (4 of 8) [3/9/2003 11:14:50]

InformIT Online Books > LPI Linux Certification in a Nutshell

nouser

Forbids non-root users from mounting and unmounting the filesystem. See user and users for
the opposite effect.

ro

Equivalent to specifying the command-line option -r.

rw

Equivalent to specifying the command-line option -w.

suid

Enables the effect of suid and sgid bits on executable files.

sync

Establishes synchronous I/O to the mounted filesystem. The opposite is async.

user

Allows an ordinary user to mount the filesystem but prohibits other ordinary users from
unmounting it. This is useful for removable media that an individual requires control over. See
also users.

users

Allows any user to mount and unmount the filesystem.

Note that the user and users options make the mount and umount commands available to non-root
users. This may be important for some systems where end users must have the ability to mount
removable media.

Filesystem types

Mount must be aware of the type of filesystem it is mounting, which is specified with a single filesystem
type. This parameter may be included on the command line using the -t option, or in the third field in
/etc/fstab. Linux can mount a variety of filesystems. Here are some of the more popular ones:

ext2

The standard Linux filesystem.

msdos

The MS-DOS FAT filesystem, limited to "8.3" filenames (eight characters, a dot, and a three-
character extension).

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-3.htm (5 of 8) [3/9/2003 11:14:50]

InformIT Online Books > LPI Linux Certification in a Nutshell

vfat

Virtual FAT, used instead of msdos when long filenames must be preserved. For example, you
may wish to have access to Windows partitions on systems configured to boot both Linux and
Windows.

iso9660

The CD-ROM format, also the default type.

nfs

Remote servers.

swap

Swap partitions.

proc

This type represents the proc filesystem, which is not really a filesystem at all. The virtual files
found in this virtual filesystem provide a window into the kernel. It is usually mounted on /proc.

Example 1

Display filesystems currently mounted on the system:

mount
/dev/sda1 on / type ext2 (rw)
none on /proc type proc (rw)
/dev/sda5 on /boot type ext2 (rw)
/dev/sda9 on /home type ext2 (rw)
/dev/sda6 on /root type ext2 (rw)
/dev/sda10 on /tmp type ext2 (rw)
/dev/sda8 on /usr type ext2 (rw)
/dev/sda7 on /var type ext2 (rw)
none on /dev/pts type devpts (rw,mode=0622)
/dev/hdd on /mnt/zip type vfat (rw,noexec,nosuid,nodev)

In this example, you can see that most of the filesystems specified in the /etc/fstab from Example 4-1
are already mounted.

Example 2

Mount the IDE CD-ROM device found on /dev/hdc to the existing directory /cdrom, read-only of course:

mount -rt iso9660 /dev/hdc /cdrom

Note that without the -r option, you will receive a warning but still get appropriate results:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-3.htm (6 of 8) [3/9/2003 11:14:50]

InformIT Online Books > LPI Linux Certification in a Nutshell

mount -t iso9660 /dev/hdc /mnt/cdrom
mount: block device /dev/hdc is write-protected,
 mounting read-only

Example 3

Mount an MS-DOS floppy in the first floppy disk drive /dev/fd0 (A: in MS-DOS) to the existing directory
/floppy :

mount -t msdos /dev/fd0 /floppy

Example 4

The filesystems mounted at /home and /opt have been unmounted for some kind of maintenance and
are now remounted using the -a option:

mount -av
mount: /dev/hda5 already mounted on /root
mount: /dev/hda9 already mounted on /usr
mount: /dev/hda7 already mounted on /var
mount: none already mounted on /proc
mount: none already mounted on /dev/pts
mount: 192.168.0.2:/ already mounted on /smp
/dev/hda10 on /home type ext2 (rw)
/dev/hda8 on /opt type ext2 (rw)

Note that mount should work silently without the -v option. It also safely skips filesystems that have
been previously mounted.

4.3.3 Unmounting Filesystems

Filesystems can be unmounted using the umount command. When a filesystem is unmounted, the
buffers of the filesystem are synchronized with the actual contents on disk and the filesystem is made
unavailable, freeing the mount point. If the filesystem is busy, umount yields an error. This will
happen, for example, when the filesystem contains open files or when a process has a working directory
within the filesystem. Other less obvious errors can occur when removable media are exchanged
without being unmounted first.

umount

Syntax

umount [options] device
umount [options] directory

Description

Unmount the filesystem on device or mounted on directory.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-3.htm (7 of 8) [3/9/2003 11:14:50]

InformIT Online Books > LPI Linux Certification in a Nutshell

-a

Unmounts all of the filesystems described in /etc/mtab. This file is maintained by the mount
and umount commands and contains an up-to-date list of mounted filesystems. This option is
typically used at shutdown time.

-t fstype

Unmounts only filesystems of type fstype.

Example 1

Unmount the CD-ROM mounted on /dev/hdc at /cdrom:

umount /cdrom

or:

umount /dev/hdc

Example 2

Unmount all NFS filesystems:

umount -at nfs

On the Exam

Be sure that you understand how to use mount and mount points and how /etc/fstab is
used when mounting files.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-3.htm (8 of 8) [3/9/2003 11:14:50]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 4. Devices, Linux Filesystems, and the
Filesystem Hierarchy Standard (Topic 2.4)

4.4 Objective 4: Set and View Disk Quotas

Managing disk space can be a difficult problem. The available space is a finite resource and is often
consumed at an alarming rate, turning today's carefully sized filesystem into tomorrow's expansion
requirement. On multiuser systems -- no matter how big the filesystem -- users will find a way to fill it.
The last thing you want is for a filesystem to fill to capacity too early. One way to prevent that from
happening is to enforce disk quotas , which allow you assign a limit to the amount of space individual
users or groups have on a filesystem.

A typical quota size is usually much smaller than the filesystem it is configured on, thus preventing the
user or group from consuming too much space. Quotas can be configured for each filesystem mentioned
in /etc/fstab, though they are usually applied only where multiple end users store files (i.e.,
/home/username). There is no need for a quota on /usr, for example, since end users cannot store files
there. Quotas may be configured for individual users listed in /etc/passwd and for groups listed in
/etc/group.

4.4.1 Quota Limits

Each filesystem has up to five types of quota limits that can be enforced on it. These limits are specified
in disk blocks, usually 1024 bytes each:

Per-user hard limit

The hard limit is the maximum amount of space an individual user can have on the system.
Once the user reaches his quota limit, he won't be allowed to write files to the disk.

Per-user soft limit

Each user is free to store data on the filesystem until reaching her soft limit. The soft limit
implements a sort of warning zone, instructing the user to clean up while still allowing her to
work. When the amount of data exceeds this limit but does not exceed the hard limit, a
message is printed on the user's terminal, indicating that her quota has been exceeded;
however, the write operation will succeed.

Per-group hard limit

This is the final limit set for a group by the quota system. Once this limit has been reached,
none of the users within that group will be allowed to write files to the disk -- even if the user's
individual limits are not exceeded.

Per-group soft limit

This limit behaves in the same way as a user's soft limit but is enforced based on group
ownership instead of individual ownership.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-4.htm (1 of 11) [3/9/2003 11:14:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

Grace period

Once a soft limit is reached, the user or group enters the grace period. After the grace period
expires, the soft limit becomes a hard limit until enough files are deleted to eliminate the over-
quota situation. The grace period may be specified for any number of months, weeks, days,
hours, minutes, or seconds. A typical value is seven days.

These limits are set using the edquota command, detailed in the next section.

When a disk write exceeds a hard limit or an expired soft limit, only part of
the write operation will complete, leaving a truncated and probably useless
file. The messages reported to the user when a quota is exceeded may be
lost if the shell he is using is hidden. This could confuse the user, because
the error message generated by the application indicates that the disk is full
or write-protected.

4.4.2 Quota Commands

Linux offers a host of commands to manage, display, and report on filesystem quotas. Some of the
setup required to initially enable quotas is done manually and without specific quota commands, a
process that is covered in the next section.

quota

Syntax

quota [-u] [options] user
quota -g [options] group

Description

Displays quota limits on user or group. The -u option is the default. Only the superuser may use the -u
flag and user to view the limits of other users. Other users can use the -g flag and group to view only
the limits of groups of which they are members, provided that the quota.group files are readable by
them.

Frequently used options

-q

Sets quiet mode, which shows only over-quota situations.

-v

Enables verbose mode to display quotas even if no storage space is allocated.

Example 1

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-4.htm (2 of 11) [3/9/2003 11:14:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

As root, examine all quotas for user jdoe :

quota -uv jdoe
Disk quotas for user jdoe (uid 500):
Filesystem blks quota limit grace files quota limit grace
/dev/sda9 9456 10000 10200 32 0 0
/dev/hda1 23 0 0 17 0 0

This example shows that jdoe is barely within her soft limit of 10,000 blocks, with a corresponding hard
limit of 10,200 blocks on /dev/sda9, and has no quota on /dev/hda1. The entry for /dev/hda1 is
displayed in response to the -v option. No values are shown for the grace periods, because the soft limit
has not been exceeded.

Example 2

As user jdoe, examine quotas for the finance group, of which he is a member:

$ quota -gv finance
Disk quotas for group finance (gid 501):
Filesystem blks quota limit grace files quota limit grace
/dev/sda9 1000* 990 1000 6days 34 3980 4000
/dev/hda1 0 0 0 0 0 0

Here, the finance group has exceeded its meager soft limit of 990 blocks and has come up against its
hard limit of 1000 blocks. (The write operation that wrote the 1000th block was probably incomplete.)
The original grace period in this example was set to seven days and has six days remaining, meaning
that one day has elapsed since the soft limit was exceeded.

quotaon

Syntax

quotaon [options] [filesystems]
quotaon [options] -a

Description

Enable previously configured disk quotas on one or more filesystems.

Frequently used options

-a

Turns quotas on for all filesystems in /etc/fstab that are marked read-write with quotas. This is
normally used automatically at boot time to enable quotas.

-g

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-4.htm (3 of 11) [3/9/2003 11:14:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

Turns on group quotas. This option is not necessary when using the -a option, which includes
both user and group quotas.

-u

Turns on user quotas; this is the default.

-v

Enables verbose mode to display a message for each filesystem where quotas are turned on.

Example 1

Turn on all quotas as defined in /etc/fstab :

quotaon -av
/dev/sda9: group quotas turned on
/dev/sda9: user quotas turned on
/dev/hda1: group quotas turned on
/dev/hda1: user quotas turned on

Example 2

Turn on user quotas only on the /home filesystem:

quotaon -gv /home
/dev/sda9: group quotas turned on

quotaoff

Syntax

quotaoff [options] [filesystems]
quotaoff [options] -a

Description

Disables disk quotas on one or more filesystems.

Frequently used options

-a

Turns quotas off for all filesystems in /etc/fstab.

-g

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-4.htm (4 of 11) [3/9/2003 11:14:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

Turns off group quotas. This option is not necessary when using the -a option, which includes
both user and group quotas.

-u

Turns off user quotas; this is the default.

-v

Enables verbose mode to display a message for each filesystem where quotas are turned off.

Example

Turn off all quotas:

quotaoff -av
/dev/sda9: group quotas turned off
/dev/sda9: user quotas turned off
/dev/hda1: group quotas turned off
/dev/hda1: user quotas turned off

quotacheck

Syntax

quotacheck [options] filesystems
quotacheck [options] -a

Description

Examine filesystems and compile quota databases. This command is not specifically called out in the LPI
Objectives for Exam 101, but is an important component of the Linux quota system. You should run the
quotacheck -a command on a regular basis (perhaps weekly) via cron.

Frequently used options

-a

Checks all of the quotas for the filesystems mentioned in /etc/fstab. Both user and group quotas
are checked as indicated by the usrquota and grpquota options.

-g group

Compiles information only on group.

-u user

Compiles information only on user; this is the default action. However, if the -g option is

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-4.htm (5 of 11) [3/9/2003 11:14:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

specified, then this option should also be specified when both group and user quotas are to be
processed.

-v

Enables verbose mode to display information about what the program is doing. This option
shows activity by displaying a spinning character in the terminal. This is nice but could be a
problem if you are logged in over a slow modem link.

Example 1

Initialize all quota files:

quotaoff -a
quotacheck -aguv
Scanning /dev/sda9 [/home] done
Checked 237 directories and 714 files
Using quotafile /home/quota.user
Using quotafile /home/quota.group
Scanning /dev/hda1 [/mnt/hd] done
Checked 3534 directories and 72673 files
Using quotafile /mnt/hd/quota.user
Using quotafile /mnt/hd/quota.group
quotaon -a

By turning off quotas during the update, the quota database files are updated.

Example 2

With quotas active, update the user quotas in memory for /home :

quotacheck -v /home
Scanning /dev/sda9 [/home] done
Checked 237 directories and 714 files
Using quotafile /home/quota.user
Updating in-core user quotas

edquota

Syntax

edquota [-p proto-user] [options] names
edquota [options] -t

Description

Modify user or group quotas. This interactive command uses a text editor to configure quota parameters
for users or groups. The vi editor is used by default unless either the EDITOR or VISUAL environment

variables are set to another editor, such as Emacs. When the command is issued, the vi editor is

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-4.htm (6 of 11) [3/9/2003 11:14:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

launched with a temporary file containing quota settings. When the temporary file is saved and the
editor is terminated, the changes are saved in the quota databases.

In the first form, a space-separated list of users or groups specified in names is modified. If proto-user
is specified with the -p option, quotas of that user or group are copied and used for names and no
editor is launched. In the second form with the -t option, the soft limit settings are edited interactively
for each filesystem.

Frequently used options

-g

Modify group quotas. If -g is specified, all names are assumed to be groups and not users, even
if -u is also specified.

-p proto-user

Duplicate the quotas of the prototypical user or group proto-user for each user or group
specified. This is the normal mechanism used to initialize quotas for multiple users or groups at
the same time.

-t

Modify soft limits. Time units of sec(onds), min(utes), hour (s), day (s), week (s), and month
(s) are understood.

-u

Modify user quotas. This is the default action. This option is ignored if -g is also specified.

The following examples use the vi editor. The contents of the edit buffer --
not program output -- are shown after each example.

Example 1

Modify the user quotas for jdoe :

edquota -u jdoe
Quotas for user jdoe:
/dev/sda9: blocks in use: 87, limits (soft = 99900,
 hard = 100000)
 inodes in use: 84, limits (soft = 0, hard = 0)
/dev/hda1: blocks in use: 0, limits (soft = 0, hard = 0)
 inodes in use: 0, limits (soft = 0, hard = 0)
~
~
"/tmp/EdP.auHTZJ0" 5 lines, 241 characters

Here, jdoe has been allocated a soft limit of 99,900 blocks, a hard limit of 100,000 blocks, and no file

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-4.htm (7 of 11) [3/9/2003 11:14:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

limits on /dev/sda9. She has no limits on /dev/hda1.

Example 2

Modify soft limits for users on all filesystems:

edquota -tu
Time units may be: days, hours, minutes, or seconds
Grace period before enforcing soft limits for users:
/dev/sda9: block grace period: 7 days,
 file grace period: 3 days
/dev/hda1: block grace period: 7 days,
 file grace period: 3 days
~
~
"/tmp/EdP.aiTShJB" 5 lines, 249 characters

Here, the user grace periods have been set to seven days for blocks (disk space) and three days for
files (inodes).

repquota

Syntax

repquota [options] filesystems
repquota -a [options]

Description

Used to report on the status of quotas. In the first form, repquota displays a summary report on the
quotas for the given filesystems on a per-user or per-group basis. In the second form, the -a option
causes a summary for all filesystems with quotas to be displayed. This command fails for non-root users
unless the quota database files are world-readable. The current number of files and the amount of
space utilized are printed for each user, along with any quotas created with edquota.

Frequently used options

-a

Report on all of the quotas for the read-write filesystems mentioned in /etc/fstab. Both user and
group quotas are reported as indicated by the usrquota and grpquota options.

-g

Report quotas for groups.

-u

Report quotas for users; this is the default action.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-4.htm (8 of 11) [3/9/2003 11:14:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

-v

Enable verbose mode, which adds a descriptive header to the output.

Example

Report user quotas for /home:

repquota -v /home
*** Report for user quotas on /dev/sda9 (/home)
 Block limits File limits
User used soft hard grace used soft hard grace
root -- 418941 0 0 269 0 0
328 -- 1411 0 0 20 0 0
jdean -- 9818 99900 100000 334 0 0
u1 -- 44 0 0 43 0 0
u2 -- 44 0 0 43 0 0
u3 -- 127 155 300 124 0 0
jdoe -- 87 99900 100000 84 0 0
bsmith -- 42 1990 2000 41 0 0

4.4.3 Enabling Quotas

In order to use quotas, they must first be enabled.[5] This is not a difficult process, but unfortunately it
is not completely straightforward either. To clarify the procedure, this section provides a brief tutorial on
how to enable user and group quotas for a filesystem on /dev/sda9 mounted under /home. Note that
you may enable user quotas only, group quotas only, or both, as your needs dictate.

[5] Quota support must also be compiled into the kernel. In the unlikely
event that your kernel does not contain quota support, you will need to
recompile the kernel (see Chapter 15 for more details on how to compile a
kernel).

1. Set options in /etc/fstab. On the line containing the /home filesystem, add the userquota and
grpquota options to the existing default option, like this:

/dev/sda9 /home ext2 defaults,usrquota,grpquota 1 2

These options tell quota configuration utilities which partitions should be managed when the
utilities reference /etc/fstab.

2. Create the quota.user and quota.group files at the top of the /home filesystem and set their
protection bits for root access only:

touch /home/quota.user /home/quota.group
chmod 600 /home/quota.user /home/quota.group

These two files are the databases for user and group quotas. Each filesystem with quotas uses
its own quota databases. When quotas are enabled, these files will contain binary data (that is,
they're not text files). Note that if you want end users to be able to examine quotas on groups

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-4.htm (9 of 11) [3/9/2003 11:14:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

to which they belong, quota.group will need a protection mode of 644 instead of 600.

3. Run quotacheck to initialize the databases:

quotacheck -avug
Scanning /dev/sda9 [/home] done
Checked 236 directories and 695 files
Using quotafile /home/quota.user
Using quotafile /home/quota.group

4. Then verify that your quota database files have been initialized by noting that they are no longer
of size zero (here they're 16,192 bytes each):

ls -al /home/quota.*
-rw------- 1 root root 16192 Dec 27 19:53 /home/quota.group
-rw------- 1 root root 16192 Dec 27 19:53 /home/quota.user

5. Run quotaon to enable the quota system:

quotaon -a

6. Verify that your system's initialization script (/etc/rc.d/rc.sysinit or similar) will turn on quotas
when your system boots. Something along these lines is appropriate, although your system may
be very different:

if [-x /sbin/quotacheck]
then
 echo "Checking quotas."
 /sbin/quotacheck -avug
 echo " Done."
fi
if [-x /sbin/quotaon]
then
 echo "Turning on quotas."
 /sbin/quotaon -avug
fi

7. Add a command script to a system crontab directory (such as the directory /etc/crontab.weekly)
to execute quotacheck on a routine basis. An executable script file like the following will work:

#!/bin/bash
/sbin/quotacheck -avug

If you prefer, you could instead put /sbin/quotacheck in root's crontab file (using the crontab -
e command) for weekly execution, like this:

run quotacheck weekly
0 3 * * 0 /sbin/quotacheck -avug

At this point the /home filesystem is ready to accept quotas on a per-user and per-group basis, enforce
them, and report on them.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-4.htm (10 of 11) [3/9/2003 11:14:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

A general understanding of quotas is necessary for the exam. In particular, you should know
the function of each command. Also remember that quotas are set on a per-filesystem basis.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-4.htm (11 of 11) [3/9/2003 11:14:52]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 15. Kernel (Topic 1.5)

In the early days of personal computing, operating systems were simple interfaces, designed to provide
access to a rudimentary filesystem and to launch programs. Once a program was running, it had full
control of the system. This made the system simple but also contributed to instability, because a single
program failure could cause the entire system to crash. To run a computer in an organized and reliable
fashion, it is important to isolate physical hardware resources from the software running on the system.
In Linux, the kernel is the core software that owns and manages your system. It controls hardware,
memory, and process scheduling, and provides an interface for programs to indirectly access hardware
resources.

This Topic on the Linux kernel has two Objectives:

Objective 1: Manage Kernel Modules at Runtime

This Objective covers kernel modules and the commands for managing them. Weight: 3.

Objective 2: Reconfigure, Build, and Install a Custom Kernel and Modules

This Objective describes the creation of new kernels using your existing kernel source code as
provided in your Linux distribution. Weight: 4.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/15-0.htm [3/9/2003 11:14:52]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 4. Devices, Linux Filesystems, and the
Filesystem Hierarchy Standard (Topic 2.4)

4.6 Objective 6: Manage File Ownership

Modification of ownership parameters may become necessary when moving files, setting up
workgroups, or working in a user's directory as root. This is accomplished using the chown command,
which can change user and group ownership, and the chgrp command for modifying group ownership.

The chown command supersedes chgrp because all of the chgrp command's functions are available in
chown. However, many system administrators still habitually use chgrp, and it is often found in scripts
and makefiles.

chown

Syntax

chown [options] user-owner files
chown [options] user-owner. files
chown [options] user-owner.group-owner files
chown [options] .group-owner files
chown [options] --reference=rfile files

Description

Used to change the owner and/or group of files to user-owner and/or group-owner. In the first form,
user-owner is made the owner of files and the group is not affected. In the second form (note the
trailing dot on user-owner), the user-owner is made the owner of files and the group of the files is
changed to user-owner's default group. In the third form, both user-owner and group-owner are
assigned to files. In the fourth form, only the group-owner is assigned to files, and the user is not
affected. In the fifth form, the owner and group of rfile is used as a template and applied to files. Since
this program can handle all types of changes to groups, it replaces the chgrp command. Only the
superuser may change file ownership, but group ownership may be set by anyone belonging to the
target group-owner.

Frequently used options

-c

Like verbose mode, but report only changes.

-R

Use recursive mode, descending through directory hierarchies under files and making
modifications throughout.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-6.htm (1 of 3) [3/9/2003 11:14:53]

InformIT Online Books > LPI Linux Certification in a Nutshell

-v

Use verbose behavior, reporting actions for all files.

Example 1

As root, set the user of a file:

chown -v jdoe afile
owner of afile changed to jdoe

Example 2

As root, set the user and group of a file:

chown -v jdoe.sales afile
owner of afile changed to jdoe.sales

Example 3

Recursively change the group of the entire sls directory:

chown -Rv .sales sls
owner of sls changed to .sales
owner of sls/file1 changed to .sales
owner of sls/file2 changed to .sales
...

chgrp

Syntax

chgrp [options] group-owner files
chgrp [options] --reference=rfile files

Description

Change the group parameter of files to group-owner. In the first form, set the group-owner of files. In
the second form, the group of rfile is used as a template and applied to files. Options and usage are the
same as that of chown.

On the Exam

Remember that only root can change file ownership. Also remember that chown can change
not only the user but also the group ownership.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-6.htm (2 of 3) [3/9/2003 11:14:53]

InformIT Online Books > LPI Linux Certification in a Nutshell

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-6.htm (3 of 3) [3/9/2003 11:14:53]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 4. Devices, Linux Filesystems, and the
Filesystem Hierarchy Standard (Topic 2.4)

4.7 Objective 7: Create and Change Hard and Symbolic Links

A link is a pseudofile that creates a shortcut to the original file located elsewhere on the filesystem.
Links don't take up very much space, as they don't contain any real data. While the concept of links
may seem a little odd, they are very useful and can be used for anything from creating a shortcut, to
launching an application, to mirroring the kernel's source.

There are two types of links used on Linux:

Symbolic links

A symbolic link is really a tiny file that contains a pointer to another file. When Linux opens a
symbolic link, it reads the pointer and then finds the intended file that contains the actual data.
Symbolic links can point to other filesystems, both local and on networked computers, and they
can point to directories. They are clearly listed as being a link with the ls -l command by
displaying a special "l" (a lowercase L) in column one, and they have no file protections of their
own (the actual file's permissions are used instead). Note that if a file with a symbolic link is
deleted, then the symbolic link points to nothing and is said to be stale.

Hard links

A hard link is not really a "link" at all, but a copy of another directory entry. The two directory
entries have different names but point to the same inode and thus to the same actual data,
ownership, permissions, and so on. In fact, if a file with a hard link is deleted, the link remains,
still pointing to the valid inode. Except for its name, including its location in the directory
hierarchy, the link is indistinguishable from the original file.

Hard links have two important limitations. First, because they share inodes, files and any hard
links to them must reside on the same filesystem (inode numbers aren't expected to be unique
across filesystems). Second, hard links cannot point to directories. However, hard links take no
disk space beyond an additional directory entry.

Symbolic links are used more often than hard links because they are more versatile and easier to
manage, yet still consume a trivial amount of disk space.

4.7.1 Why Links?

To see an example of the use of links in practice, consider the directories in /etc/rc.d:

drwxr-xr-x 2 root root 1024 Dec 15 23:05 init.d
-rwxr-xr-x 1 root root 2722 Apr 15 1999 rc
-rwxr-xr-x 1 root root 693 Aug 17 1998 rc.local
-rwxr-xr-x 1 root root 9822 Apr 13 1999 rc.sysinit
drwxr-xr-x 2 root root 1024 Dec 2 09:41 rc0.d
drwxr-xr-x 2 root root 1024 Dec 2 09:41 rc1.d

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-7.htm (1 of 6) [3/9/2003 11:14:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

drwxr-xr-x 2 root root 1024 Dec 24 15:15 rc2.d
drwxr-xr-x 2 root root 1024 Dec 24 15:15 rc3.d
drwxr-xr-x 2 root root 1024 Dec 24 15:16 rc4.d
drwxr-xr-x 2 root root 1024 Dec 24 15:16 rc5.d
drwxr-xr-x 2 root root 1024 Dec 14 23:37 rc6.d

Inside init.d are scripts to start and stop many of the services on your system, such as httpd, cron,
and syslog. Some of these files are to be executed with a start argument, while others are run with a
stop argument, depending upon the runlevel of your system. To determine just which files are run and
what argument they receive, a scheme of additional directories has been devised. These directories are
named rc0.d through rc6.d, one for each runlevel (see Chapter 5 Boot, Initialization, Shutdown, and
Runlevels (Topic 2.6), for a complete description of this scheme). Each of the runlevel-specific
directories contains several links, each with a name that helps determine the configuration of services
on your system. For example, rc3.d contains the following links, among many others:

S30syslog -> ../init.d/syslog
S40crond -> ../init.d/crond
S85httpd -> ../init.d/httpd

All of these links point back to the scripts in init.d as indicated by the arrows (->) after the script name.

If these links were copies of the scripts, editing would be required for all of the runlevel-specific versions
of the same script just to make a single change. Instead, links allow us to:

● Make changes to the original file once. References to the links will yield the updated contents as
long as the filename doesn't change.

● Avoid wasting disk space by having multiple copies of the same file in different places for
"convenience."

As another example, consider the directory for the kernel source, /usr/src/linux :

linux -> linux-2.2.10
linux-2.2.10

Makefiles and other automated tools can refer to /usr/src/linux, but in reality, they reference
/usr/src/linux-2.2.10. If a new kernel is added, say Version 2.2.14, its source would be placed into an
appropriately named directory and the linux link would be reset, as follows:

linux -> linux-2.2.14
linux-2.2.10
linux-2.2.14

Now the appropriate directory can be selected simply by changing the link. No files need to be moved or
deleted. Once created, links are normal directory entries, which may be copied, renamed, deleted, and
backed up.

Symbolic and hard links are created with the ln command.

ln

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-7.htm (2 of 6) [3/9/2003 11:14:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

ln [options] file link
ln [options] files directory

Description

Create links between files. In the first form, a new link is created to point to file, which must already
exist. In the second form, links are created in directory for all files specified.

Frequently used options

-f

Overwrite (force) existing links, or existing files in the destination directory.

-i

Prompt interactively before overwriting destination files.

-s

Create a symbolic link rather than a hard link; this is the default.

Example 1

Note that the Bourne shell sh on a Linux system is a symbolic link to bash:

$ ls -l /bin/bash /bin/sh
/bin/bash
/bin/sh -> bash

Example 2

Create a file named myfile, a symbolic link to that file named myslink, and a hard link to that file named
myhlink, then examine them:

$ touch myfile
$ ln -s myfile myslink
$ ln myfile myhlink
$ ls -l my*
-rw-r--r-- 2 jdoe jdoe 0 Jan 3 13:21 myfile
-rw-r--r-- 2 jdoe jdoe 0 Jan 3 13:21 myhlink
lrwxrwxrwx 1 jdoe jdoe 6 Jan 3 13:21 myslink -> myfile

Using the stat command on my* demonstrates that they all ultimately reference the same inode (the
inode numbers are the same) and indicates the number of links to the file (two links, one symbolic and
one hard):

stat my*

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-7.htm (3 of 6) [3/9/2003 11:14:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

File: "myfile"
 Size: 0 Filetype: Regular File
 Mode: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Device: 8,6 Inode: 30 Links: 2
Access: Mon Jan 3 14:33:04 2000(00000.00:06:05)
Modify: Mon Jan 3 14:33:04 2000(00000.00:06:05)
Change: Mon Jan 3 14:33:25 2000(00000.00:05:44)

 File: "myhlink"
 Size: 0 Filetype: Regular File
 Mode: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Device: 8,6 Inode: 30 Links: 2
Access: Mon Jan 3 14:33:04 2000(00000.00:06:05)
Modify: Mon Jan 3 14:33:04 2000(00000.00:06:05)
Change: Mon Jan 3 14:33:25 2000(00000.00:05:44)

 File: "myslink"
 Size: 0 Filetype: Regular File
 Mode: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Device: 8,6 Inode: 30 Links: 2
Access: Mon Jan 3 14:33:04 2000(00000.00:06:05)
Modify: Mon Jan 3 14:33:04 2000(00000.00:06:05)
Change: Mon Jan 3 14:33:25 2000(00000.00:05:44)

However, the symbolic link has an inode of its own, which is displayed using the -i option to ls:

ls -li my*
30 -rw-r--r-- 2 root root 0 Jan 3 14:33 myfile
30 -rw-r--r-- 2 root root 0 Jan 3 14:33 myhlink
41 lrwxrwxrwx 1 root root 6 Jan 3 14:33 myslink -> myfile

Here you can see that the directory entries for myfile and myhlink both point to inode 30, while the
directory entry for myslink points to inode 41. That inode contains the symbolic link to myfile.

As another example, consider the two filesystems in Figure 4-4. The root partition on /dev/sda1 holds a
file intended as an example bash startup file, located in /etc/bashrc_user. On the same filesystem, the
root user has elected to use /etc/bashrc_user. Not wanting to maintain both files individually, root has
created a hard link, /root/.bashrc, to the example file. Both of the directory entries, /etc/bashrc_user
and /root/.bashrc, point to the same text data in the same file, described by the same inode, on
/dev/sda1. User jdoe has also elected to link to the example file. However, since his home directory is
located in /home on /dev/sda9, jdoe cannot use a hard link to the file on /dev/sda1. Instead, he created
a symbolic link, /home/jdoe/.bashrc, which points to a small file on /dev/sda9. This contains the pointer
to directory entry /etc/bashrc_user, which finally points at the text. The result for root and jdoe is
identical, though the two styles of links implement the reference in completely different ways.

Figure 4-4. Hard and symbolic links

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-7.htm (4 of 6) [3/9/2003 11:14:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

4.7.1.1 Preserving links

Programs such as tar and cp contain options that control whether symbolic links are followed during
operation. In the case of a tar backup, this may be important if you have multiple links to large files,
because you would get many redundant backups of the same data.

When a symbolic link is encountered with cp , the contents of the file to which the link points are copied
unless the -d option is specified. This "no dereference" operator causes cp to copy the links themselves
instead. For example, consider a directory dir1 containing a symbolic link, which is recursively copied to
other directories with and without the -d option:

ls -l dir1
total 13
lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1
-rw-r--r-- 1 root root 10240 Dec 12 17:12 file2
cp -r dir1 dir2
ls -l dir2
total 3117
-rw-r--r-- 1 root root 3164160 Jan 4 02:43 file1
-rw-r--r-- 1 root root 10240 Jan 4 02:43 file2
cp -rd dir1 dir3
ls -l dir3
total 13
lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1
-rw-r--r-- 1 root root 10240 Jan 4 02:43 file2

Directory dir2 has a copy of the entire file1, which is large, probably wasting disk space. Directory dir3,
created with cp -rd, is the same as dir1 (including the symbolic link) and takes very little space.

4.7.1.2 Finding links to a file

Finding the file pointed to by a symbolic link is simple. The ls -l command displays a convenient pointer

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-7.htm (5 of 6) [3/9/2003 11:14:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

notation, indicating just where links are pointing:

lrwxrwxrwx 1 root root 19 Jan 4 02:43 file1 -> /file1

Going the other way and finding symbolic links to a file is less obvious but is still relatively easy. The -
lname option to the find utility locates them for you by searching for symbolic links containing the
original filename. Here, the entire local filesystem is searched for myfile, turning up three symbolic
links:

find / -lname myfile
/home/world/rootsfile
/home/finance/hisfile
/root/myslink

Remember that symbolic links could be anywhere, including being located on a remote system (if you're
sharing files), so you may not be able to locate them all. (SeeSection 3.1 for additional information on
the find command).

Since hard links aren't really links, but duplicate directory entries, you can locate them by searching
directory entries for the inode, which is identical in all the links. Unlike symbolic links, you are
guaranteed to find all of the links since hard links cannot cross filesystem boundaries. First, identify the
inode you're interested in, as well as the filesystem that contains the links:

df file1
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda9 1981000 451115 1427473 24% /home
ls -i file
90469 file1

Here, file1 is on the /home filesystem, and its inode number is 90469. Next, find is used with the -
inum option to locate all instances of inode 90469:

find /home -inum 90469
/home/world/file1
/home/finance/file1
/home/jdoe/private/.myfile1

This example turns up three links to file1, including one that user jdoe appears to be hiding!

On the Exam

You should be prepared to identify the differences between hard and symbolic links, when
each is used, and their limitations.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/04-7.htm (6 of 6) [3/9/2003 11:14:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 4. Devices, Linux Filesystems, and the
Filesystem Hierarchy Standard (Topic 2.4)

4.8 Objective 8: Find System Files and Place Files in the Correct Location

In 1993, the Linux community formed a project to provide a standardized filesystem layout for all
general-purpose distributions of Linux. The intent of this standardization was to provide advice on how
to create a low-maintenance filesystem, and to reduce the proliferation of proprietary Linux filesystem
layouts and their possible contribution to market fragmentation.

The project released a document describing the Linux Filesystem Standard, usually abbreviated
FSSTND, in 1994. The following year, the group began to reduce Linux-specific content and to refine the
standard to include other Unix or Unix-like operating systems. As the FSSTND attracted broader appeal,
it was renamed the Filesystem Hierarchy Standard, or FHS. Although the FHS is not a requirement of
Linux developers and distributors, the Linux community understands the importance of standards, and
all major distributions support the standard.

4.8.1 Data Types

In order to frame its recommendations, the FHS defines two categories of data use, each with two
opposing subtypes:

Data sharing

This category defines the scope of data use in a networked environment:

Sharable

Sharable data can be used by multiple host systems on a network. Sharable files contain general-purpose information,
without ties to any specific host. Examples include user datafiles, many executable program files, and common
configuration files such as hosts.

Non-sharable

Data is not sharable when linked to a specific host, such as a unique configuration file. Examples include the passwd file,
network configuration files, and system logs.

Data modification

This category specifies how data changes:

Variable

Data is considered variable when changed by natural, frequent processes. Examples include user files and system log
files, such as /var/log/messages.

Static

Static data is left alone for the most part, remaining the same from day to day or even year to year. Examples include
binary programs such as ls and bash, which change only when the system administrator performs an upgrade.

Some directories in the Linux filesystem are intended to hold specific types of data. For example, the

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (1 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

executable files in /usr are rarely changed, and thus could be defined as static because they are needed
by all users on a network. Before disks were as large as they are today, the files commonly found in
/usr were often mounted from remote servers to preserve local disk space. Thus, in addition to being
static, /usr is said to be sharable. Keeping files organized with respect to these attributes can simplify
file sharing, system administration, and backup complexity, as well as reduce storage requirements.
The FHS arranges the preceding data categories into a 2 x 2 matrix, as shown with a few example
directories in Table 4-6.

Table 4-6. FHS Data Types

Sharable Non-sharable

Static

/usr
/usr/local

/etc
/boot

Variable

/var/mail
/home

/var/log
/proc

On many networks, /usr and /usr/local are mounted by individual workstations from an NFS server. This
can save a considerable amount of local storage on the workstations. More important, placing these
directories on another system can make upgrades and additions much simpler. These directories are
usually shared as read-only filesystems because they are never modified by most end users. The
/var/mail and /home directories, on the other hand, are shared but must be changed regularly by users.
The /etc and /boot directories contain files that are static in the sense that only the administrator
changes them, but sharing them is not necessary or advised, since they are local configuration files. The
/var/log and /proc directories are very dynamic but also of local interest only.

4.8.2 The root Filesystem

The FHS offers a significant level of detail describing the exact locations of files, using rationale derived
from the static/variable and sharable/nonsharable definitions. However, knowledge of the location of
every file is not necessary or required for Exam 101. This section discusses the major portions of the
FHS directory hierarchy overall, with specific example files offered as illustrations.

While the FHS is a defining document for the Linux filesystem, it does not
follow that all directories described in the FHS will be present in all Linux
installations. Some directory locations cited in the FHS are package-
dependent or open to customization by the vendor.

The root filesystem is located at the top of the entire directory hierarchy. The FHS defines these goals
for the root filesystem:

● It must contain utilities and files sufficient to boot the operating system, including the ability to
mount other filesystems. This includes utilities, device files, configuration, boot loader
information, and other essential start-up data.

● It should contain the utilities needed by the system administrator to repair or restore a
damaged system.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (2 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

● It should be relatively small. Small partitions are less likely to be corrupted due to a system
crash or power failure than large ones are. In addition, the root partition should contain non-
sharable data to maximize the remaining disk space for sharable data.

● Software should not create files or directories in the root filesystem.

While a Linux system with everything in a single root partition may be created, doing so would not meet
these goals. Instead, the root filesystem should contain only essential system directories, along with
mount points for other filesystems. Essential root filesystem directories include:

/bin

The /bin directory contains executable system commands such as cp, date, ln, ls, mkdir, and
more. These commands are deemed essential to system administration in case of a problem.

/dev

Device files, necessary for accessing disks and other devices, are stored in /dev. Examples
include disk partitions, such as hda1, and terminals, such as tty1. Devices must be present at
boot time for proper mounting and configuration.

/etc

The /etc directory contains configuration information unique to the system and is required for

boot time. No binary executable programs are stored here.[9] Example files include passwd,
hosts, and login.defs.

[9] Prior practice in various versions of Unix had administrative executable programs
stored in /etc. These have been moved to /sbin under the FHS.

/lib

The /lib directory contains shared libraries and kernel modules, both essential for system
initialization.

/mnt

This directory is empty except for some mount points for temporary partitions, including cdrom
and floppy.

/root

The typical home directory for the superuser is /root . While it is not absolutely essential for
/root to be on the root filesystem, it is customary and convenient, because doing so keeps root's
configuration files available for system maintenance or recovery.

/sbin

Essential utilities used for system administration are stored in /sbin. Examples include fdisk,
fsck, and mkfs.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (3 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

The remaining top-level directories in the root filesystem are considered non-essential for emergency
procedures:

/boot

The /boot directory contains files for LILO. Because it is typically small, it can be left in the root
filesystem. However, it is often separated to keep the boot loader files within the first 1024
cylinders of a physical disk.

/home

The /home directory contains home directories for system users. This is usually a separate
filesystem and is often the largest variable filesystem in the hierarchy.

/opt

The /opt directory is intended for the installation of software other than that packaged with the
operating system. This is often the location selected by third-party software vendors for their
products.

/tmp

The /tmp directory is for the storage of temporary files. The contents are deleted upon every
system boot.

/usr

The /usr directory contains a significant hierarchy of executable programs deemed nonessential
for emergency procedures. It is usually contained in a separate partition. It contains sharable,
read-only data, and is often mounted locally read-only and shared via NFS read-only. /usr is
described in detail in the next section.

/var

Like /usr, the /var directory contains a large hierarchy and is usually contained in a separate
partition. It holds data that varies over time, such as logs, mail, and spools.

4.8.2.1 The /usr filesystem

The /usr filesystem hierarchy contains system utilities and programs that do not appear in the root
partition. For example, user programs such as awk, less, and tail are found in /usr/bin. /usr/sbin
contains system administration commands such as adduser and traceroute, and a number of
daemons needed only on a normally operating system. No host-specific or variable data is stored in
/usr. Also disallowed is the placement of directories directly under /usr for large software packages. An
exception to this rule is made for X11, which has a strong precedent for this location. The following
subdirectories can be found under /usr :

/usr/X11R6

This directory contains files for XFree86. Because X is deployed directly under /usr on many

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (4 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

Unix systems, X breaks the rule that usually prohibits a custom /usr directory for a software
package.

/usr/bin

The /usr/bin directory is the primary location for user commands that are not considered
essential for emergency system maintenance (and thus are stored here rather than in /bin).

/usr/games

It's unlikely that you'll find anything of significant interest here. This location was used for older
console (text) games and utilities.

/usr/include

/usr/include is the standard location for include or header files, used for C and C++
programming.

/usr/lib

This directory contains shared libraries that support various programs. FHS also allows the
creation of software-specific directories here. For example, /usr/lib/perl5 contains the standard
library of Perl modules that implement programming functions in that language.

/usr/local

/usr/local is the top level of another hierarchy of binary files, intended for use by the system
administrator. It contains subdirectories much like /usr itself, such as /bin, /include, /lib, and
/sbin. After a fresh Linux installation, this directory contains no files but may contain an empty
directory hierarchy. Example items that may be found here are locally created documents in
/usr/local/doc or /usr/local/man, and executable scripts and binary utilities provided by the
system administrator in /usr/local/bin.

/usr/sbin

The /usr/sbin directory is the primary location for system administration commands that are not
considered essential for emergency system maintenance (and thus are stored here rather than
in /sbin).

/usr/share

/usr/share contains a hierarchy of datafiles that are independent of, and thus can be shared
among, various hardware architectures and operating system versions. This is in sharp contrast
to architecture-dependant files such as those in /usr/bin. For example, in an enterprise that
uses both i386- and Alpha-based Linux systems, /usr/share could be offered to all systems via
NFS. However, since the two processors are not binary-compatible, /usr/bin would have two
NFS shares, one for each architecture.

The information stored in /usr/share is static data, such as the GNU info system files, dictionary
files, and support files for software packages.

/usr/src

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (5 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

/usr/src contains Linux source code, if installed. For example, if kernel development files are
installed, /usr/src/linux contains the complete tree of source and configuration files necessary to
build a custom kernel.

4.8.2.2 The /var filesystem

The /var filesystem contains data such as printer spools and log files that vary over time. Since variable
data is always changing and growing, /var is usually contained in a separate partition to prevent the
root partition from filling. The following subdirectories can be found under /var :

/var/account

Some systems maintain process accounting data in this directory.

/var/cache

/var/cache is intended for use by programs for the temporary storage of intermediate data, such
as the results of lengthy computations. Programs using this directory must be capable of
regenerating the cached information at any time, which allows the system administrator to
delete files as needed. Because it holds transient data, /var/cache never has to be backed up.

/var/crash

This directory holds crash dumps for systems that support that feature.

/var/games

Older games may use this directory to store state information, user score data, and other
transient items.

/var/lock

Lock files, used by applications to signal their existence to other processes, are stored here.
Lock files usually contain no data.

/var/log

The /var/log directory is the main repository for system log files, such as those created by the
syslog system. For example, the default system log file is /var/log/messages.

/var/mail

This is the system mailbox, with mail files for each user. /var/mail is a replacement for
/var/spool/mail and aligns FHS with many other Unix implementations. You may find that your
Linux distribution still uses /var/spool/mail.

/var/opt

This directory is defined as a location for temporary files of programs stored in /opt.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (6 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

/var/run

/var/run contains various files describing the present state of the system. All such files may be
deleted at system boot time. This is the default location for PID files, which contain the PIDs of
the processes for which they are named. For example, if the Apache web server, httpd, is
running as process number 534, /var/run/httpd.pid will contain that number:

cat /var/run/httpd.pid
534

Such files are needed by utilities that must be able to find a PID for a running process. Also located here
is the utmp file, used by commands such as last and who, to display logged-in users.

/var/spool

The /var/spool directory contains information that is queued for processing. Examples include
print queues, outgoing mail, and crontab files.

/var/state

The /var/state directory is intended to contain information that helps applications preserve state
across multiple invocations or multiple instances.

/var/tmp

As with /tmp in the root filesystem, /var/tmp is used for storage of temporary files. Unlike /tmp,
the files in /var/tmp are expected to survive across multiple system boots. The information
found in /var/tmp could be considered more persistent than information in /tmp.

/var/yp

This directory contains the database files of the Network Information Service (NIS), if
implemented. NIS was formerly known as the yellow pages (not to be confused with the big
yellow book).

Figure 4-5 depicts an example filesystem hierarchy. This figure is a graphical depiction of the
partitioning scheme listed in Table 4-1 earlier in this chapter. The root partition contains full directories
for /bin, /dev, /etc, /lib, /mnt, /root, and /sbin. Top-level directories /boot, /home, /opt, /tmp, /usr, and
/var exist on the root filesystem, but they are empty and act as mount points for other filesystems.

Figure 4-5. Example filesystem hierarchy

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (7 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

4.8.2.3 Linux annex

Since FHS migrated away from being a Linux-only document and expanded to cover other operating
systems, information specific to any one operating system was moved to an annex. The only annex
listed in v2.0 of FHS is the Linux annex, which mentions a few guidelines and makes allowances for the
placement of additional program files in /sbin. The Linux annex also mentions and supports the use of
the /proc filesystem for the processing of kernel, memory, and process information.

4.8.2.4 Where's that binary?

Compiled executable files, called binary files, or just binaries, can be located in a number of places in an
FHS-compliant filesystem. However, it's easy to become a little confused over why a particular
executable file is placed where it is in the FHS. This is particularly true for bin and sbin directories,
which appear in multiple locations. Table 4-7 lists these directories and shows how each is used.

Table 4-7. Binary File Locations

User Commands System Admininistration Commands

Vendor-supplied, essential (root
filesystem)

/bin /sbin

Vendor-supplied, nonessential (/usr
filesystem)

/usr/bin /usr/sbin

Locally supplied, nonessential (/usr
filesystem)

/usr/local/bin /usr/local/sbin

4.8.3 Locating Files

FHS offers the Linux community an excellent resource that assures consistency across distributions and
other operating systems. In practice, however, file location problems can be frustrating, and the need
arises to find files in the system quickly. These file location tools are required for Exam 101: which,

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (8 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

find, locate, updatedb, whatis, and apropos.

which uses the PATH variable to locate executable files. find searches specified areas in the filesystem.
updatedb, whatis, and apropos utilize databases to do quick searches to identify and locate files.
locate offers a quick alternative to find for filename searches and is suited for locating files that are not
moved around in the filesystem. Without a fresh database to search, locate is not suitable for files
recently created or renamed.

whatis and apropos work similarly to locate but use a different database. The whatis database is a
set of files containing short descriptions of system commands, created by makewhatis. Note that these
commands are not specifically mentioned in this Objective but may appear on Exam 101.

which

Syntax

which command

Description

Determine the location of command and display the full pathname of the executable program that the
shell would launch to execute it. which has no options.

Example

Determine the shell that would be started by entering the tcsh command:

which tcsh
/bin/tcsh

which is small and does only one thing: determines what executable program will be found and called
by the shell. Such a search is particularly useful if you're having trouble with the setup of your PATH
environment variable or if you are creating a new version of an existing utility and want to be certain
you're executing the experimental version.

find

Syntax

find paths expression

Description

Locate files that match an expression starting at paths and continuing recursively. The find command
has a rich set of expression directives for locating just about anything in the filesystem.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (9 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example

To find files by name located in the /usr directory hierarchy that might have something to do with the
csh shell or its variants, you might use the -name filename directive:

find /usr -name "*csh*"
/usr/bin/sun-message.csh
/usr/doc/tcsh-6.08.00
/usr/doc/tcsh-6.08.00/complete.tcsh
/usr/doc/vim-common-5.3/syntax/csh.vim
/usr/man/man1/tcsh.1
/usr/share/apps/ktop/pics/csh.xpm
/usr/share/apps/ktop/pics/tcsh.xpm
/usr/share/emacs/20.3/etc/emacs.csh
/usr/share/vim/syntax/csh.vim
/usr/src/linux-2.2.5/fs/lockd/svcshare.c

Some of these results are clearly related to csh or to tcsh, while others are questionable. In addition,
this command may take a while because find must traverse the entire /usr hierarchy, examining each
filename for a match. This example demonstrates that if filename wildcards are used, the entire string
must be quoted to prevent expansion by the shell prior to launching find.

find is among the most useful commands in the Linux administrator's toolkit and has a variety of useful
options. find is handy in certain cases. For example:

● You need to limit a search to a particular location in the filesystem.

● You must search for an attribute other than the filename.

● Files you are searching for were recently created or renamed, in which case locate may not be
appropriate.

Unfortunately, find can take a long time to run. Refer to Section 3.1for additional information on the
find command.

On the Exam

You should have a general understanding of find. Remember that by default, find prints
matching directory entries to the screen. However, detailed knowledge of find options and
usage are beyond the scope of LPIC Level 1 exams.

locate

Syntax

locate patterns

Description

Locate files whose names match one or more patterns by searching an index of files previously created.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (10 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example

Locate files by name in the entire directory hierarchy that might have something to do with the csh
shell or its variants:

locate "*csh*"
/home/jdean/.tcshrc
/root/.cshrc
/root/.tcshrc
/usr/bin/sun-message.csh
/usr/doc/tcsh-6.08.00
/usr/doc/tcsh-6.08.00/FAQ
/usr/doc/tcsh-6.08.00/NewThings
/usr/doc/tcsh-6.08.00/complete.tcsh
/usr/doc/tcsh-6.08.00/eight-bit.txt
/usr/doc/vim-common-5.3/syntax/csh.vim
/usr/man/man1/tcsh.1
/usr/share/apps/ktop/pics/csh.xpm
/usr/share/apps/ktop/pics/tcsh.xpm
/usr/share/emacs/20.3/etc/emacs.csh
/usr/share/vim/syntax/csh.vim
/usr/src/linux-2.2.5/fs/lockd/svcshare.c
/etc/csh.cshrc
/etc/profile.d/kde.csh
/etc/profile.d/mc.csh
/bin/csh
/bin/tcsh

The locate command must have a recent database to search, and that database must be updated
periodically to incorporate changes in the filesystem. If the database is stale, using locate yields a
warning:

locate tcsh
locate: warning: database /var/lib/slocate/slocate.db' is
 more than 8 days old

updatedb

Syntax

updatedb [options]

Description

Refresh (or create) the slocate database in /var/lib/slocate/slocate.db.

Option

-e directories

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (11 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

Exclude a comma-separated list of directories from the database.

Example

Refresh the slocate database, excluding files in temporary locations:

updatedb -e "/tmp,/var/tmp,/usr/tmp,/afs,/net,/proc"

updatedb is typically executed periodically via cron.

Some Linux distributions (Debian, for example) come with a version of updatedb that accepts
additional options that can be specified on the command line:

Additional options

-- netpaths='path1 path2 ...'

Add network paths to the search list.

-- prunepaths='path1 path2 ...'

Eliminate paths from the search list.

-- prunefs='filesystems ...'

Eliminate entire types of filesystems, such as NFS.

These options modify the behavior of updatedb on some Linux systems by prohibiting the parsing of
certain filesystem locations and by adding others. There are a few more of these options than those
listed here, but these three are special in that they can also be specified through the use of environment
variables set prior to updatedb execution. The variables are NETPATHS, PRUNEPATHS, and PRUNEFS.

These variables and the options to updatedb are discussed here because this Objective makes specific
mention of updatedb.conf, a sort of control file for updatedb. Despite its name, updatedb.conf isn't
really a configuration file, but rather a fragment of a Bourne shell script that sets these environment
variables. Example 4-2 shows a sample updatedb.conf file.

Example 4-2. Sample updatedb.conf File

This file sets environment variables used by updatedb
filesystems which are pruned from updatedb database:
PRUNEFS="NFS nfs afs proc smbfs autofs auto iso9660"
export PRUNEFS
paths which are pruned from updatedb database:
PRUNEPATHS="/tmp /usr/tmp /var/tmp /afs /amd /alex"
export PRUNEPATHS
netpaths which are added:
NETPATHS="/mnt/fs3"
export NETPATHS

In this example, the PRUNEFS and PRUNEPATHS variables cause updatedb to ignore types of

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (12 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

filesystems and particular paths, respectively. NETPATHS is used to add network paths from remote

directory /mnt/fs3.

updatedb.conf doesn't directly control updatedb, but eliminates the need for lengthy options on the
updatedb command line, which can make crontab files a bit cleaner.

On the Exam

Remember that updatedb does not require configuration to execute. On systems that
provide for configuration, updatedb.conf can specify a few extra options to updatedb by
way of environment variables.

whatis

Syntax

whatis keywords

Description

Search the whatis database for exact matches to keywords and display results.

Example

whatis mksw
mksw: nothing appropriate

apropos

Syntax

apropos keywords

Description

Search the whatis database for partial word matches to keywords and display results.

Example

apropos mksw
mkswap (8) - set up a Linux swap area

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (13 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

You must be familiar with the FHS concept and the contents of its major directories. Be
careful about the differences between (and reasons for) /bin and /sbin, root partition and
/usr partition, and locally supplied commands. Also practice with various file location
techniques and be able to differentiate among them.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/04-8.htm (14 of 14) [3/9/2003 11:14:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 5. Boot, Initialization, Shutdown, and
Runlevels (Topic 2.6)

5.1 Objective 1: Boot the System

It is the Linux Loader's (LILO) job to launch a Linux kernel or other operating system at boot time (LILO
configuration is described in Section 14.2. In some cases, that task requires the ability to deliver to the
Linux kernel certain information, which may be required to configure peripherals. This information is
sent using kernel parameters on the LILO command line.

5.1.1 Boot-Time Kernel Parameters

The Linux kernel has the capability to accept information at boot time in the form of a sort of command
line. The idea is similar to an argument list in name or name=value forms that might be specified for a
program. These values are used to supply the kernel with information that it may not be able to
determine on its own. Kernel parameters can also be used to override known values. In either case,

they convey vital information to hardware drivers compiled into the kernel.[2]

[2] Boot prompt arguments do not affect kernel modules.

Kernel parameters are entered either in the lilo configuration file or at the LILO prompt. For example,

to boot with a root partition other than the one specified in Example 4-1 (see Section 4.3), the user

could enter the following at the LILO prompt:

LILO: linux root=/dev/hda9

This command boots the kernel whose label is linux and overrides the default value of /dev/hda1 to

/dev/hda9 for the root filesystem.

On the Exam

There are far too many kernel parameters to list in this book. Consequently, you must
familiarize yourself with them in general terms so that you can answer questions on their
form. Remember that they are specified to LILO after a kernel image name, and that they
consist of either a single item, such as ro, or name=value pairs such as root=/dev/hda2.
Multiple parameters are space-separated.

There are many boot-time kernel parameters. While unlikely, depending upon your hardware
configuration and use of modules, you may need to use these parameters to specify resource settings
(such as I/O ports and interrupts) for hardware such as Ethernet or SCSI adapters. For detailed
information on these parameters, see the Linux /usr/doc/HOWTO/BootPrompt-HOWTO.

5.1.2 Introduction to Kernel Module Configuration

Modern Linux kernels are modular, in that modules of code traditionally compiled into the kernel (say, a
sound driver) are loaded as needed. The modules are separate from the kernel and can be inserted and

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/05-1.htm (1 of 3) [3/9/2003 11:14:58]

InformIT Online Books > LPI Linux Certification in a Nutshell

removed by the superuser if necessary. While parameters in the lilo configuration file and the lilo
command line affect the kernel, they do not control kernel modules.

To send parameters to a kernel module, they are inserted into the file /etc/conf.modules (
/etc/modules.conf on some Linux distributions) as text. Common module options you may find in your
module configuration file are I/O address, interrupt, and DMA channel settings for your sound device.
This file will also probably carry PCMCIA driver information when installed on laptops. Module
configuration will probably be handled by your distribution's installation procedure but may require
modifications if hardware is added or changed later. Example 5-1 shows a typical /etc/conf.modules file.

Example 5-1. A Typical /etc/conf.modules File

alias scsi_hostadapter aic7xxx
alias eth0 3c59x
alias parport_lowlevel parport_pc
pre-install pcmcia_core /etc/rc.d/init.d/pcmcia start
alias sound opl3sa2
pre-install sound insmod sound dmabuf=1
alias midi opl3
options opl3 io=0x388
options opl3sa2 mss_io=0x530 irq=5 dma=0 dma2=1 mpu_io=0x388
 io=0x370

On the Exam

Read questions that ask about kernel or module parameters carefully. Kernel options can be
passed on the LILO command line; module options are specified in conf.modules.

In this example, note first that an alias named sound is created for the audio driver opl3sa2. Further,
you can see that various I/O port, interrupt request (IRQ), and DMA channel settings are specified for
that driver. The installer determines the settings. Unless you're aware of a specific parameter or option
that needs to be sent to a specific kernel module, you probably won't need to change conf.modules.

5.1.2.1 Kernel boot-time messages

As the Linux kernel boots, it gives detailed status of its progress in the form of console messages.[3]
Modules that are loaded also yield status messages. These messages contain important information
regarding the health and configuration of your hardware. Generally, the kinds of messages you will see
are:

[3] These messages may take users used to other, less verbose, operating
systems by surprise due to their detailed nature. You'll learn a lot about
your hardware by booting a Linux kernel.

● Kernel identification

● Memory and CPU information

● Information on detected hardware, such as pointers (mice), serial ports, and disks

● Partition information and checks

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/05-1.htm (2 of 3) [3/9/2003 11:14:58]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Network initialization

● Kernel module output for modules that load at boot time

These messages are displayed on the system console at boot time but often scroll off the screen too fast
to be read. The messages are also logged to disk. They can easily be viewed using the dmesg
command, which displays messages logged at the last system boot. For example, to view messages
from the last boot sequence, simply pipe the output of dmesg to less:

dmesg | less

It is also common to use dmesg to dump boot messages to a file for later inspection or archive, by
simply redirecting the output:

dmesg > bootmsg.txt

For more information on the Linux kernel, including the compilation and
installation of a new kernel and modules, see Chapter 15.

5.1.2.2 Reviewing system logs

In addition to kernel messages, many other boot-time messages will be logged using the syslog system.
Such messages will be found in the system log files such as /var/log/messages. For example, dmesg
displays information on your network adapter when it was initialized. However, the configuration and
status of that adapter is logged in /var/log/messages as a result of the network startup. When
examining and debugging boot activity on your system, you need to review both kinds of information.
syslog, its configuration, and log file examination are covered in Section 7.3.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/05-1.htm (3 of 3) [3/9/2003 11:14:58]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 14. Linux Installation and Package
Management (Topic 2.2)

14.2 Objective 2: Install a Boot Manager

While it is possible to boot Linux from a floppy disk, most Linux installations boot from the computer's

hard disk.[2] This is a two-step process that begins after the system BIOS is initialized and ready to run
an operating system. Starting Linux consists of the following two basic phases:

[2] This isn't to say that you can't boot from other media such as floppies --
many people do.

Run lilo from the boot disk

It is Linux loader's (LILO's) job to find the selected kernel and get it loaded into memory,
including any user-supplied options.

Launch the Linux kernel and start processes

LILO starts the loaded kernel. LILO's job at this point is complete and the hardware is placed
under the control of the running kernel, which sets up shop and begins running processes.

14.2.1 LILO

The Linux Loader (LILO) is a small utility designed to load the Linux kernel (or the boot sector of
another operating system) into memory and start it. A program that performs this function is commonly
called a boot loader. While other boot loaders exist, LILO is the most popular and is installed as the
default boot loader on most Linux distributions. LILO consists of two parts:

The boot loader

This part of LILO is a two-stage program intended to find and load a kernel.[3] The first stage
of LILO usually resides in the Master Boot Record (MBR) of the hard disk. This is the code that is
started at boot time by the system BIOS. It locates and launches a second, larger stage of the
boot loader that resides elsewhere on disk. The second stage offers a user prompt to allow boot-
time and kernel image selection options, finds the kernel, loads it into memory, and launches it.

[3] It's a two-stage operation because the boot sector of the disk is too small to hold the
entire boot loader program. The code located in the boot sector is compact because its
only function is to launch the second stage, which is the interactive portion.

The lilo command

Also called the map installer, lilo is used to install and configure the LILO boot loader. The lilo
command reads a configuration file, which describes where to find kernel images, video
information, the default boot disk, and so on. It encodes this information along with physical

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-2.htm (1 of 4) [3/9/2003 11:14:58]

InformIT Online Books > LPI Linux Certification in a Nutshell

disk information and writes it in files for use by the boot loader.

14.2.1.1 The boot loader

When the system BIOS launches, LILO presents you with the following prompt:

LILO:

The LILO prompt is designed to allow you to select from multiple kernels or operating systems installed

on the computer and to pass parameters to the kernel when it is loaded. Pressing the Tab key at the
LILO prompt yields a list of available kernel images. One of the listed images will be the default as
designated by an asterisk next to the name:

LILO: <TAB>
linux* linux_586_smp experimental

Under many circumstances, you won't need to select a kernel at boot time because LILO will boot the
kernel configured as the default during the install process. However, if you later create a new kernel,
have special hardware issues, or are operating your system in a dual-boot configuration, you may need
to use some of LILO's options to load the kernel or operating system you desire.

14.2.1.2 The LILO map installer and its configuration file

Before any boot sequence can complete from your hard disk, the boot loader and associated information
must be installed by the LILO map installer utility. The lilo command writes the portion of LILO that
resides in the MBR, customized for your particular system. Your installation program will do it, then
you'll repeat it manually if you build a new kernel yourself.

lilo

Syntax

lilo [options]

The lilo map installer reads a configuration file and writes a map file, which contains information
needed by the boot loader to locate and launch Linux kernels or other operating systems.

Frequently used options

-C config_ file

Read the config_ file file instead of the default /etc/lilo.conf.

-m map_file

Write map_ file in place of the default as specified in the configuration file.

-q

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-2.htm (2 of 4) [3/9/2003 11:14:58]

InformIT Online Books > LPI Linux Certification in a Nutshell

Query the current configuration.

-v

Increase verbosity.

LILO's configuration file contains options and kernel image information. An array of options is available.
Some are global, affecting LILO overall, while others are specific to a particular listed kernel image.
Most basic Linux installations use only a few of the configuration options. Example 14-1 shows a simple
LILO configuration file.

Example 14-1. Sample /etc/lilo.conf File

boot = /dev/hda
timeout = 50
prompt
read-only
map=/boot/map
install=/boot/boot.b
image = /boot/vmlinuz-2.2.5-15
 label = linux
 root = /dev/hda1

Each of these lines is described in the following list:

boot

The boot directive tells lilo the name of the hard disk partition device that contains the boot
sector. For PCs with IDE disk drives, the devices will be /dev/hda, /dev/hdb, and so on.

timeout

The timeout directive sets the timeout in tenths of a second (deciseconds) for any user input
from the keyboard. To enable an unattended reboot, this parameter is required if the prompt

directive is used.

prompt

This directive instructs the boot loader to prompt the user. This behavior can be stimulated
without the prompt directive if the user holds down the Shift, Ctrl, or Alt key when LILO starts.

read-only

This directive specifies that the root filesystem should initially be mounted read-only. Typically,
the system startup procedure will remount it later as read/write.

map

The map directive specifies the location of the map file, which defaults to /boot/map.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-2.htm (3 of 4) [3/9/2003 11:14:58]

InformIT Online Books > LPI Linux Certification in a Nutshell

install

The install directive specifies the file to install as the new boot sector, which defaults to
/boot/boot.b.

image

An image line specifies a kernel image to offer for boot. It points to a specific kernel file. Multiple
image lines may be used to configure LILO to boot multiple kernels and operating systems.

label

The optional label parameter is used after an image line and offers a label for that image. This
label can be anything and generally describes the kernel image. Examples include linux, or

perhaps smp for a multiprocessing kernel.

root

This parameter is used after each image line and specifies the device to be mounted as root for
that image.

There is more to configuring and setting up LILO, but a detailed knowledge of LILO is not required for
this LPI Objective. It is important to review one or two sample LILO configurations to make sense of the
boot process. A discussion on using LILO to boot multiple kernels is presented in Chapter 15.

14.2.1.3 LILO locations

During installation, LILO can be placed either in the boot sector of the disk or in your root partition. If
the system is intended as a Linux-only system, you won't need to worry about other boot loaders, and
LILO can safely be placed into the boot sector. However, if you're running another operating system

such as Windows, you should place its boot loader in the boot sector.[4]

[4] Multiple-boot and multiple-OS configurations are beyond the scope of
the LPIC Level 1 exams.

On the Exam

It is important to understand the distinction between lilo, the map installer utility run
interactively by the system administrator, and the boot loader, which is launched by the
system BIOS at boot time. Both are parts of the LILO package.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-2.htm (4 of 4) [3/9/2003 11:14:58]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 7. Administrative Tasks (Topic 2.11)

7.3 Objective 3: Configure and Use System Log Files

Many events occur on your Linux system that should be logged for administrative purposes. Linux uses
the syslog system to display and record messages describing these events. This system allows finely
controlled logging of messages from the kernel as well as processes running on your system and remote
systems. Messages can be placed on the console display, in log files, and on the text screens of users
logged in to the system.

7.3.1 Configuring syslog

The behavior of syslog is controlled by its configuration file, /etc/syslog.conf. This text file contains
lines indicating what is to be logged and where. Each line contains directives in this form:

facility.level action

The directives are defined as follows:

facility

This represents the creator of the message (that is, the kernel or a process) and is one of the
following: auth, authpriv, cron, daemon, kern, lpr, mail, mark, news, syslog,
user,orlocal0throughlocal7. The use of these facility designators allows you to control the
destination of messages based on their origin. Facilities local0 through local7 are for any use

you may wish to assign to them in your own programs and scripts.[6]

[6] It's possible that your distribution has assigned one or more of the local facilities
already. Check your configuration before using a local facility.

level

Specifies a severity threshold beyond which messages are logged, and is one of the following
(from lowest to highest severity): debug, info, notice, warning, err, crit, alert, oremerg. There is
also a special level called none that will disable a facility. The level defines the amount of detail
recorded in the log file. A single period separates the facility from the level, and together they
comprise the message selector. The asterisk (*) can be used to describe all facilities or all
levels.

action

The action directive is arguably misnamed. It represents the destination for messages that
correspond to a given selector (facility.level). The action can be a filename (including the full
pathname), a hostname preceded by the @ sign, or a comma-separated list of users or asterisk
(this means all logged-in users will be included). The action is to send the message to the
specified destination.

For example, if you wanted to create a separate log file for activity reported by the scripts you write,

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-3.htm (1 of 5) [3/9/2003 11:14:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

you might include a line like this in /etc/syslog.conf :

Define a new log file for the local5 facility
local5.* /var/log/local5

You could then use the logger utility to write messages to the facility from your shell script:[7]

[7] syslog must be restarted or signaled to reinitialize before the new log
file is created.

$ logger -p local5.info "Script terminated normally"

The message "Script terminated normally" would be placed into /var/log/local5, along with a timestamp
and the hostname that sent the message. Example 7-3 contains an example /etc/syslog.conf file.

Example 7-3. Sample /etc/syslog.conf File

Log everything except mail & authpriv of level info
or higher to messages
*.info;mail.none;authpriv.none /var/log/messages

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail.* /var/log/maillog

Everybody gets emergency messages
*.emerg *

Save boot messages also to boot.log
local7.* /var/log/boot.log

On the Exam

If you're not yet familiar with syslog, spend some time with it, modifying /etc/syslog.conf
and directing messages to various files. An understanding of syslog is critical because so
many programs depend on it.

If you examine this syslog.conf file, you'll see that nearly all system messages are sent to the
/var/log/messages file via the *.info message selector. In this case, the asterisk directs syslog to send
messages from all facilities except mail and authpriv, which are excluded using the special none level.

The /var/log/messages file is the default system message destination, and you will consult it frequently
for information on processes running (or failing to run) and other events on your system. In this
example, the low severity level of info is used for the messages file, which logs all but debugging

messages. On heavily loaded servers, this may result in an unwieldy file size due to message volume.
Depending upon your available disk space, you may choose to save less information by raising the level
for the messages file.

7.3.2 Log File Rotation

Most distributions will install a default syslog configuration for you, including logging to messages and

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-3.htm (2 of 5) [3/9/2003 11:14:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

other log files in /var/log. To prevent any of these files from growing unattended to extreme sizes, a log
file rotation scheme should be installed as well. The cron system issues commands on a regular basis
(usually once per day) to establish new log files; the old files are renamed with numeric suffixes (see
Objective 4 for more on cron). With this kind of rotation, yesterday's /var/log/messages file becomes
today's messages.1, and a new messages file is created. The rotation is configured with a maximum
number of files to keep, and the oldest log files are deleted when the rotation is run.

The utility that establishes the rotation is logrotate. This privileged command is configured using one
or more files, which are specified as arguments to the logrotate command. These configuration files
can contain directives to include other files as well. The default configuration file is /etc/logrotate.conf.
Example 7-4 depicts an example logrotate.conf file.

Example 7-4. Sample /etc/logrotate.conf File

global options
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

send errors to root
errors root

create new (empty) log files after rotating old ones
create

compress log files
compress

specific files

/var/log/wtmp {
 monthly
 create 0664 root utmp
 rotate 1
}

/var/log/messages {
 postrotate
 /usr/bin/killall -HUP syslogd
 endscript
}

This example specifies rotations for two files, /var/log/wtmp and /var/log/messages. Your configuration
will be much more complete, automatically rotating all log files on your system. A complete
understanding of logrotate configuration is not necessary for LPIC Level 1 exams, but you must be
familiar with the concepts involved. See the logrotate manpages for more information.

7.3.3 Examining Log Files

You can learn a lot about the activity of your system by reviewing the log files it creates. At times, it will
be necessary to debug problems using logged information. Since most of the log files are plain text, it is
very easy to review their contents with tools such as tail, less, and grep.

syslog stores the messages it creates with the following information, separated by (but also including)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-3.htm (3 of 5) [3/9/2003 11:14:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

spaces:

● Date/time

● Origin hostname

● Message sender (such as kernel, sendmail, or a username)

● Message text

Typical messages will look like this:

Dec 8 10:41:23 smp kernel: Symbols match kernel
 version 2.2.5.
Dec 8 10:41:23 smp kernel: Loaded 182 symbols
 from 12 modules.
Dec 8 10:50:19 smp kernel: Kernel logging (proc) stopped.
Dec 8 10:50:19 smp kernel: Kernel log daemon terminating.

In this case, smp is the hostname, and the messages are coming from the kernel. At any time you can

review the entire contents of your log files using less:

less /var/log/messages

You can then page through the file. This is a good way to become familiar with the types of messages
you'll see on your system. To actively monitor the output to your messages file, you could use tail:

tail -f /var/log/messages

This might be useful, for example, to watch system activity as an Internet connection is established via
modem. To look specifically for messages regarding your mouse, you might use grep:

grep '[Mm]ouse' /var/log/messages
Dec 8 00:15:28 smp kernel: Detected PS/2 Mouse Port.
Dec 8 10:55:02 smp gpm: Shutting down gpm mouse services:

Often, if you are using grep to look for a particular item you expect to find in /var/log/messages, you
will need to search all of the rotated files with a wildcard. For example, to look for all messages from
sendmail, you may issue a command like this:

grep 'sendmail:' /var/log/messages*

When you note problems in log files, look at the hostname and sender of the message first, then the
message text. In many cases, you will be able to determine what is wrong from the message.
Sometimes the messages are only clues, so a broader review of your logs may be necessary. In this
case, it may be helpful to temporarily turn on more messaging by using the debug level in
/etc/syslog.conf to help yield additional information that can lead you to the problem.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-3.htm (4 of 5) [3/9/2003 11:14:59]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-3.htm (5 of 5) [3/9/2003 11:14:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 5. Boot, Initialization, Shutdown, and
Runlevels (Topic 2.6)

5.2 Objective 2: Change Runlevels and Shutdown or Reboot the System

As mentioned in the introduction, Linux and many Unix systems share the concept of runlevels. This
concept specifies how a system is used by controlling which services are running. For example, a
system that operates a web server program is configured to boot and initiate processing in a runlevel
designated for sharing data, at which point the web server is started. However, the same system would
not run the web server in a runlevel used for emergency administration, when all but the most basic
services are shut down.

Runlevels are specified by the integers through 6 as well as a few single characters. Runlevels and 6 are
unusual in that they specify the transitional states of shutdown and reboot, respectively. By instructing
Linux to enter runlevel 0, it begins a clean shutdown procedure. Similarly, the use of runlevel 6 begins a
reboot. The remaining runlevels differ in meaning slightly among Linux distributions and other Unix
systems.

When a Linux system boots, the init process is responsible for taking the system to the default runlevel,
which is usually either 3 or 5. Typical runlevel meanings are listed in Table 5-1.

Table 5-1. Typical Runlevels

Runlevel Description

0

Halt the system; runlevel is a special transitional device used by administrators to shut down
the system quickly. This, of course, shouldn't be a default runlevel, because the system
would never come up -- it would shutdown immediately when the kernel launches the init
process. Also see runlevel 6.

1, s, S
Single-user mode, sometimes called "maintenance mode." In this mode, system services
such as network interfaces, web servers, and file sharing are not started. This mode is
usually used for interactive filesystem maintenance.

2 Multiuser with no NFS file sharing.

3 Full multiuser mode. This is often used as the default runlevel by the init process.

4 Typically unused.

5

Full multiuser mode with GUI login. In runlevel 3, init does not attempt to launch the X11
system. In runlevel 5, X11 is started and the text-mode login is replaced with a GUI login.
This is often used as the default runlevel but can cause problems if X11 cannot start for
some reason.

6
Reboot the system; used by system administrators. Just like runlevel 0, this is a transitional
device for administrators. It shouldn't be a default runlevel because the system would
eternally reboot.

5.2.1 Single-User Mode

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/05-2.htm (1 of 8) [3/9/2003 11:15:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

Runlevel 1, the single-user runlevel,[4] is a bare-bones operating environment intended for system
maintenance. In single-user mode, remote logins are disabled, networking is disabled, and most
daemons are shut down. One common reason you might be forced to use single-user mode is to correct
problems with a corrupt filesystem that the system cannot handle automatically. Single-user mode is
also used for the installation of software and other system configuration tasks that must be performed
with no user activity.

[4] Runlevel 1 can also be specified using S or s. The three designations are
equivalent.

If you wish to boot directly into single-user mode, you may specify it at boot time at the LILO prompt.

After entering your kernel image name, give the argument single or simply the numeral 1. These
arguments are not interpreted as kernel arguments but are instead passed along to the init process.
For example, if your kernel image is named "linux," these commands would take the system to single-
user mode, bypassing the default:

LILO: linux single

or:

LILO: linux 1

To switch into single-user mode from another runlevel, you can simply issue a runlevel change
command with init:

init 1

If others are using resources on the system, they will be unpleasantly surprised, so be sure to give
users plenty of warning before doing this. To change from the text-mode login to the X login screen,
simply initiate the X-enabled runlevel, usually 5:

init 5

On the Exam

Make certain that you understand the use of the transitional runlevels and 6, the single-user
runlevel, and the difference between GUI and text login configurations. You should also be
prepared to demonstrate how to change the runlevel of a running system.

If X is configured improperly, starting the X login screen will lead to problems because X may die. It will
be automatically restarted, and this will go on in an infinite loop until you reconfigure X. It is important

to be sure X is working correctly before attempting the GUI logon.[5]

[5] The X Window System is described in Chapter 18.

5.2.1.1 Overview of the /etc/rc.d directory tree and the init process

By themselves, the runlevels listed in Table 5-1 don't mean much. It's what the init process does as a
result of a runlevel specification or change that affects the system. The actions of init for each runlevel
are derived from Unix System V-style initialization and are specified in a series of directories and script

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/05-2.htm (2 of 8) [3/9/2003 11:15:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

files under /etc/rc.d.

When a Linux system starts, a number of scripts in /etc/rc.d are used to initially configure the system

and switch among runlevels:[6]

[6] System initialization techniques differ among Linux distributions. The
examples here are typical of a Red Hat Linux system.

rc.sysinit

This file is a script launched by init at boot time. It handles some essential chores to ready the
system for use, such as mounting filesystems.

rc.local

This file is a script that is called by rc.sysinit. It contains local customizations affecting system
startup and provides an alternative to modifying rc.sysinit. Many administrators prefer to avoid
changing rc.sysint because those changes could be lost during a system upgrade. The contents
of rc.local are not lost in an upgrade.

rc

This file is a script that is used to change between runlevels.

The job of starting and stopping system services such as web servers is handled by the files and
symbolic links in /etc/rc.d/init.d and by a series of runlevel-specific directories, rc0.d through rc6.d :

init.d

This directory contains individual startup/shutdown scripts for each service on the system. For
example, the script /etc/rc.d/init.d/httpd is a Bourne shell script that safely starts or stops the
Apache web server. These scripts have a standard basic form and take a single argument. Valid
arguments are at least the words start and stop. Additional arguments are sometimes required
by the script; examples are restart, status, and sometimes reload (to ask the service to
reconfigure itself without exiting). Administrators can use these scripts directly to start and stop
services. For example, to restart Apache, an administrator could issue commands like these:

/etc/rc.d/init.d/httpd stop
/etc/rc.d/init.d/httpd start

or simply:

/etc/rc.d/init.d/httpd restart

Either form would completely shut down and start up the web server. To ask Apache to remain
running but reread its configuration file, you might enter:

/etc/rc.d/init.d/httpd reload

This has the effect of sending the SIGHUP signal to the running httpd process, instructing it to

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/05-2.htm (3 of 8) [3/9/2003 11:15:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

initialize.[7]

[7] Signals such as SIGHUP are covered in Section 3.5.

If you add a new service (a daemon, intended to always run in the background), one of these
initialization files may be installed automatically for you. In other cases, you may need to create one
yourself, or as a last resort, place startup commands in the rc.local file.

Directories rc0.d through rc6.d

The initialization scripts in /etc/rc.d/init.d are not directly executed by the init process. Instead,

each of the directories /etc/rc.d/rc0.d through rc6.d contain symbolic (soft) links[8] to the
scripts in directory init.d. When the init process enters runlevel n, it examines all of the links in
the associated rcn.d directory. These links are given special names in the form of [K|S][nn

][init.d_name], described as follows:

[8] These symbolic links could also be files, but using script files in each of the directories
would be an administrative headache, as changes to any of the startup scripts would
mean identical edits to multiple files.

K and S prefixes

The K and S prefixes mean kill and start, respectively. A runlevel implies a state in which certain services are running and all
others are not. The S prefix is used for all services that are to be running (started) for the runlevel. The K prefix is used for all
other services, which should not be running.

nn

Sequence number. This part of the link name is a two-digit integer (with a leading zero, if necessary). It specifies the relative order
for services to be started or stopped. The lowest number is the first link executed by init, and the largest number is the last. There
are no hard-and-fast rules for choosing these numbers, but it is important when adding a new service to be sure that it starts after
any other required services are already running. If two services have an identical start order number, the order is indeterminate but
probably alphabetical.

init.d_name

By convention, the name of the script being linked is used as the last part of the link name. init does not use this name, but
excluding it makes things difficult for human readers.

As an example, when init enters runlevel 3 at boot time, all of the links with the S prefix in
/etc/init.d/rc3.d will be executed in the order given by their sequence number. They will be run with the
single argument start to launch their respective services. After the last of the scripts is executed, the
requirements for runlevel 3 are satisfied.

5.2.1.2 Setting the default runlevel

To determine the default runlevel at boot time, init reads the configuration file /etc/inittab looking for a
line containing the word initdefault, which will look like this:

id:n:initdefault:

In the preceding, n is a valid runlevel number, such as 3. This number is used as the default runlevel by

init. The S scripts in the corresponding /etc/rc.d/rc n.d directory are executed to start their respective

services. If you change the default runlevel for your system, it will most likely be to switch between the
standard text login runlevel and the GUI login runlevel. In any case, never change the default runlevel
to or 6, or your system will not boot to a usable state.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/05-2.htm (4 of 8) [3/9/2003 11:15:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

5.2.1.3 Determining your system's runlevel

From time to time, you may be unsure just what runlevel your system is in. For example, you may have
logged into a Linux system from a remote location and not know how it was booted or maintained. You
may also need to know what runlevel your system was in prior to its current runlevel -- perhaps
wondering if the system was last in single-user mode for maintenance.

To determine this runlevel information, use the runlevel command. When executed, runlevel displays
the previous and current runlevel as integers, separated by a space, on standard output. If no runlevel
change has occurred since the system was booted, the previous runlevel is displayed as the letter N. For
a system that was in runlevel 3 and is now in runlevel 5, the output is:

runlevel
3 5

For a system with a default runlevel of 5 that has just completed booting, the output would be:

runlevel
N 5

On the Exam

Determining the present and previous runlevel -- including the correct interpretation of the
N response in the output from runlevel -- is important.

runlevel does not alter the system runlevel. To do this, use either the init or the telinit commands.

5.2.2 Changing runlevels with init and telinit

The init process is the "grandfather" of all processes. If used as a command on a running system, init
sends signals to the executing init process, instructing it to change to a specified runlevel. You must be
logged in as the superuser to use the init command.

init

Syntax

init n

Description

The number of the runlevel, n, can be changed to an integer from through 6 or with the letter
arguments S, s, or q. The numeric arguments instruct init to switch to the specified runlevel. The S and
s runlevels are equivalent to runlevel 1. The q argument is used to tell init to reread its configuration
file, /etc/inittab.

Examples

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/05-2.htm (5 of 8) [3/9/2003 11:15:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

Shut down immediately:

init 0

Reboot immediately:

init 6

Go to single-user mode immediately:

init 1

or:

init s

The telinit command may be used in place of init. telinit is simply a hard link to init, and the two may
be used interchangeably.

Generally, you will use a runlevel change for the following reasons:

● To shut down the system using runlevel 0.

● To go to single-user mode using runlevel 1.

● To reboot the system using runlevel 6.

● To switch between text-based and X11 GUI login modes, usually runlevels 3 and 5, respectively.

On the Exam

Remember that init and telinit can be used interchangeably, since they both point to the
same file.

If you are working on a personal Linux workstation with no logged-in users, shared files, or other
shared resources, changing the state of your system is pretty much at your discretion. You're aware of
the important processes that are active and will surely save your work before any runlevel change. You
can then simply direct init to change the runlevel as desired. However, if you are working on a system
acting as a file or web server, or some other public resource, changing a runlevel without notification
could be a disaster for other users. It is imperative to notify users before any major system changes are
made. Using init to shutdown the system doesn't automatically provide this courtesy, and in these
situations the shutdown command is preferred.

5.2.3 System shutdown with shutdown

When shutdown is initiated, all users who are logged into terminal sessions are notified that the
system is going down. In addition, further logins are blocked to prevent new users from entering the
system as it is being shut down.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/05-2.htm (6 of 8) [3/9/2003 11:15:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

shutdown

Syntax

shutdown [options] time [warning message]

Description

The shutdown command brings the system down in a secure, organized fashion. By default,
shutdown takes the system to single-user mode. Options can be used to either halt or reboot instead.
The command uses init with an appropriate runlevel argument to affect the system change.

The mandatory time argument tells the shutdown command when to initiate the shutdown procedure. It
can be a time of day in the form hh:mm, or it can be in the form +n, where n is a number of minutes to
wait. The time can also be the word now, in which case the shutdown proceeds immediately. If the time
specified is more than 15 minutes away, shutdown waits until 15 minutes remain before shutdown
before making its first announcement.

If warning message (a text string) is provided, it is used in the system's announcements to end users.
No quoting is necessary for warning message unless the message includes special characters such as *
or &.

Frequently used options

-f

Fast boot; this skips filesystem checks on the next boot.

-F

Force filesystem checks on the next boot.

-h

Halt after shutdown.

-k

Don't really shutdown, but send the warning messages anyway.

-r

Reboot after shutdown.

Examples

To reboot immediately:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/05-2.htm (7 of 8) [3/9/2003 11:15:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

shutdown -r now

To reboot in five minutes with a maintenance message:

shutdown -r +5 System maintenance is required

To halt the system just before midnight tonight:

shutdown -h 23:59

The two most common uses of shutdown by individuals are:

shutdown -h now

and

shutdown -r now

These initiate for immediate halts and reboots, respectively. Although it's not really a bug, the
shutdown manpage notes that omission of the required time argument yields unusual results. If you
do forget the time argument, shutdown will probably exit without an error message. This might lead
you to believe that a shutdown is starting, so it's important to be sure of your syntax when using
shutdown.

On the Exam

Make certain that you are aware of the differences between system shutdown using init
(and its link telinit) and shutdown.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/05-2.htm (8 of 8) [3/9/2003 11:15:01]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 18. X (Topic 2.10)

Unix has a long history of utility that predates the popular demand for a graphical user interface (GUI).
However, a GUI is an essential part of running small systems today, and the standard GUI on Linux
systems is the X Window System, or more simply, X. Originally developed at MIT and Digital Equipment
Corporation, X's current release is Version 11 Release 6. This version is more commonly referred to as
X11R6, or just X11. X is a complete windowing GUI and is distributable under license without cost. The
implementation of X for Linux is XFree86 (http://www.xfree.org/), which is available for multiple
computer architectures and is released under the GNU Public License. This section covers these four
Objectives on XFree86 for LPI Exam 102:

Objective 1: Install and Configure XFree86

Most distributions install XFree86 when Linux is installed, but a number of the configuration
details are important for Exam 102. This Objective covers X servers, fonts, and automated
XFree86 configuration tools. Weight: 4.

Objective 2: Set Up xdm

This Objective covers the X display manager, a graphical login system. Weight: 1.

Objective 3: Identify and Terminate Runaway X Applications

Sometimes an X application becomes unresponsive or fails to terminate normally. This Objective
mentions methods to cope with these situations. Weight: 1

Objective 4: Install and Customize a Window Manager Environment

This Objective covers the selection and customization of X window managers, including menus,
X terminals, X library issues, and a number of control files. Weight: 4.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/18-0.htm [3/9/2003 11:15:02]

http://www.xfree.org/
http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 6. Documentation (Topic 1.8)

6.1 Objective 1: Use and Manage Local System Documentation

Each Linux system is configured out of the box with extensive documentation from programmers,
authors, and other contributors. Some of this documentation is formal while some is quite informal.
Combined, this documentation offers a comprehensive body of knowledge for Linux users.

6.1.1 Text and Paging

At a fundamental level, documents stored electronically may be encoded in a bewildering variety of
formats. For example, most word processors use proprietary file formats to store characters, text
formatting, and printing control languages such as Adobe PostScript to manage printer hardware. While
these relatively modern features can be found on Linux systems, most of the documents and
configuration files are in plain text.

In the context of Linux systems, "plain text" means files or streams of both printable characters and
control characters. Each is represented using a standard encoding scheme, such as the American
Standard Code for Information Interchange (ASCII) and its relatives. Text files are most conveniently
viewed using a paging program.

6.1.1.1 Paging programs

The most popular pager for Unix systems was once the more command, so named because it gave you
"one more screen." more exists on Linux systems and probably every recent Unix variant; however,
more is somewhat limited in its capability. The less command (so named because, of course, "less is
more!") is more commonly used. The less command is a full-featured text pager that emulates more
but offers an extended set of capabilities.

One particularly important feature of less is that it does not read all of its input before starting, which
makes it faster for large input than an editor. less also offers many useful features and is available for
almost every operating environment.

less begins execution by first examining the environment in which it is running. It needs to know some
things about the terminal (or window) in which its output will be displayed. Once that's known, less
formats the text and displays the first screen's output. The last line of the screen is reserved for user
interaction with the program. less will display a colon on the first column of the last line and leave the
cursor there. This colon is a command prompt, awaiting command input from the user. Most commands
to less are single-character entries, and less will act upon them immediately and without a subsequent
carriage return (this is known as cbreakmode). The most basic command to less (and more) is a single
space, which instructs the pager to move ahead in the text by one screen. Table 6-1 lists commonly
used less commands.

Table 6-1. Commonly Used less Commands

Command Description

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-1.htm (1 of 9) [3/9/2003 11:15:04]

InformIT Online Books > LPI Linux Certification in a Nutshell

Space Scroll forward one screen.
D

Scroll forward one-half screen.

Return Scroll forward one line.
B

Scroll backward one screen.

U
Scroll backward one-half screen.

Y
Scroll backward one line.

g
Go to the beginning of the text (could be slow with large amounts of text).

G
Go to the end of the text (could be slow with large amounts of text).

/pattern Search forward for pattern, which can be a regular expression.

?pattern Search backward for pattern, which can be a regular expression.

H
Display a help screen.

:n
Display next file from command line (two-character command).

:p
Display previous file from command line (two-character command).

less has a rich command set, and its behavior can be modified as needed for your use. See the less
manpage for further details.

Pagers are important to the topic of manpages because they provide the user with an interface to the
man program. For each man command you enter, the man program works quietly to locate a manual
page (or pages) to match your query, then displays the result using a pager.

6.1.2 The man Facility

Traditional computer manuals covered everything from physical maintenance to programming libraries.
While the books were convenient, many users didn't always want to dig through printed documentation.
So, as space became available, the man (for manual) facility was created to put the books on the
system, allowing users immediate access to the information they needed.

There is a manpage for most commands on your system. There are also manpages for important files,
library functions, shells, languages, devices, and other features. The man facility is to your system what
a dictionary is to your written language. That is, nearly everything is defined in exacting detail, but you
probably need to know in advance just what you're looking for. Manpages are generally written for
those who already have an idea of what the item in question does, but regardless of your level of
experience, manpages are invaluable.

man

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-1.htm (2 of 9) [3/9/2003 11:15:04]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

man [options] [section] command

Description

Format and display manpages from manual section on the topic of command using a pager. If section is
omitted, the first manpage found is displayed.

Frequently used options

-a

Normally, man exits after displaying a single manpage. The -a option instructs man to display
all manpages that match name, in a sequential fashion.

-d

Display debugging information.

-w

Print the locations of manpages instead of displaying them.

Example 1

View a manpage for mkfifo:

$ man mkfifo
...

Results for the first manpage found are scrolled on the screen using a pager.

Example 2

Determine what manpages are available for mkfifo:

$ man -wa mkfifo
/usr/man/man1/mkfifo.1
/usr/man/man3/mkfifo.3

This shows that two manpages are available, one in section 1 (mkfifo.1) of the manual and another in
section 3 (mkfifo.3). See the next section for a description of manpage sections.

Example 3

Display the mkfifo manpage from manual section 3:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-1.htm (3 of 9) [3/9/2003 11:15:04]

InformIT Online Books > LPI Linux Certification in a Nutshell

$ man 3 mkfifo

6.1.2.1 Manual sections

Manpages are grouped into sections, and there are times when you should know the appropriate section
in which to search for an item. For example, if you were interested in the mkfifo C-language function
rather than the command, you must tell the man program to search the section on library functions (in
this case, section 3, Linux Programmer's Manual):

$ man 3 mkfifo

An alternative would be to have the man program search all manual sections:

$ man -a mkfifo

The first example returns the mkfifo(3) manpage regarding the library function. The second returns
pages for both the command and the function. In this case, the pages are delivered separately;
terminating the pager on the first manpage with Ctrl-C causes the second to be displayed.

Manual sections are numbered 1 through 9 and N. They are searched in the order shown in Table 6-2 by
default.

Table 6-2. Man Sections and Search Order

Section Description

1 Executable programs or shell commands

8 System administration commands

2 System calls

3 Library calls

4 Special files (usually found in /dev)

5 File formats and conventions

6 Games (sorry, no Quake here!)

7 Macro packages and conventions

9 Kernel routines

N Tcl/Tk commands

6.1.2.2 Manpage format

Most manpages are presented in a concise format with information grouped under well-known standard
headings such as those shown in Table 6-3. Other manpage headings depend on the context of the
individual manpage.

Table 6-3. Standard Manpage Headings

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-1.htm (4 of 9) [3/9/2003 11:15:04]

InformIT Online Books > LPI Linux Certification in a Nutshell

Heading Description

Name The name of the item, along with a description

Synopsis A complete description of syntax or usage

Description A brief description of the item

Options Detailed information on each command-line option (for commands)

Return values Information on function return values (for programming references)

See also A list of related items that may be helpful

Bugs Descriptions of unusual program behavior or known defects

Files A list of important files related to the item, such as configuration files

Copying or Copyright A description of how the item is to be distributed or protected

Authors A list of those who are responsible for the item

6.1.2.3 man mechanics

System manpages are stored in /usr/man and elsewhere. At any time, the manual pages available to
the man command are contained within directories configured in your man configuration file,
/etc/man.config. This file contains directives to the man, telling it where to search for pages (the
MANPATH directive), the paging program to use (PAGER), and many others. This file essentially controls
how man works on your system. To observe this, use the debug (-d) option to man to watch as it
constructs a manpath (a directory search list) and prepares to display your selection:

$ man -d mkfifo

6.1.3 Information in /usr/doc

Manpages are particularly useful when you know what you're looking for, or at least have some good
leads on how to find it. However, they are not tutorial in nature, nor do they often describe overall
concepts. Fortunately, individuals in the Linux world not only contribute their programming skills, but
many also generate excellent tutorial documents to assist others with features, procedures, or common
problems. Many of these documents end up as HOWTO guides, FAQs (lists of Frequently Asked
Questions), README files, or even exhaustive user manuals. These documents are often part of the
source distribution of a particular program, and while valuable, don't fit elsewhere on the Linux system
and are deposited in /usr/doc. Most of these files are ASCII text, which can be viewed with a pager,
such as less, or with your favorite text editor. Some documents may be written in HTML for use with
your web browser. Some text files may also be compressed with the gzip program, and thus have the
.gz extension. The handy zless utility allows you to page these files without first decompressing them.

The contents of /usr/doc can be classified broadly into these categories:

Package-related

These documents are typically useful snippets of information included with program source
distributions. Packages offering this type of documentation will install a subdirectory in /usr/doc
that contains the documentation files and may be specific to a version of the package.

For example, /usr/doc/tcsh-6.08.00 contains the following files related to the tcsh shell, Version
6.08.00:

FAQ

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-1.htm (5 of 9) [3/9/2003 11:15:04]

InformIT Online Books > LPI Linux Certification in a Nutshell

A list of frequently asked questions about tcsh
NewThings

Aptly named, contains descriptions of new features in this release (and previous releases) of tcsh
Complete.tcsh

An interesting portion of source code from tcsh
eight-bit.txt

A description of ways to use 8-bit (international) characters with tcsh

In this example, no general documentation is included in /usr/doc, though this particular
command has a thorough manpage. Of the files available, the FAQ and perhaps the version
information file (see Section 6.1.4) will be of interest to most users.

Frequently Asked Questions

A Frequently Asked Questions (FAQ) page contains detailed information in a Q&A format. FAQ
topics can range from simple questions such as "What is Linux," to more specific questions
about how to configure or troubleshoot a particular program. While FAQs may be found for
specific packages in a /usr/doc package directory (as with tcsh), a number of important FAQs
reside in /usr/doc/FAQ. FAQ lists are generated in many different formats. Inside /usr/doc/FAQ
are subdirectories for these formats, including:

html

HTML files suitable for viewing with a web browser
ps

PostScript files, suitable for viewing with a reader such as Ghostscript or in a printer-friendly format
txt

Plain text files

HOWTO documents

A HOWTO document details information on completing a particular task. They can be as simple
as a narrative describing one individual's success in configuring some software under Linux, or
they can be a complete author's description. For example, /usr/doc/HOWTO/Printing-HOWTO (a
text file) tells you how to configure a printer under Linux. HOWTOs often serve as reference
material for new administrators working with printers. Like FAQs, many HOWTO documents are
stored in their own directory under /usr/doc/HOWTO. Some smaller HOWTO documents are
titled mini-HOWTOs, which are generally of limited scope and can be found in
/usr/doc/HOWTO/mini.

6.1.4 Info Pages

Among the many contributions from the Free Software Foundation (http://www.fsf.org/) is the GNU
documentation format called info. Info pages are part of a system called Texinfo, which uses a single
source file to display information on screen and on paper. Texinfo is hypertext and creates a browser-
like interface on a terminal or terminal window (Emacs users will recognize the menu system as the
editor's online help). For GNU software, Texinfo is the definitive documentation mechanism. Texinfo can
be viewed by running the infocommand. For example, the Texinfo document on mkfifo can be
displayed using the following command:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-1.htm (6 of 9) [3/9/2003 11:15:04]

http://www.fsf.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

$ info mkfifo

The result will be a display similar to the example in Figure 6-1.

Figure 6-1. Info display in a terminal window

Basic navigation commands for the info system are listed in Table 6-4.

Table 6-4. Info Commands

Command Description

Tab Move among hypertext links.

Enter Follow hypertext links.
d

Return to the top (directory node) of the menu.

?
List all info commands.

p and n Move to previous and next pages, respectively.

u
Move up one level in the Texinfo hierarchy.

q
Terminate the system.

h
Show a primer for first-time users.

/string Enter a string.

/pattern Search forward for pattern, which can be a regular expression.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-1.htm (7 of 9) [3/9/2003 11:15:04]

InformIT Online Books > LPI Linux Certification in a Nutshell

Manpages and other types of system documentation are packaged and installed by default with most
Linux distributions. For example, this means that both the manpage and executable program for wc are
contained in the textutils package. Other documentation, such as LDP guides and HOWTOs, may be
contained in standalone packages, depending on the distribution.

6.1.5 Oddities

Occasionally you'll come across an application or program that provides excellent documentation but
places it in nonstandard locations. Perl is one such program. Perl's online documentation is very
thorough and detailed. However, Perl uses the man facility to document not just the syntax and options
for the perl program, but just about anything you'd want to know about the Perl interpreter and
language. By adding a large number of man targets, the Perl distribution documents its function library,
its FAQ, data structures, syntax, and many others. This extensive use of man ensures that the Perl
documentation will be available to anyone who needs it. However, despite Perl's ubiquitous presence on
the Linux system, it is not mentioned in /usr/doc. It's worth remembering that documentation for the
concept you're after is probably available, but you may need to check multiple sources.

6.1.6 Using the locate Command

While the availability of these various sources of information is reassuring, finding what you want when
time is limited can sometimes be frustrating. To assist, most Linux systems will periodically create a
database of files on the system that you can query using the locate command. If the database is
configured correctly, such a query returns all instances of the command or command fragment you
enter. For example, entering a locate request for the gzip utility, using only a fragment of "gzip," yields
something similar to this:

$ locate gzi
/usr/bin/gzip
/usr/doc/gzip-1.2.4
/usr/doc/gzip-1.2.4/NEWS
/usr/doc/gzip-1.2.4/README
/usr/info/gzip.info.gz
/usr/man/man1/gzip.1
/bin/gzip

These results can be extremely helpful, as they tell you:

● The only item matching "gzi " is gzip, because nothing other than gzip was found.

● Exactly where gzip is located in the filesystem (/bin/gzip, and its symbolic link /usr/bin/gzip).

● That there is a package directory under /usr/doc (/usr/doc/gzip-1.2.4).

● That there are both man and info pages for gzip.

● gzip is a user command, because its manpage is found in section 1 (/usr/man/man1).

Typically, to proceed from this point with researching gzip, you would use info gzip or perhaps man
gzip.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-1.htm (8 of 9) [3/9/2003 11:15:04]

InformIT Online Books > LPI Linux Certification in a Nutshell

locate is dependent on a database created by the updatedb command. This
utility searches the filesystem and constructs the index used by locate.
Depending on your system's configuration, this update could be set to occur
periodically at night when your system might be off. The cron facility is used
to schedule these updates. Many routine tasks such as the use of updatedb
will be placed in special files under the /etc directory, grouped for their
frequency. The /etc/crontab file contains instructions for cron to execute the
commands in these special files on a routine basis. In this case, your locate
database may be stale. To refresh the database, you can run updatedb
manually or leave your system running overnight to execute periodic
updates. See Section 4.8 for more on locate and updatedb.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-1.htm (9 of 9) [3/9/2003 11:15:04]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 6. Documentation (Topic 1.8)

6.2 Objective 2: Find Linux Documentation on the Internet

No doubt you've heard media reports regarding the genesis of Linux from a bunch of hackers, the
profits of the major distributions, high-profile corporate relationships with Linux, and Linux as a Wall
Street darling. It is well known that coders around the world are contributing to the Linux code base.
Rarely mentioned, however, are the many dedicated writers working in the public domain to make sure
that Linux is as well understood as it is stable. Most of the people who contribute to the LDP do so on
their own time, providing information learned from their own experiences. In most cases, the people
who write for the LDP provide their names and email addresses so you can contact them with questions
that remain unanswered. These writers are partially responsible for the widespread growth of Linux,
because they make it understandable to individuals through documentation efforts not usually seen with
commercial software.

6.2.1 The Linux Documentation Project

Most of the documentation in /usr/doc and elsewhere on a Linux system is part of an organized
approach to system documentation. The Linux Documentation Project, or LDP, is a loosely knit team of
writers, proofreaders, and editors who work together to create the definitive set of documentation for
Linux. The main web site can be found at http://www.linuxdoc.org/ and at many mirror sites throughout
the world.

The LDP contains a collection of freely contributed documents. Like Linux, all of the LDP's content may
be freely distributed, copied, and even published for a fee without royalties to authors or to the LDP.
Documents that are contributed to the LDP can be licensed a variety of ways. The LDP offers its own
licensing terms, but authors aren't tied to using it. Some have opted to write their own license, while
others have published their work under the GNU Public License (GPL). The Free Software Foundation
has recently produced the GNU Free Documentation License (GFDL), which may become a standard for
many of the LDP content.

The scope of the LDP is broad, ranging from online documents such as manpages to complete books in
the form of reference guides. Some of the documents have software-style version numbers to assist
with keeping up-to-date. Some of the more commonly used LDP reference guides include:

● Installation and Getting Started Guide

● The Linux Users' Guide

● The Linux System Administrators' Guide

● The Linux Network Administrators' Guide

● The Linux Programmer's Guide

● The Linux Kernel

● The Linux Kernel Hackers' Guide

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-2.htm (1 of 6) [3/9/2003 11:15:05]

http://www.linuxdoc.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

● The Linux Kernel Module Programming Guide

Some of these LDP guides have been published in traditional book form, with mixed success. Any
publisher can produce its own edition of the text, but since content must be identical, competing
publishers can find themselves in a discounting exercise. This, coupled with frequent and unadvertised
modifications, makes printed versions of LDP documents a speculative business venture at best.

6.2.2 Usenet Newsgroups

Usenet newsgroups can be thought of as a worldwide bulletin board service, with topics beyond your
imagination (some of which probably belong beyond your imagination!). Unlike the older traditional
proprietary bulletin board services you may remember from the early online days, Usenet is a
distributed system, where messages are posted to a user's local news server in a newsgroup. The
message is then copied among thousands of news servers worldwide that also serve that same
newsgroup. Some newsgroups are moderated by a responsible party to keep the content from getting
out of hand. Many are not monitored at all and are a free-for-all of opinions, ideas, and occasional off-
topic color.

You can access Usenet content through your Internet Service Provider's news server, if one is offered,
or you may use a web-based news reading service, such as Google Groups
(http://groups.google.com/). Regardless of the method you choose, the content is the same. Messages
posted to newsgroups are stored on your news server and not on a remote origin server. This fact
sometimes leads ISPs and corporations to abandon news services altogether, due to the sheer volume
of information that gets relayed on a daily basis.

If you use a Usenet news server, you will read messages with a news reader application. Many mail
programs and web browsers contain news readers that communicate with Usenet news servers.
Standalone GUI- and text-based news readers are also available. Since Usenet messages are plain text,
they can be viewed by any paging or editing program. However, many news readers optionally group
messages by thread, which makes following a particular discussion easy. Another benefit of using a
news reader is that they manage read and unread message status, marking messages for later review,
and so on.

A search for Linux in the growing list of newsgroups yields hundreds of individual groups, far too many
for any single individual to keep up with. There are groups specific to development, to distributions, and
to hardware platforms. There are Linux advocacy groups (both pro and con) and security groups.
Perhaps the most popular are those under the comp.os hierarchy, which are moderated by a person
who filters incoming messages before sending them out to subscribers. Some Linux-related newsgroups
you should follow include:

comp.os.linux

A general discussion on Linux

comp.os.linux.advocacy

A less technical discussion of Linux, mainly by enthusiastic supporters

comp.os.linux.development

A Linux-related software development discussion

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-2.htm (2 of 6) [3/9/2003 11:15:05]

http://groups.google.com/

InformIT Online Books > LPI Linux Certification in a Nutshell

comp.os.linux.announce

Announcements from vendors, programmers, and so on

comp.os.linux.hardware

A discussion on hardware issues specific to Linux

comp.os.linux.answers

A Q&A forum

comp.os.linux.networking

Internetworking discussion, with such topics as TCP/IP, the Internet, etc.

comp.os.linux.x

A discussion on the X Window System

Subscribing to one or more of these groups for at least a few weeks will give you a good feel for the
type of communication that goes on and how useful they may be to you.

6.2.2.1 Newsgroup archives

Given the explosive growth of the Usenet service, many people turn to newsgroup archives on the
Internet rather than watch specific groups on a daily basis. Many groups serve hundreds of messages a
day, so unless the topic is very close to your daily activity (or heart), monitoring a busy group can
become a full-time job. For example, unless you are a kernel developer or are debugging specific kernel
problems, watching redhat.kernel.general won't be of much interest to you. Archives offer information
as you need it. A few popular newsgroup archives are:

Google groups (http://groups.google.com/)

Google.com has acquired the Usenet group archive of Deja.com. They provide a searchable
archive of Usenet postings that can be helpful when you need to find recent or historical
comments on a particular topic.

Remarq (http://www.remarq.com/)

This site purports to join people together in communities. Like deja.com, remarq.com contains a
searchable database of Usenet articles.

Newsgroup archives provide you with an alternate view of Usenet threaded topics. Rather than posting
a request for information and waiting for a response, searching an archive may yield immediate answers
found in communications that have already occurred. An archive can free you from reading the headers
to messages that are ultimately of no interest to you.

6.2.2.2 Contributing to Usenet

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-2.htm (3 of 6) [3/9/2003 11:15:05]

http://groups.google.com/
http://www.remarq.com/

InformIT Online Books > LPI Linux Certification in a Nutshell

Depending on your level of expertise on the topic you're reading, you will inevitably come across a user
question that you can answer with authority. Such a question is an opportunity for you to help
someone. Think of the time needed to construct a helpful response as the payment for all the tips and
assistance you yourself have received from other Usenet users over time.

6.2.3 Mailing Lists

Usenet provides an organized set of communications channels on specific topics. Often, however, a
system administrator or an organization will want to set up a limited group of users with basic
messaging capabilities. Without universal demand, or failing to make the case for a legitimate new
Usenet group, a mailing list is often constructed using list-processing software.

A mailing list is an email autoresponder with a known list of mail recipients. Any inbound mail to the list
server from among the known list members will be mirrored to each of the other recipients on the list.
This service keeps list subscribers tuned into their topic but increases email volume, and subscriptions
to a few active mailing lists can fill your inbox daily.

On the other hand, a mailing list is proactive, and email received may be more likely to be read than
Usenet newsgroup information. Usenet messages are easily missed simply because recipients are not
paying attention. Mailing lists can be found on many web sites, where instructions for joining the lists
are available. For example, the LDP maintains a general-discussion mailing list that you can join by
sending email to ldp-discuss-request@linuxdoc.org. This list is for the discussion of LDP issues,
document proposals, and other commentary. Your local Linux User's Group (LUG) probably also has a
mailing list to keep members up-to-date on events, meetings, and opinions.

6.2.4 Vendor Web Sites and Other Resources

It is impossible to list the ever-increasing number of Linux-related sites on the Internet. Each
distribution and many major projects have their own sites, as do groups such as the Free Software
Foundation. Table 6-5 lists some of the most popular, grouped into categories, in case you've missed
them.

Table 6-5. Some Linux-Related Web Sites

Category Web Sites

Certification

http://www.brainbench.com/

http://www.linuxcertification.com/

http://www.lpi.org/

http://www.redhat.com/training/rhce/certification/

Commerce

http://www.elinux.com/

http://www.linuxcentral.com/

http://www.linuxmall.com/

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-2.htm (4 of 6) [3/9/2003 11:15:05]

mailto:ldp-discuss-request@linuxdoc.org
http://www.brainbench.com/
http://www.linuxcertification.com/
http://www.lpi.org/
http://www.redhat.com/training/rhce/certification/
http://www.elinux.com/
http://www.linuxcentral.com/
http://www.linuxmall.com/

InformIT Online Books > LPI Linux Certification in a Nutshell

Distributions

http://www.calderasystems.com/

http://www.debian.org/

http://www.linux-mandrake.com/

http://www.redhat.com/

http://www.slackware.com/

http://www.suse.com/

http://www.turbolinux.com/

Documentation

http://www.linuxdoc.org/

http://linux.oreilly.com/

http://www.searchlinux.com/

General

http://www.linux.com/

http://www.linux.org/

http://www.linuxberg.com/

GUIs

http://www.afterstep.org/

http://www.eazel.com/

http://www.gnome.org/

http://www.kde.org/

News

http://slashdot.org/

http://www.linuxplanet.com/

http://www.lwn.net/

http://www.linuxjournal.com/

http://www.linuxtoday.com/

http://www.linuxpr.com/

http://www.oreillynet.com/

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-2.htm (5 of 6) [3/9/2003 11:15:05]

http://www.calderasystems.com/
http://www.debian.org/
http://www.linux-mandrake.com/
http://www.redhat.com/
http://www.slackware.com/
http://www.suse.com/
http://www.turbolinux.com/
http://www.linuxdoc.org/
http://linux.oreilly.com/
http://www.searchlinux.com/
http://www.linux.com/
http://www.linux.org/
http://www.linuxberg.com/
http://www.afterstep.org/
http://www.eazel.com/
http://www.gnome.org/
http://www.kde.org/
http://slashdot.org/
http://www.linuxplanet.com/
http://www.lwn.net/
http://www.linuxjournal.com/
http://www.linuxtoday.com/
http://www.linuxpr.com/
http://www.oreillynet.com/

InformIT Online Books > LPI Linux Certification in a Nutshell

Open source

http://www.fsf.org/

http://www.gnu.org/

http://www.kernelnotes.org/

http://freshmeat.net/

http://www.sourceforge.net/

Projects

http://www.apache.org/

http://www.squidcache.org/

http://www.linuxrouter.org/

http://www.linuxppc.org/

Search engines

http://www.google.com/

http://www.altavista.com/

http://www.northernlight.com/

http://www.yahoo.com/

Support http://www.linuxcare.org/

Training http://www.lintraining.com/

X Window System

http://www.x.org/

http://www.xfree86.com/

Of course, it's impossible to create a static list of resources that will fulfill your ever-changing needs. If
standard and familiar sources don't offer what you're looking for, don't hesitate to use a search engine.
A targeted search on a quality search site can be surprisingly fruitful.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-2.htm (6 of 6) [3/9/2003 11:15:05]

http://www.fsf.org/
http://www.gnu.org/
http://www.kernelnotes.org/
http://freshmeat.net/
http://www.sourceforge.net/
http://www.apache.org/
http://www.squidcache.org/
http://www.linuxrouter.org/
http://www.linuxppc.org/
http://www.google.com/
http://www.altavista.com/
http://www.northernlight.com/
http://www.yahoo.com/
http://www.linuxcare.org/
http://www.lintraining.com/
http://www.x.org/
http://www.xfree86.com/
http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 6. Documentation (Topic 1.8)

6.3 Objective 3: Write System Documentation

Through daily activity as a system administrator, you have a unique opportunity to observe the needs of
multiple users on your systems. Based on that vantage point, you will probably be writing scripts and
other utilities specific to your location and business. Such things can be as simple as login or shell
scripts, or as complex as full-featured applications. As these tools make their way into the lives of other
people, the need to document your work becomes a necessary part of being a system administrator. To
be useful, such documentation should appear in locations where end users will expect to find it. In
effect, creating a tool that is intended for an audience beyond yourself implies the responsibility to
document that tool.

6.3.1 Creating Manpages

System manpages are an excellent place to create local documentation. Manpages are simple to create;
the mechanism is well known, and your users will be comfortable using it. You can produce formatted
documentation, including bold and underlined text from nroff source files. These text files contain extra
markup information that controls the display formatting on screen. However, you can also use plain text
files by employing a special performance feature of the man system.

Typically, the raw files used by man are processed from their raw nroff form to create the displayable
form. At one time, this processing took a long time, particularly for large manpages. To make manpage
access faster for subsequent requests for the same manpage, the system often would save a version of
the formatted page on disk. The raw, unformatted system pages are stored in /usr/man/man.1,
/usr/man/man.2, and so on for each section in the manual. In addition, the directories /usr/cat/cat.1,
/usr/cat/cat.2, and so on, can hold the previously formatted files. The cat directory setup on your
system may be different and is defined by /etc/man.config. Wherever they are, these directories can
contain text files for use with man rather than raw nroff files.

You can take advantage of this feature to create simple manpages for your own system. Simply
generate a text file that looks like a typical manpage (sans fancy formatting) and place it in the
appropriate cat directory. The file must be named with a trailing dot and the section name, just as the
formatted files are. This method couldn't get any easier and yields a result expected by the end user.
The missing formatting probably won't be noticed.

For those of you needing to get a little more serious and generate formatted manpages, you may want
to start with an existing manpage to use as a template. To do this, simply find a manpage that makes a
suitable starting point and copy it to the appropriate name in the appropriate man directory. Again, the
name must have the trailing dot and man section. For example, we could copy the existing file
/usr/man/man1/ln.1 to /usr/local/man/man1/mycmd.1:

cp /usr/man/man1/ln.1 /usr/local/man/man1/mycmd.1

Edit the file with a text editor, changing sections and text as needed but leaving the formatting macros
intact. When editing your new file, you'll find a number of man macros inside that handle complex text
formatting. The macros consist of a dot (.) and one or two characters representing the formatting

feature. Some of the more important macros are listed in Table 6-6.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-3.htm (1 of 3) [3/9/2003 11:15:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

Table 6-6. Commonly Used man Macros

Macro Function

.TH
A manpage header. Includes title, section, date, description, and author.

.SH
A section heading. You can add your own sections to the standard sections as required.

.PP
A paragraph separator. Without this macro, lines of text will flow together.

.TP
A hanging indent macro, used for command options.

.B
Everything on the line following this macro is bold.

.I
Everything on the line following this macro is italic (or sometimes underlined).

\fB
This inline macro makes text following on the line bold.

\fI
This inline macro makes text following on the line italic (or sometimes underlined).

\fR
This inline macro returns the text to the default style.

Using these macros, you can create and format your own manpages. Example 6-1 contains an example
of a very simple manpage using these macros.

Example 6-1. Sample Source for a Manpage

.\" This is a comment line.

.\"

.\" .TH defines your man page header, including

.\" the title, manual section, date, description, and author.

.TH MYPAGE 1 "TheDate" "My Page Description" "Me"

.\"

.\" .SH defines a section. This is the NAME section.

.SH NAME
mypage \- make your own manpage
.\"
.\" This is the SYNOPSIS section.
.SH SYNOPSIS
.\"
.\" .B is a font change macro, yielding bold for
.\" everything on the line.
.B mypage
.\"
.\" \fI, \fB, and \fR are in-line font changes for italic,
.\" bold, and roman, respectively.
.\"

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-3.htm (2 of 3) [3/9/2003 11:15:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

.\"

.\" This is the DESCRIPTION section.

.SH DESCRIPTION

.\"
This is paragraph 1 of your description.
.\"
.\" .PP is a paragraph separator.
.PP
This is paragraph 2 of your description.
To create a manpage, the most important man macros
are \fB.TH\fR
.\"
.\" .TP precedes command options.
.TP
\fB\-a\fR
option a
.TP
\fB\-b\fR
option b
.\"
.\" This is the multiword "reporting bugs" section,
.\" which is why it is quoted.
.SH "REPORTING BUGS"
Report bugs to <someone@somewhere.com>.
.\"
.\" This is the multiword "see also" section.
.SH "SEE ALSO"
.\"
.B yourpage(1)

Your manpages will most likely go in the directory reserved for local additions to the system,
/usr/local/man. While there's nothing preventing you from storing your manpages in the system /man
directories, you may forget about customizations you make there -- therefore, you could lose
customizations when you upgrade your system and that directory gets overwritten with newer
manpages.

At the time of this writing, there are no questions for Section 6.3 Write
System Documentation," on the LPIC Level 1 Exam.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/06-3.htm (3 of 3) [3/9/2003 11:15:06]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 6. Documentation (Topic 1.8)

6.4 Objective 4: Provide User Support

If you have spent any time working support calls on a help desk, then you already know you're an
unsung hero. Within every help desk phone call received or help ticket dispatched, a problem of
unknown origin and complexity awaits. Problems large and small, self-inflicted and accidental, technical
and personal, will all be presented. You'll be expected to handle each of these situations with finesse,
and of course deliver a timely, friendly, and helpful response even if you're given misleading
information.

User support in any computing environment requires patience, perseverance, reliability, a genuine
desire to help, and above all, tact. Tact is of utmost importance because, though the topic is computers,
we're dealing with people in need who just want to get their job done. Often they're frustrated or even
embarrassed to make a help desk call -- it's the last thing they really want to do. Once they do contact
you, individuals have a unique set of expectations for your help desk performance. Corporate executives
will expect kid-glove treatment even if their problems are trivial and of little importance. Uninformed
users may expect immediate fixes to new and perplexing problems. Highly technical users may know a
great deal about what they're asking and expect detailed responses to detailed questions. Many users
will simply want to dump their problems on you so they can move on to other tasks. Despite the
attendant frustrations involved with staffing a help desk, the work you encounter responding to this
diversity, particularly in large enterprises, will yield an excellent education on the systems you support.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/06-4.htm [3/9/2003 11:15:06]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 7. Administrative Tasks (Topic 2.11)

7.1 Objective 1: Manage Users and Group Accounts

Whether on a corporate server or personal desktop machine, managing user accounts is an important
aspect of running a Linux system. The root, or superuser, account is established when you first install
Linux. Unlike single-user systems (such as MS-DOS), multiuser systems (such as Linux) require the
notion of an owner for files, processes, and other system objects. In many cases, an object's owner is a
human system user who created the object. Many objects are also owned by system services, such as
web servers. Each of these owners is differentiated from others by a unique user account, which is
assigned to it by the system administrator.

If you're building your own desktop system, you may be tempted to use the root account for daily
activity, thus avoiding user account issues. In most cases, however, the privileges that come with the
superuser account aren't required for much of your daily activity and can be a double-edged sword. It is
easy to make big mistakes when you have full privileges across the entire system. Instead, running
your daily tasks with a standard user account and reserving the use of the root account for tasks that
require those privileges is always safer, even for experts.

7.1.1 User Accounts and the Password File

When a new user account is added to a Linux system, an entry is added to a list of users in the
password file, which is stored in /etc/passwd. This file gets its name from its original use, which was to
store user information including an encrypted form of the user's password. The password file is in plain
text and is readable by everyone on the system. Each line in the password file contains information for a
single user account, with item detail separated by colons as illustrated in Figure 7-1.

Figure 7-1. Sample lines from a password file

Each line in the file contains information for a single system account and contains the following pieces of
information in colon-separated fields:

Username

The first field on a line is a unique username for the person or service using the account. The
username is usually a short form of the person's name, such as jdean.

Password

Each username has an associated password. The password stored in this field is in an encrypted
(unreadable) form. Despite the encryption, for security reasons, most systems now store users

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-1.htm (1 of 11) [3/9/2003 11:15:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

passwords in a separate /etc/shadow file. If the password is not included, its field is filled by the
letter x, which indicates that the shadow password system is in use.

User ID

Each username requires a unique user identifier, or UID. The UID is simply a nonnegative
integer. The root account is assigned the UID of 0, which affords it global privilege on the
system. Other users have a positive UID, and it is not unusual to begin the sequence for new
users at a large number like 100, or on some Linux distributions, 500. By convention, the UID
values from to 99 are reserved for administrative use; those over 99 are for regular system
users.

Group ID

Each username has a default group identifier, or GID. The GID is also a nonnegative integer.
Groups are a way of allowing users to share files through mutual group membership. Group
numbers and their associated names are specified in the /etc/group file. The GID stored for each
user in /etc/passwd is its default group ID, though a user may belong to many groups.

User's name (or other comment)

The user's name or other information is stored as plain text and usually contains the user's full
name. This field may contain spaces.

Home directory

The home directory is the default directory in the filesystem for the account. If a new account is
meant for a person, a home directory will probably be created in the filesystem with standard
configuration files that the user may then personalize. The full path to that home directory is
listed here.

Default shell

This field specifies the default shell for the user or service, which is the shell that runs when the
user logs in or opens a shell window. In most cases, the shell will be /bin/bash or /bin/tcsh, but

it can be any shell, or even another executable program.[1]

[1] Non-shell entries may be seen in the case of some services that should own files but
never log in interactively. You may see the shell field filled with /bin/false, a small
program that does nothing but yield an error and terminate. This ensures that a service
account is secured from login.

In looking back at Figure 7-1, the first line shows the definition of the root account with UID and GID of
0, a name of "root," a home directory of /root, and a default shell of /bin/bash. The second line shows a
standard user account for Jeff Dean, with UID and GID of 500. The home directory is /home/jdean and
the default shell is /bin/tcsh.

On the Exam

You must be prepared to name the fields in the passwd file.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-1.htm (2 of 11) [3/9/2003 11:15:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

In both cases, note that the password field contains a single letter x. This indicates that the password is
stored in /etc/shadow and not /etc/passwd; /etc/shadow is secured and readable only by the root user.
This technique reduces the likelihood of an attack against passwords on your system. Shadow
passwords and the attacks they defend against are discussed later in this Objective.

7.1.2 Groups and the Group File

In addition to ownership by individual system users, filesystem objects have separate ownership
settings for groups of users. This group ownership allows an additional level of user-specific access
control beyond that of a file's individual owner. Groups are similar to users in their administration and
are defined in the file /etc/group. Like the passwd file, the group file contains colon-separated fields:

Group name

Each group must have a unique name.

Group password

Just as user accounts have passwords, groups can have passwords for their membership. If the
password field is empty, the group does not require a password.

Group ID

Each group requires a unique GID. Like a UID, a GID is a nonnegative integer.

Group member list

The last field is a list of group members by username, separated by commas.

Together, these pieces of information define a group; colons separate the fields. Here are a few sample
lines from a group file:

root:x:0:root
pppusers:x:230:jdean,jdoe
finance:x:300:jdean,jdoe,bsmith
jdean:x:500:
jdoe:x:501:
bsmith:x:502:

On the Exam

Remember that some distributions assign all accounts to the users group while others assign
a group for each account. Red Hat Linux, for example, creates single-user groups for all
users. In contrast, SuSE Linux assigns the users group (GID 100) as the default for all
users.

In this example, both jdean and jdoe are members of the pppusers group (GID 230), and jdean,

jdoe, and bsmith are all members of the finance group (GID 300). The remaining groups, root,

jdean, jdoe, and bsmith are single-user groups. These groups are not intended for multiple users and

do not contain additional members. For security purposes, it is common to create new users with their
own personal single-user group. Doing this enhances security because new files and directories will not

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-1.htm (3 of 11) [3/9/2003 11:15:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

have group privileges for other users.[2]

[2] Although the GID of these single-user groups may match the UID of the
user for which they're created, there is no direct relationship between the
UID and GID.

7.1.3 The Shadow Password and Shadow Group Systems

At one time, the encryption used on passwords in the world-readable /etc/passwd file was a roadblock
to anyone trying to break into a Unix system account. The encrypted passwords were meaningless, and
there was no way to reverse-engineer them. However, improved computer performance has led to tools
that can process encrypted passwords through what is known as a dictionary attack. In this form of
attack, a list of common words and typical passwords is encrypted. The encrypted words are then
compared against the publicly available encrypted passwords. If a match is found, the account in
question is compromised and can then be used by someone other than its owner.

7.1.3.1 Shadow passwords

Encrypted passwords must be secure from all users on the system, while leaving the remainder of the
information in /etc/passwd world-readable. To do this, the encrypted password is moved to a new file
that "shadows" the password file line for line. The file is aptly called /etc/shadow and is generally said to
contain shadow passwords. Here are a few example lines from a shadow file:

root:1oxEaSzzdXZESTGTU:10927:0:99999:7:-1:-1:134538444
jdean:1IviLopPn461z47J:10927:0:99999:7::11688:134538412

The first two fields contain the username and the encrypted passwords. The remaining fields contain
optional additional information on password aging information.

7.1.3.2 Group passwords and shadow groups

Just as user accounts listed in /etc/passwd are protected by encrypted passwords, groups listed in
/etc/group can also be protected by passwords. A group password can be used to allow access to a

group by a user account that is not actually a member of the group.[3] Account users can use the
newgrp command to change their default group and enter the group password. If the password is
correct, the account is granted the group privileges, just as a group member would be.

[3] This begs the question "Why not simply make that user a member of
the group instead of handing out group passwords?" Indeed, group
passwords are rarely used, precisely because group membership is so
simple to administer and is more secure than publicly known passwords. It
is unlikely that you will need to use group passwords. Nevertheless,
understanding group passwords is a requirement for Exam 101.

The group definition file, like the password file, is readable by everyone on the system. If group
passwords are stored there, a dictionary attack could be made against them. To protect against such
attacks, passwords in /etc/group can be shadowed. The protected passwords are stored in
/etc/gshadow, which is readable only by root. Here are a few sample lines from a gshadow file:

root:::root
pppusers:x::

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-1.htm (4 of 11) [3/9/2003 11:15:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

finance:0cf7ipLtpSBGg::
jdean:x::
jdoe:x::
bsmith:x::

In this example, the groups pppusers, jdean, jdoe, and bsmith do not have group passwords as

indicated by the x in the password field. The finance group is the only one with a password, which is

encrypted.

On the Exam

A major contrast between passwd/group and shadow/gshadow is the permissions on the
files. The standard files are readable by everyone on the system, but the shadow files are
readable only by root, which protects encrypted passwords from theft and possible cracking.

7.1.4 User and Group Management Commands

Although possible, it is rarely necessary (or advised) to manipulate the account and group definition
files manually with a text editor. Instead, a family of convenient administrative commands is available

for managing accounts, groups, password shadowing, group shadowing, and password aging.[4]

[4] Password aging (rules governing change intervals and automated
expiration of passwords) is not an explicit Objective for the LPIC Level 1
exams.

useradd

Syntax

useradd [options] user

Description

Create the account useron the system. Both system defaults and specified options define how the
account is configured. All system account files are updated as required. An initial password must
subsequently be set for new users using the passwd command. It is the user's responsibility to go back
and change that password when he first logs in to the system.

Frequently used options

-c "comment"

Define the comment field, probably the user's name.

-d homedir

Use homedir as the user's home directory.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-1.htm (5 of 11) [3/9/2003 11:15:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

-D

List (and optionally change) system default values.

-m

Create and populate the home directory.

-s shell

Use shell as the default for the account.

Examples

Add a new user, bsmith, with all default settings:

useradd bsmith

Add a new user, jdoe, with a name, default home directory, and the tcsh shell:

useradd -mc "Jane Doe" -s /bin/tcsh jdoe

usermod

Syntax

usermod [options] user

Description

Modify an existing user account. The usermod command accepts many of the same options as
useradd does.

Frequently used options

-L

Lock the password, disabling the account.

-U

Unlock the user's password, enabling the user to once again log into the system.

Examples

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-1.htm (6 of 11) [3/9/2003 11:15:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

Change jdoe's name in the comment field:

usermod -c "Jane Deer-Doe" jdoe

Lock the password for bsmith:

usermod -L bsmith

userdel

Syntax

userdel [-r] user

Description

Delete an existing user account. When combined with the -r option, the user's home directory is
deleted. Note that completely deleting accounts may lead to confusion when files owned by the deleted
user remain in other system directories. For this reason, it is common to disable an account rather than
delete it. Accounts can be disabled using the chage, usermod, and passwd commands.

Example

Delete the user bsmith, including the home directory:

userdel -r bsmith

groupadd

Syntax

groupadd group

Description

Add groupto the system. In the rare case that a group password is desired on group, it must be added
using the gpasswd command after the group is created.

groupmod

Syntax

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-1.htm (7 of 11) [3/9/2003 11:15:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

groupmod [option] group

Description

Modify the parameters of group.

Option

-n name

Change the name of group to name.

groupdel

Syntax

groupdel group

Description

Delete group from the system. Deleted groups can lead to the same confusion in the filesystem as
described previously for deleting a user (see userdel).

passwd

Syntax

passwd [options] username

Description

Interactively set the password for username. The password cannot be entered on the command line.

Option

-l

Available only to the superuser, this option locks the password for the account.

gpasswd

Syntax

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-1.htm (8 of 11) [3/9/2003 11:15:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

gpasswd groupname

Description

Interactively set the group password for groupname. The password cannot be entered on the command
line.

7.1.4.1 Additional user and group management commands

While they are not specifically required for this Objective, this discussion would not be complete without
a few additional commands for managing users and groups.

pwconv

Syntax

pwconv

Description

Convert a standard password file to a password and shadow password combination, enabling shadow
passwords on the system.

pwunconv

Syntax

pwunconv

Description

Revert from a shadow password configuration to a standard password file.

grpconv

Syntax

grpconv

Description

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-1.htm (9 of 11) [3/9/2003 11:15:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

Convert a standard group file to a group and shadow group combination, enabling shadow groups on
the system. Shadow passwords are rarely necessary.

grpunconv

Syntax

grpunconv

Description

Revert from a shadow group configuration to a standard group file.

chage

Syntax

chage [options] user

Description

Modify password aging and expiration settings for user. Nonprivileged users may use this command with
the -l option for their username only.

Frequently used options

-E expiredate

Set the account to expiration date expiredate in the form MM/DD/YY or MM/DD/YYYY.

-l

List a user's password settings.

Example 1

Display password settings for user jdoe (including nonprivileged user jdoe):

$ chage -l jdoe

Example 2

Set jdoe's account expiration date to January 1, 2002:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-1.htm (10 of 11) [3/9/2003 11:15:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

chage -E 01/01/2002 jdoe

On the Exam

You must be familiar with these account management commands as well as be ready to
specify methods for adding, removing, and modifying user accounts.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-1.htm (11 of 11) [3/9/2003 11:15:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 7. Administrative Tasks (Topic 2.11)

7.2 Objective 2: Tune the User Environment

When you create a new user account on your Linux system, some basic setup information is necessary
for the user to initially become productive. When the user logs into the system, she will need:

● A minimal set of environment variables, including a PATH that is meaningful for your system.

● Basic configuration files in her home directory.

The amount of default information you provide can range from minimal to extremely detailed. In
general, you'll want to provide the setup information that will allow the user to begin working without
extensive personal customization.

7.2.1 System-wide Startup Scripts

When the bash shell starts, it looks for a number of configuration script files, including /etc/profile.
Commands in this file are executed at login time and contain global startup information and settings for

all bash users.[5] Example 7-1 contains an example profile.

[5] This does not apply to users of other shells, such as tcsh. Those shells
require different global startup setup and are not among the Objectives for
the LPIC Level 1 exams.

Example 7-1. Sample /etc/profile File

/etc/profile

System wide environment and startup programs
Functions and aliases go in /etc/bashrc

PATH="$PATH:/usr/X11R6/bin"
PS1="[\u@\h \W]\\$ "

ulimit -c 1000000
if [`id -gn` = `id -un` -a `id -u` -gt 14]; then
 umask 002
else
 umask 022
fi

USER=`id -un`
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"

HOSTNAME=`/bin/hostname`
HISTSIZE=1000
HISTFILESIZE=1000

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-2.htm (1 of 3) [3/9/2003 11:15:09]

InformIT Online Books > LPI Linux Certification in a Nutshell

INPUTRC=/etc/inputrc
PATH="$PATH:/usr/local/bin"
export PATH PS1 HOSTNAME HISTSIZE HISTFILESIZE
USER LOGNAME MAIL INPUTRC

The syntax for bash programming is in Chapter 17. However, you can see that this file does basic shell
setup for the user, including the assignment of a number of environment variables. As an example of a
common local customization, note the line containing PATH= adds an additional directory to those

already listed in the PATH environment variable. In this case, the system administrator expects that

most users will need to run programs stored in /usr/local/bin. Making this modification once in
/etc/profile eliminates the need for individuals to make it in their personal bash profiles.

On the Exam

Remember that /etc/profile is executed only once, while /etc/bashrc is called for each new
shell invocation. Also note that these startup scripts are specific to bash and that users of
other shells will have a different configuration.

As you may have noted in the comments at the top of Example 7-1, the definition of functions and
aliases typically is not done in /etc/profile, but instead in /etc/bashrc. This is because functions and
aliases are not inherited by new shells. Since commands in /etc/profile are executed only at login time,
functions and aliases defined there would only be available in the login shell. Commands in the bashrc
file are executed each time a new shell starts; their effects will apply to all shells.

7.2.2 Setting the Home Directory for New Accounts

When creating a new account, usually you'll want to create a default home directory for the user of the
account. On Linux systems, the home directory is most likely something like /home/username, but you
can define it in any way you like.

When you create a new home directory, it is a courtesy to the new user to initially populate the
directory with useful files. These might include startup files for the user's shell, his desktop, or for X
Window applications. To facilitate the automated population of new user directories, an example home
directory is created in a "skeleton" directory /etc/skel. This directory should contain all of the files and
subdirectories that all new users will need. Example 7-2 shows the contents of an example /etc/skel
directory.

Example 7-2. Sample Skeleton (/etc/skel) Directory

-rw-r--r-- 1 root root 1422 Mar 29 1999 .Xdefaults
-rw-r--r-- 1 root root 24 Jul 13 1994 .bash_logout
-rw-r--r-- 1 root root 230 Aug 22 1998 .bash_profile
-rw-r--r-- 1 root root 124 Aug 23 1995 .bashrc
drwxr-xr-x 3 root root 1024 Dec 2 09:37 .kde
-rw-r--r-- 1 root root 966 Apr 16 1999 .kderc
drwxr-xr-x 5 root root 1024 Dec 2 09:37 Desktop

This example /etc/skel directory contains:

● An X application startup file (.Xdefaults).

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-2.htm (2 of 3) [3/9/2003 11:15:09]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Three configuration files for the shell (.bash_logout, .bash_ profile, and .bashrc).

● A directory and a startup file for KDE (.kde and .kderc).

● A Desktop directory, which defines the appearance of the user's desktop.

The specifics of this example are not important, but illustrate that a number of default files can be
included in a new user's account setup. Additions could include default files for other desktop
environments such as GNOME as well as startup files for other shells.

When a new account is created with a home directory, the entire contents of /etc/skel are copied
recursively (that is, including subdirectories) to the new home directory location. The home directory
and its entire contents are then set to the new account's UID and GID, making the new user owner of
her initial files. She is then free to modify these files and directories as necessary.

As the system administrator, you may add, modify, and delete files in /etc/skel as needed for your
environment.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-2.htm (3 of 3) [3/9/2003 11:15:09]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 7. Administrative Tasks (Topic 2.11)

7.4 Objective 4: Automate System Administration Tasks

There is a surprising amount of housekeeping that must be done to keep a complex operating system
such as Linux running smoothly. Log file rotation, cleanup of temporary files and directories, system
database rebuilds, backups, and other tasks should be done routinely. Clearly such mundane things
should be automated by the system, freeing weary system administrators for more interesting work.
Fortunately, any system task that can be accomplished without real-time human intervention can be
automated on Linux using the cron and at facilities. Both have the ability to execute system
commands, which may start any executable program or script, at selectable times. Further, cron and at
can execute these commands on behalf of any authorized system user. cron is intended mainly for
regularly scheduled recurring activities, and at is most useful for scheduling single commands for
execution in the future. cron gets its name from the "chron-" prefix of "chronology " (time).

7.4.1 Using cron

The cron facility consists of two programs:[8]

[8] There is no individual program called "cron," which is the overall name
given to the facility. If you execute man cron however, you will, see the
manpage for crond.

crond

This is the cron daemon. This is the process that executes your instructions. It starts at system
initialization time and runs in the background thereafter.

crontab

This is the cron table manipulation program. This program gives you access to your cron table
or crontab file. Each authorized user may have his own crontab file to run commands and
processes on a regular basis.

The cron daemon wakes up every minute and examines all crontab files, executing any commands
scheduled for that time.

7.4.1.1 User crontab files

To use the cron facility, users do not need to interact directly with the crond daemon. Instead, each
system user has access to the cron facility through her crontab file. These files are stored together in a
single directory (usually /var/spool/cron) and are created and maintained using the crontab utility.

crontab

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-4.htm (1 of 5) [3/9/2003 11:15:10]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

crontab [options]

Description

View or edit crontab files.

Frequently used options

-e

Interactively edit the crontab file. Unless otherwise specified in either the EDITOR or VISUAL

environment variables, the editor is vi.

-l

Display the contents of the crontab file.

-r

Remove the crontab file.

-u user

Operate on user 's crontab file instead of your own. Only root can edit or delete the crontab
files of other users.

Examples

Display the crontab file for user jdoe :

crontab -l -u jdoe

Edit your own crontab file:

$ crontab -e

crontab files use a flexible format to specify times for command execution. Each line contains six fields:

minute hour day month dayofweek command

These fields are specified as follows:

● Minute (0 through 59)

● Hour (0 through 23)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-4.htm (2 of 5) [3/9/2003 11:15:10]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Day of the month (1 through 31)

● Month (1 through 12 or jan through dec)

● Day of the week (0 through 6 [where 0 is Sunday] or sun through sat)

● Command (any valid command, including spaces and standard bourne shell syntax)

For example, to execute myprogram once per day at 6:15 a.m., use this crontab entry:

run myprogram at 6:15am
15 6 * * * myprogram

Lines that begin with the pound sign (#) are comment lines and are ignored by crond. Comments must

begin on a new line and may not appear within commands. The asterisks in this crontab are
placeholders and match any date or time for the field where they're found. Here, they indicate that
myprogram should execute at 6:15 a.m. on all days of the month, every month, all days of the week.

Each of the time specifications may be single, list (1,3,5), or range (1-5 or wed-fri) entries or

combinations thereof. To modify the previous example to execute at 6:15 and 18:15 on the 1st and
15th of the month, use:

run myprogram at 6:15am and 6:15pm on the 1st and 15th
15 6,18 1,15 * * myprogram

As you can see, the time specifications are very flexible.

Because the cron daemon evaluates each crontab entry when it executes each minute, it is not
necessary to restart or reinitialize crond when crontab entries are changed or new files are created.

7.4.1.2 System crontab files

In addition to crontab files owned by individual users, crond also looks for the system crontab files
/etc/crontab and files in the directory /etc/cron.d. The format for these system crontabs differs slightly
from user crontabs. System crontabs have an additional field for a username between the time
specifications and the command. For example:

/etc/crontab
run myprogram at 6:15am as root
15 6 * * * root myprogram

In this example, myprogram will be executed by cron as the root user.

System crontab files located in /etc/cron.d are of the same form as /etc/crontab, including the extra
user field. These files are usually associated with some package or service that includes a system
crontab. Allowing a collection of files in /etc/cron.d allows software installation and upgrade procedures
to keep the cron configuration up-to-date on an individual package basis. In most cases, however, you
won't need to change the crontab files in /etc/cron.d.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-4.htm (3 of 5) [3/9/2003 11:15:10]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

Memorize the sequence of time/date fields used in crontab files.

On most Linux distributions, /etc/crontab contains some standard content to enable the execution of
programs and scripts on the minute, hour, week, and month. These arrangements allow you to simply
drop executable files into the appropriate directory (such as /etc/cron.hourly), where they are executed
automatically. This eliminates cron configuration altogether for many tasks and avoids cluttering the
root crontab file with common commands.

7.4.2 Using at

The cron facility is intended for the execution of commands on a regular, periodic schedule. When you
need to simply delay execution of a command or a group of commands to some other time in the
future, you should use at. The at facility accepts commands from standard input or from a file.

at

Syntax

at [-f file] time
at [options]

Description

In the first form, enter commands to the at queue for execution at time. at allows fairly complex time
specifications. It accepts times of the form HH:MM to run a job at a specific time of day. (If that time is
already past, the next day is assumed.) You may also specify midnight, noon, or teatime (4 p.m.), and
you suffix a time of day with AM or PM for running in the morning or evening. You can also say what
day the job will be run by giving a date in month-day form, with the year being optional, or by giving a
date in MMDDYY, MM/DD/YY or DD.MM.YY form. The date specification must follow the time-of-day
specification. You can also give times like now + count time-units, where time-units can be minutes,
hours, days, or weeks, you can tell at to run the job today by suffixing the time with today, and you can
tell it to run the job tomorrow by suffixing the time with tomorrow.

If -f file is given, commands are taken from the file, otherwise at will prompt the user for commands.

In the second form, list or delete jobs from the at queue.

Frequently used options

-d job1 [, job2, ...]

Delete jobs from the at queue by number (same as the atrm command).

-l

List items in the at queue (same as the atq command).

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-4.htm (4 of 5) [3/9/2003 11:15:10]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example 1

Run myprogram once at 6:15 p.m. tomorrow:

$ at 6:15pm tomorrow
at> myprogram
at> ^D

In the previous code listing, ^D indicates that the user typed Ctrl-D on the keyboard, sending the end-

of-file character to terminate the at command.

Example 2

Run commands that are listed in the file command_list at 9 p.m. two days from now:

$ at -f command_list 9pm + 2 days

List items in the at queue (root sees all users' entries):

$ at -l

Remove job number 5 from the at queue:

$ at -d 5

Using at to schedule jobs for delayed execution, such as while you're asleep or on vacation, is simple
and doesn't require creation of a recurring cron entry.

7.4.3 Controlling User Access to cron and at

In most cases, it is safe to allow users to use the cron and at facilities. However, if your circumstances
dictate that one or more users should be prohibited from using these services, two simple authorization
files exist for each:

● cron.allow, cron.deny

● at.allow, at.deny

These files are simply lists of account names. If the allow file exists, only those users listed in the allow
file may use the service. If the allow file does not exist but the deny file does, only those users not
listed in the deny file may use the service. For cron, if neither file exists, all users have access to cron.
For at, if neither file exists, only root has access to at. An empty at.deny file allows access to all users
and is the default.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/07-4.htm (5 of 5) [3/9/2003 11:15:10]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 7. Administrative Tasks (Topic 2.11)

7.5 Objective 5: Maintain an Effective Data Backup Strategy

Regardless of how careful we are or how robust our hardware might be, it is highly likely that
sometimes data will be lost. Though fatal system problems are rare, accidentally deleted files or
mistakes using mv or cp are common. Routine system backup is essential to avoid losing precious data.

There are many reasons to routinely back up your systems:

● Protection against disk failures

● Protection against accidental file deletion and corruption

● Protection against disasters, such as fire, water, or vandalism

● Retention of historical data

● Creation of multiple copies of data, with one or more copies stored at off-site locations for
redundancy

All of these reasons for creating a backup strategy could be summarized as insurance. Far too much
time and effort goes into a computer system to allow random incidents to force repeated work.

7.5.1 Backup Concepts and Strategies

Most backup strategies involve copying data between at least two locations. At a prescribed time, data
is transferred from a source media (such as a hard disk) to some form of backup media. Backup media
are usually removable, and include tapes, floppy disks, Zip disks, and so on. These media are relatively
inexpensive, compact, and easy to store off-site. On the other hand, they are slow relative to hard disk
drives.

7.5.1.1 Backup types

Backups are usually run in one of three general forms:

Full backup

A full, or complete, backup saves all of the files on your system. Depending on circumstances,
"all files" may mean all files on the system, all files on a physical disk, all files on a single
partition, or all files that cannot be recovered from original installation media. Depending on the
size of the drive being backed up, a full backup can take hours to complete.

Differential backup

Save only files that have been modified or created since the last full backup. Compared to full
backups, differentials are relatively fast because of the reduced number of files written to the

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (1 of 14) [3/9/2003 11:15:12]

InformIT Online Books > LPI Linux Certification in a Nutshell

backup media. A typical differential scheme would include full backup media plus the latest
differential media. Intermediate differential media are superseded by the latest and can be
recycled.

Incremental backup

Save only files that have been modified or created since the last backup, including the last
incremental backup. These backups are also relatively fast. A typical incremental backup would
include full backup media plus the entire series of subsequent incremental media. All
incremental media are required to reconstruct changes to the filesystem since the last full
backup.

Typically, a full backup is coupled with a series of either differential backups or incremental backups,
but not both. For example, a full backup could be run once per week with six daily differential backups
on the remaining days. Using this scheme, a restoration is possible from the full backup media and the
most recent differential backup media. Using incremental backups in the same scenario, the full backup
media and all incremental backup media would be required to restore the system. The choice between
the two is related mainly to the tradeoff between media consumption (incremental backup requires
more media) versus backup time (differential backup takes longer, particularly on heavily used
systems).

For large organizations that require retention of historical data, a backup scheme longer than a week is
created. Incremental or differential backup media are retained for a few weeks, after which the tapes
are reformatted and reused. Full backup media are retained for an extended period, perhaps
permanently. At the very least, one full backup from each month should be retained for a year or more.

A backup scheme such as this is called a media rotation scheme, because media are continually written,
retained for a defined period, and then reused. The media themselves are said to belong to a media
pool, which defines the monthly full, the weekly full, and differential or incremental media assignments,
as well as when media can be reused. When media with full backups are removed from the pool for long-
term storage, new media join the pool, keeping the size of the pool constant. Media may also be
removed from the pool if your organization chooses to limit the number of uses media are allowed,
assuming that reliability goes down as the number of passes through a tape mechanism increases.

Your organization's data storage requirements dictate the complexity of your backup scheme. On
systems in which many people frequently update mission-critical data, a conservative and detailed
backup scheme is essential. For casual-use systems, such as desktop PCs, only a basic backup scheme
is needed, if at all.

7.5.1.2 Backup verification

To be effective, backup media must be capable of yielding a successful restoration of files. To ensure
this, a backup scheme must also include some kind of backup verification in which recently written
backup media are tested for successful restore operations. This could take the form of a comparison of
files after the backup, an automated restoration of a select group of files on a periodic basis, or even a
random audit of media on a recurring basis. However the verification is performed, it must prove that
the media, tape drives, and programming will deliver a restored system. Proof that your backups are
solid and reliable ensures that they will be useful in case of data loss.

7.5.2 Device Files

Before discussing actual backup procedures, a word on so-called device files is necessary. When
performing backup operations to tape and other removable media, you must specify the device using its
device file. These files are stored in /dev and are understood by the kernel to stimulate the use of

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (2 of 14) [3/9/2003 11:15:12]

InformIT Online Books > LPI Linux Certification in a Nutshell

device drivers that control the device. Archiving programs that use the device files need no knowledge
of how to make the device work. Here are some typical device files you may find on Linux systems:

/dev/st0

First SCSI tape drive

/dev/ft0

First floppy-controller tape drive, such as Travan drives

/dev/fd0

First floppy disk drive

/dev/hdd

An ATAPI Zip or other removable disk

These names are just examples. The names on your system will be hardware- and distribution-specific.

Did I Rewind That Tape?

When using tape drives, the kernel driver for devices such as /dev/st0 and /dev/ft0
automatically sends a rewind command after any operation. However, there may be times
when rewinding the tape is not desirable. Since the archive program has no knowledge of
how to send special instructions to the device, a nonrewinding device file exists that
instructs the driver to omit the rewind instruction. These files have a leading n added to the
filename. For example, the nonrewinding device file for /dev/st0 is /dev/nst0. When using
nonrewinding devices, the tape is left at the location just after the last operation by the
archive program. This allows the addition of more archives to the same tape.

7.5.3 Using tar and mt

The tar (t ape ar chive) program is used to recursively read files and directories, and then write them
onto a tape or into a file. Along with the data goes detailed information on the files and directories
copied, including modification times, owners, modes, and so on. This makes tar much better for
archiving than simply making a copy does, because the restored data has all of the properties of the
original.

The tar utility stores and extracts files from an archive file known as a tarfile, which has the .tar file
extension. Since tape drives and other storage devices in Linux are viewed by the system as files, one
type of tarfile is a device file, such as /dev/st0 (SCSI tape drive 0). However, nothing prevents using
regular files with tar -- this is common practice and a convenient way to distribute complete directory
hierarchies as a single file.

During restoration of files from a tape with multiple archives, the need arises to position the tape to the
archive that holds the necessary files. To accomplish this control, use the mt command. (The name
comes from "m agnetic t ape.") The mt command uses a set of simple instructions that directs the tape
drive to perform a particular action.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (3 of 14) [3/9/2003 11:15:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

tar

Syntax

tar [options] files

Description

Archive or restore files. tar recursively creates archives of files and directories, including file properties.
It requires at least one basic mode option to specify the operational mode.

Basic mode options

-c

Create a new tarfile.

-t

List the contents of a tarfile.

-x

Extract files from a tarfile.

Frequently used options

-f tarfile

Unless tar is using standard I/O, use the -f option with tar to specify the tarfile. This might be
simply a regular file or it may be a device such as /dev/st0.

-v

Verbose mode. By default, tar runs silently. When -v is specified, tar reports each file as it is
transferred.

-w

Interactive mode. In this mode, tar asks for confirmation before archiving or restoring files. This
option is useful only for small archives.

-z

Enable compression. When using -z, data is filtered through the gzip compression program
prior to being written to the tarfile, saving additional space. The savings can be substantial, at
times better than an order of magnitude depending on the data being compressed. An archive

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (4 of 14) [3/9/2003 11:15:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

created using the -z option must also be listed and extracted with -z; tar will not recognize a
compressed file as a valid archive without the -z option. Tarfiles created with this option will
have the .tar.gz file extension.

-N date

Store only files newer than the date specified. This option can be used to construct an
incremental or differential backup scheme.

-V "label"

Adds a label to the .tar archive. Quotes are required to prevent the label from being interpreted
as a filename. A label is handy if you find an unmarked tape or poorly named tarfile.

Example 1

Create an archive on SCSI tape of the /etc directory, reporting progress:

tar cvf /dev/st0 /etc
tar: Removing leading `/' from absolute path names
in the archive
etc/
etc/hosts
etc/csh.cshrc
etc/exports
etc/group
etc/host.conf
etc/hosts.allow
etc/hosts.deny
etc/motd
...

Note the message indicating that tar will strip the leading slash from /etc for the filenames in the
archive. This is done to protect the filesystem from accidental restores to /etc from this archive, which
could be disastrous.

Example 2

List the contents of the tar archive on SCSI tape 0:

tar tf /dev/st0
...

Example 3

Extract the entire contents of the tar archive on SCSI tape 0, reporting progress:

tar xvf /dev/st0
...

Example 4

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (5 of 14) [3/9/2003 11:15:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

Extract only the /etc/hosts file:

tar xvf /dev/st0 etc/hosts
etc/hosts

Note that the leading slash is omitted in the file specification (etc/hosts), in order to match the archive
with the stripped slash as noted earlier.

Example 5

Create a compressed archive of root's home directory on a floppy:

tar cvzf /dev/fd0 -V "root home dir" /root
tar: Removing leading `/' from absolute path names
in the archive
root/
root/lost+found/
root/.Xdefaults
root/.bash_logout
root/.bash_profile
root/.bashrc
root/.cshrc
root/.tcshrc
...
tar (grandchild): Cannot write to /dev/fd0: No space
left on device
tar (grandchild): Error is not recoverable: exiting now

As you can see from reading the error messages, there isn't enough room on the floppy, despite
compression. In this case, try storing the archive to an ATAPI Zip drive:

tar cvzf /dev/hdd -V "root home dir" /root
...

As mentioned earlier, tape drives have more than one device file. A tape drive's nonrewinding device file
allows you to write to the tape without sending a rewind instruction. This allows you to use tar again on
the same tape, writing another archive to the media. The number of archives written is limited only by
the available space on the tape.

Often multiple archives are written on a single tape to accomplish a backup strategy for multiple
computers, multiple disks, or some other situation in which segmenting the backup makes sense. One
thing to keep in mind when constructing backups to large media such as tape is the reliability of the
media itself. If an error occurs while tar is reading the tape during a restore operation, it may become
confused and give up. This may prevent a restore of anything located beyond the bad section of tape.
Segmenting the backup into pieces may enable you to position the tape beyond the bad section to the
next archive, where tar would work again. In this way, a segmented backup could help shield you from
possible media errors.

See the tar info page for full details; info is described in Section 6.1.

mt

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (6 of 14) [3/9/2003 11:15:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

mt [-h] [-f device_ file] operation [count]

Description

Control a tape drive. The tape drive is instructed to perform the specified operation once, unless count
is specified.

Frequently used options

-h

Print usage information, including operation names, and exit.

-f device_ file

Specify the device file; if omitted, the default is used, as defined in the header file
/usr/include/sys/mtio.h. The typical default is /dev/tape.

Popular tape operations

fsf [count]

Forward space files. Move forward the number of files specified by count (archives, in the case
of tar), leaving the tape positioned at the first block of the next file.

rewind

Rewind to the beginning of the tape.

offline

Eject the tape. This is appropriate for 8 mm or similar drives, where the tape is handled
automatically by the mechanism. Ejecting the tape at the end of a backup may prevent an
accidental subsequent backup to the same media. This operation is meaningless on devices that
cannot eject the tape.

status

Displays status information about the tape drive being used.

tell

For some SCSI tape drives, report the position of the tape in blocks.

Many more operations exist; consult the mt manpage for a complete list of options.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (7 of 14) [3/9/2003 11:15:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example 1

Move the tape in /dev/st0 to the third archive on the tape by skipping forward over two archives:

mt -f /dev/nst0 fsf 2

Note that the nonrewinding device file is specified (/nst0). If the standard device is specified, the tape
drive dutifully skips forward to the appropriate location on the tape, then promptly rewinds.

Example 2

Rewind the tape in /dev/st0 :

mt -f /dev/st0 rewind

Example 3

Eject the tape cartridge:

mt -f /dev/st0 offline

Example 4

Determine what device is represented by the default /dev/tape :

ls -l /dev/tape
lrwxrwxrwx 1 root root 8 Dec 9 15:32 /dev/tape -> /dev/st0

If you wish to use the default tape device /dev/tape and it is not set on your system, you may need to
set it manually:

ln -s /dev/tape /dev/st0

7.5.4 Backup Operations

Using tar or mt interactively for routine system backups can become tedious. It is common practice to
create backup scripts called by cron to execute the backups for you. This leaves the administrator or
operator with the duty of providing correct media and examining logs. This section describes a basic
backup configuration using tar, mt, and cron.

7.5.4.1 What should I back up?

It's impossible to describe exactly what to back up on your system. If you have enough time and media,
complete backups of everything are safest. However, much of the data on a Linux system, such as
commands, libraries, and manpages, don't change routinely and probably won't need to be saved often.
Making a full backup of the entire system makes sense after you have installed and configured your
system. Once you've created a backup of your system, there are some directories that you should
routinely back up:

/etc

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (8 of 14) [3/9/2003 11:15:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

Most of the system configuration files for a Linux system are stored in /etc, which should be
backed up regularly.

/home

User files are stored in /home. Depending on your configuration, you may also store web server
files in /home/httpd. On multiuser systems or large web servers, /home can be quite large.

/usr/src

If you've done any kernel compilation, back up /usr/src to save your work.

/var/log

If you have security or operational concerns, it may be wise to save log files stored in /var/log.

/var/spool/mail

If you use email hosted locally, the mail files are stored in /var/spool/mail and should be
retained.

/var/spool/at and /var/spool/cron

Users' at and crontab files are stored in /var/spool/at and /var/spool/cron, respectively. These
directories should be retained if these services are available to your users.

Of course, this list is just a start, as each system will have different backup requirements.

7.5.4.2 A scripted backup with tar, mt, and cron

This section presents a simple yet effective backup methodology. The backups are scheduled to run via
cron using a shell script. This example is not intended as a production solution, but rather as an
illustration of the general concepts involved in automating a backup scheme.

In Example 7-5, we back up /etc and /home using tar, executing both full and differential backups to
two independent segments on a tape. We use a bash script scheduled in cron using root's crontab file.
The script will perform full backups once per week early on Monday morning and differential backups on
the remaining six mornings of the week. Differential backups will be done using tar's -N option. The line
numbers are for reference only and not part of the code.

Example 7-5. A Simple Backup Script

1 #!/bin/bash
2
3 # This script performs a weekly-full/daily-differential tar backup
4 # to tape. Each item in "targets" is placed in a separate tape
5 # tarfile. Gzip compression is enabled in tar.
6
7 # what to back up
8 targets="/etc /home"
9

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (9 of 14) [3/9/2003 11:15:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

10 # the day we want a full backup (others are differential)
11 fullday=Mon
12
13 # the target tape drive and its non-rewinding twin
14 device="/dev/st0"
15 device_n="/dev/n`/bin/basename $device`"
16
17 # get the last full backup date and the present date
18 datefile="/var/tmp/backup_full_date"
19 prev_full=`/bin/cat $datefile`
20 now=`/bin/date`
21
22 # See if today is the full backup day
23 if (`echo $now | grep $fullday > /dev/null`)
24 then
25 # create and secure the new date file
26 /bin/echo $now > $datefile
27 /bin/chmod 600 $datefile
28
29 # full backup
30 for target in $targets
31 do
32 /bin/tar -cvzf $device_n \
33 -V "Full backup of $target on $now" \
34 $target
35 # let the tape drive flush its buffer
36 sleep 5
37 done
38 else
39 # If today isn't the day to perform the full backup
40 # then the differential backup is performed
41 for target in $targets
42 do
43 /bin/tar -cvzf $device_n \
44 -V "Differential backup of $target from $prev_full to $now" \
45 -N "$now" \
46 $target
47 # let the tape drive flush its buffer
48 sleep 5
49 done
50 fi
51
52 # rewind and eject the tape
53 /bin/mt -f $device rewind
54 sleep 1
55 /bin/mt -f $device offline

Now let's look at some of the key elements of this script:

Lines 7-8

The targets variable contains a space-separated list of directories to back up.

Lines 10-11

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (10 of 14) [3/9/2003 11:15:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

fullday contains the day that full backups should run.

Lines 13-15

We define the device and its nonrewinding version.

Lines 17-20

We specify a datefile, which will simply contain the output of the date command at the start

time of each full backup. This date is used by tar to determine which files belong in subsequent
differential backups.

Lines 22-46

We then check to see if we're on the full backup day and then run tar on each target

accordingly, with all output going to the same tape.

Lines 36, 48, and 54

Sometimes a tape drive indicates that it has completed an operation before it is ready for
another. By adding some delays to the script, we can be sure that the tape drive is ready.

Lines 53 and 55

Finally, we rewind and unload the tape.

To execute this script daily, the following entry is made in root's crontab:

run the backup script at 00:05 every day
5 0 * * * /root/backup

On Sunday night, a blank tape is inserted in the drive for the full backup. During the week, other tapes
are used to record each differential backup.

If necessary, a few weeks of full backups can be retained for historical purposes. Differential backups
are sometimes retained for a short period, perhaps two weeks, to allow the restoration of a file on a
particular day. This is a nice policy to implement, as it protects users by allowing them access to
intermediate versions of their work.

As stated earlier, this is only a simple backup scheme, and many improvements could be made to it. For
example, root will receive all of the output from the tar commands in the script via email, even for
successful runs. Since the system administrator may not wish to view all of this good news, the script
could be modified to alert the administrator only when an error occurs. The script also does not attempt
to read the tape it just created, leaving the administrator to verify backups manually.

7.5.4.3 Locked files and single-user mode

Running the script in Example 7-5 late at night may be sufficient to create a reasonable general backup
scheme in many situations. However, if users or overnight processes are actively working in a
filesystem as it is backed up, the state of the files in the archive will be in question. To avoid this

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (11 of 14) [3/9/2003 11:15:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

problem, it may be safest to eliminate the users and processes from the backup scheme completely by
putting Linux into single-user mode (runlevel 1) before executing the backup. In this mode, users will
not be logged on, and most services, such as web or database servers, will be shut down. With no
active processes running, the filesystem can be safely backed up. See Chapter 5 for more information
on changing runlevels.

7.5.5 Maintenance, Verification, and Restoration

Verifying the integrity of your backups and performing occasional file restorations and system
maintenance are easy processes. As mentioned earlier, backup schemes are useless unless they
successfully yield positive results during a restoration.

7.5.5.1 Caring for tape drive mechanisms

Modern tape drives store large volumes of data onto compact and relatively inexpensive media with a
surprisingly high degree of reliability. Their reliability is so good that it is easy to forget that the tape
drives require routine cleaning.

The surface of magnetic media is coated with one or more layers of microscopic metal oxide particles.
As tapes pass over the tape drive mechanism, some of these particles begin to accumulate on the heads
of the tape drive. A tape head is a very small and sensitive set of electromagnets that pass over the
tape. When oxide particles accumulate on the heads, they become less effective and can fail completely
in extreme cases. Some devices are capable of cleaning the heads themselves, but most require
periodic insertion of special cleaning media. These media look like ordinary tapes, but they are
formulated to extract loose particles from the tape heads. In a production environment with daily tape
drive activity, it is common to use cleaning media once every week or two.

It is important to follow the recommendations of the tape drive manufacturer for cleaning media
selection and cleaning frequency, and to keep the cleaning procedure a prominent part of a solid backup
methodology.

7.5.5.2 Media expiration

Some media manufacturers make claims that their media are "guaranteed for life." But be careful here --
the guarantee is probably good for only the cost of the media, not for the data you've stored on it. The
manufacturer's guarantee won't get you very far if you're having difficulty restoring priceless data from
an old, overused, worn-out tape. It's imperative that you implement a media rotation scheme to place a
limit on the number of uses of any given medium. Adding a usage limit can help to avoid getting into
trouble by over-using a tape. There is no hard rule on how many times a tape can be used, and any
guidelines should be based on the drive technology, recommendations from drive and tape
manufacturers, and direct personal experience. You may find that your situation shows that media can
be reused quite often. Regardless, it is best to avoid thinking of media in perpetual rotation. At the very
least, replace your backup media once or twice a year, just to be safe.

7.5.5.3 Verifying tar archives

Keeping tape drives clean and using fresh media lay a solid foundation for reliable backups. In addition
to those preventive measures, you'll want to routinely verify your backups to ensure that everything ran
smoothly. Verification is important on many levels. Clearly, it is important to ensure that the data is
correctly recorded. Beyond that, you should also verify that the tape drives and the backup commands
function correctly during restoration. Proper file restoration techniques should be established and tested
during normal operations, before tragedy strikes and places your operation into an emergency situation.

You can verify the contents of a tar archive by simply listing its contents. For example, suppose a

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (12 of 14) [3/9/2003 11:15:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

backup has been made of the /etc directory using the following command:

tar cvzf /dev/st0 /etc

After the backup is complete, the tape drive rewinds. The archive can then be verified immediately by
reviewing the contents with the -t option:

tar tf /dev/st0

This command lists the contents of the archive so that you can verify the contents of the tarfile.
Additionally, any errors that may prevent tar from reading the tape is displayed at this time. If there
are multiple archives on the tape, they can be verified in sequence using the nonrewinding device file:

tar tf /dev/nst0
mt -f /dev/nst0 fsf 1
tar tf /dev/nst0
mt -f /dev/st0 rewind

While this verification tells you that the tapes are readable, it does not tell you that the data being read
is identical to that in the filesystem. If your backup device supports them, the tar utility contains two
options -- verify and compare -- that may be useful to you. However, comparisons of files on the
backup media against the live filesystem may yield confusing results if your files are changing
constantly. In this situation, it may be necessary to select specific files for comparison that you are
certain will not change after they are backed up. You would probably restore those files to a temporary
directory and compare them manually, outside of tar. If it is necessary to compare an entire archive, be
aware that doing so doubles the time required to complete the combined backup and verify operation.

7.5.5.4 File restoration

Restoring files from a tar archive is simple. However, you must exercise caution regarding exactly
where you place the restored files in the filesystem. In some cases, you may be restoring only one or
two files, which may be safely written to their original locations if you're sure the versions on tape are
the ones you need. However, restoring entire directories to their original locations on a running system
can be disastrous, resulting in changes being made to the system without warning as files are
overwritten. For this reason, it is common practice to restore files to a different location and move those
files you need into the directories where you want them.

Reusing a previous example, suppose a backup has been made of the /etc directory:

tar cvzf /dev/st0 /etc

To restore the /etc/hosts file from this archive, the following commands can be used:

cd /tmp
tar xzf /dev/st0 etc/hosts

The first command puts our restore operation out of harm's way by switching to the /tmp directory.
(The directory selected could be anywhere, such as a home directory or scratch partition.) The second
command extracts the specified file from the archive. Note that the file to extract is specified without
the leading slash. This file specification will match the one originally written to the media by tar, which
strips the slash to prevent overwriting the files upon restore. tar will search the archive for the specified
file, create the etc directory under /tmp, and then create the final file: /tmp/etc/hosts. This file should
then be examined by the system administrator and moved to the appropriate place in the filesystem

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (13 of 14) [3/9/2003 11:15:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

only after its contents have been verified.

To restore the entire /etc directory, simply specify that directory:

tar xzf /dev/st0 etc

To restore the .bash_ profile file for user jdean from a second archive on the same tape, use mt before
using tar:

cd /tmp
mt -f /dev/nst0 fsf 1
tar xzf /dev/st0 /home/jdean/.bash_profile

In this example, the nonrewinding tape device file is used with mt to skip forward over the first archive.
This leaves the tape positioned before the second archive, where it is ready for tar to perform its
extraction.

On the Exam

This Objective on system backup isn't specific about particular commands or techniques.
However, tar is among the most common methods in use for simple backup schemes.

You should also know how to use the mt command to position a tape to extract the correct
archive.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/07-5.htm (14 of 14) [3/9/2003 11:15:13]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part I: General Linux Exam 101

Chapter 8. Exam 101 Review Questions and Exercises

This section presents review questions to highlight important concepts and hands-on exercises that you
can use to gain experience with the Topics covered on the LPI Exam 101. The exercises can be
particularly useful if you're not accustomed to routine Linux administration and should help you better
prepare for the exam. To complete the exercises, you'll need a working Linux system that is not in
production use. You might also find it useful to have a pen and paper handy to write down your
responses as you work your way through the review questions and exercises.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/08-0.htm [3/9/2003 11:15:13]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 8. Exam 101 Review Questions and
Exercises

8.1 GNU and Unix Commands (Topic 1.3)

8.1.1 Review questions

1. Describe the difference between shell variables and environment variables.

2. Compare and contrast built-in and explicitly defined commands and those found in PATH.

3. After a lengthy session of file manipulation on the command line, what will the !ls command
produce?

4. What program was the source for the default history editing key bindings in bash?

5. Explain the notion of pipes as they refer to shell capabilities, and illustrate using an example of
two or more filter programs.

6. Explain the -p option to cp and give an example of why it is necessary.

7. Give two examples of files matched by the wildcard ??[!1-5].

8. Name the three Standard I/O streams and their functions.

9. Give an example of the redirection operator, >, and describe how the outcome would be

different using the >> operator.

10. What process is the ultimate ancestor of all system processes? Give both the PID and the
program name.

11. Name three common utilities used for process monitoring.

12. What happens to a typical daemon when it receives SIGHUP? How would the behavior be

different if it received SIGKILL?

13. Compare and contrast background and foreground jobs, and state the syntax to put a command
in the background on the command line.

14. Explain the relationship between a process' nice number and its execution priority.

15. What two classifications of characters make up regular expressions?

16. How are the regular expressions [A-Z]* and ^[A-Z]*$ different?

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-1.htm (1 of 5) [3/9/2003 11:15:14]

InformIT Online Books > LPI Linux Certification in a Nutshell

8.1.2 Exercises

8.1.2.1 Exercise 1.3-1. Bash

1. Start a bash shell in a console or terminal window and enter the following commands:

$ MYVAR1="Happy"
$ MYVAR2="Birthday"
$ export MYVAR1
$ bash
$ echo $MYVAR1 $MYVAR2
$ exit
$ echo $MYVAR1 $MYVAR2

a. Was the behavior of the two echo commands identical?

b. If so, why? If not, why not?

c. What happened immediately after the bash command?

d. Which variable is an environment variable?

2. Continuing the previous exercise, enter Ctrl-P until you see the last echo command. Enter Ctrl-
P again.

a. What do you see?

b. Why wasn't it the exit command?

c. Enter Ctrl-P again so that the export command is displayed. Add a space and MYVAR2

so that the line now looks like this:

$ export MYVAR1 MYVAR2

What happens when you enter this command?

3. Still continuing the previous exercise, enter the command !echo. Does anything change as a
result of the revised export command?

4. The file command is used to examine a file's contents and displays the file type. Explain the
result of using file as follows:

$ cd / ; file $(ls | head -10)

8.1.2.2 Exercise 1.3-2. GNU commands in pipes

1. Execute this command on your system:

$ cut -d: -f1 /etc/passwd | fmt -w 20 | head -1

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-1.htm (2 of 5) [3/9/2003 11:15:14]

InformIT Online Books > LPI Linux Certification in a Nutshell

a. What was displayed?

b. How many lines of output did you see? Why?

c. What was the width of the output? Why?

2. Execute the following sed substitution command and explain why it might be used on
/etc/passwd:

$ sed 's/:[^:]*:/:---:/' /etc/passwd | less

8.1.2.3 Exercise 1.3-3. File management

1. Execute this command:

$ cd /sbin ; ls -li e2fsck fsck.ext2

a. What is the significance of the first field of the output?

b. Why is it identical for both listings?

c. Why are the file sizes identical?

2. Execute the following command sequence and explain the result at each step (this example
assumes that cp is not aliased to cp -i, which is a common default alias):

$ cd
$ cp /etc/skel .
$ cp -r /etc/skel .
$ cp -rfv /etc/skel .
$ cp -rfvp /etc/skel .

3. Remove the directory created in the previous exercise, using rmdir and/or rm. Which command
can complete the task in a single step?

4. Explain when the wildcard {htm,html} might be useful.

5. Give an example of how the wildcard *.[Tt][Xx][Tt] could be used with directory listings.

6. What can be said about filenames matched by the *.? wildcard?

8.1.2.4 Exercise 1.3-4. Redirection

1. Experiment with redirecting the output of ls as follows:

$ cp /etc/skel . 2> info.txt

a. How is the terminal output different than that observed in Exercise 1.3-3?

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-1.htm (3 of 5) [3/9/2003 11:15:14]

InformIT Online Books > LPI Linux Certification in a Nutshell

b. What is written to info.txt ?

2. Experiment with the various forms of redirection in Table 3-4, including the tee command.

8.1.2.5 Exercise 1.3-5. Processes

1. Experiment with ps, pstree, and top to monitor active processes on your system. Include top's
interactive commands.

2. If you have Apache running, use ps (and perhaps grep) to identify the httpd process and its
pid, which is owned by root. Send that process the HUP signal as follows:

$ kill -SIGHUP pid

Using tail, examine the Apache error log (the location of your log file may differ):

$ tail /var/log/httpd/error_log

What was the effect of HUP on Apache?

3. While running X, start some interactive processes in the background and experiment with using
jobs, bg, and fg. For example:

$ netscape &
$ xterm &
$ emacs &
$ jobs
$ fg 1
$ fg 2
...

Were you able to bring each of the jobs to the foreground successfully?

8.1.2.6 Exercise 1.3-6. Process priority

1. This exercise starts a process, using various methods to view and modify the process execution
priority:

a. Start an editing session in the background using nice:

$ nice vi &

b. Observe that the process was nice'd using ps:

$ ps -u

c. Check it again using top:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-1.htm (4 of 5) [3/9/2003 11:15:14]

InformIT Online Books > LPI Linux Certification in a Nutshell

$ top -i

d. Within top, renice the vi process using the r command and observe the effect on
priority.

e. Exit top and use renice to set the nice value back to zero.

8.1.2.7 Exercise 1.3-7. Regular expressions

1. Use a simple regular expression with grep to find sh and bash users in /etc/passwd:

$ grep "/bin/..sh" /etc/passwd

2. Determine the number of empty lines in /etc/inittab :

$ grep "^ *$" /etc/inittab | wc -l

Explain the regular expression and the use of wc.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-1.htm (5 of 5) [3/9/2003 11:15:14]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 8. Exam 101 Review Questions and
Exercises

8.2 Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 2.4)

8.2.1 Review questions

1. How many IDE devices can be installed in a Linux system? If all of them are installed and
they're all disk drives, what are their device names?

2. What are the three types of disk partitions found on a Linux system? Which type can contain
other partitions and which type does it contain?

3. Name the directories that must be within the root partition.

4. Describe the differences between physical disks, partitions, and filesystems.

5. What is a /swap partition used for? Why not just use swap files?

6. What kind of output will df -h yield?

7. Describe a common situation that is likely to cause the automatic use of fsck on the next
system boot.

8. Name the fields in /etc/fstab.

9. Give the command to mount a CD-ROM drive on the secondary master IDE device, assuming
that /etc/fstab does not contain a line for the device.

10. If the ro option is used in /etc/fstab for /usr, what limitation is placed on that filesystem?

11. Compare and contrast hard and soft quota limits.

12. What three types of users can be granted or denied access to filesystem objects and how do
they apply to files and directories?

13. Name the symbolic permission that is equivalent to 0754.

14. Describe a situation that requires the SUID permission. What ramifications does this permission
imply?

15. Compare and contrast the differences between hard and symbolic links.

16. Name the document to which Linux directory assignments should conform.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-2.htm (1 of 5) [3/9/2003 11:15:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

17. Compare and contrast the differences between the locate and find commands.

8.2.2 Exercises

Working with partitions and filesystems can damage your system. It is
recommended that you use an expendable Linux system to perform the
following exercises to be certain that mistakes won't harm a production
system.

8.2.2.1 Exercise 2.4-1. Partitions and filesystems

1. As root, run fdisk and enter the p command to print the partition table. Examine your system's
configuration and make sure you understand everything you see. Enter the l (a lowercase L)
command and review the many partition types Linux can accommodate. Enter the q command
to quit without saving changes.

2. If you have available disk space, use fdisk to create a new ext2 partition, then format it with
mkfs. Pay close attention to the output from mkfs.

8.2.2.2 Exercise 2.4-2, Filesystem integrity

1. Use a pager to examine /var/log/messages and search for entries made by fsck. Did it find any
problems?

2. If you created a new partition in Exercises 2.4-1 and 2.4-2, check it now with fsck and observe
the output:

$ fsck -f /dev/partition

3. Check on the status of filesystems using df:

$ df -h

a. How does the -h flag assist you with interpreting the results?

b. Are any of your filesystems nearly full?

c. Which are underutilized?

4. As root, get a top-level view of disk usage by user using du:

$ du -s /home/*

a. Are there any surprises?

b. How could you use sort to make this output more useful?

8.2.2.3 Exercise 2.4-3. Mounting and unmounting

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-2.htm (2 of 5) [3/9/2003 11:15:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

1. Review /etc/fstab. Be sure you can name all six fields and their order as well as describe their
function.

2. Examine the output of the mount command without options. Compare the output with the
contents of /etc/fstab.

3. If you created a new partition in Exercises 2.4-1 and 2.4-2, mount it on /mnt/new or some
other location of your choosing:

$ mkdir /mnt/new
$ mount /dev/partition /mnt/new
$ df /mnt/new

a. Did the filesystem mount correctly? Can you store files on it?

b. Next, unmount it:

$ umount /dev/partition /mnt/new

c. Add a line to /etc/fstab for the new partition:

/dev/partition /mnt/new ext2 defaults 1 2

8.2.2.4 Exercise 2.4-4. Disk quotas

1. Using the instructions in Section 4.4, enable quotas on your /home filesystem.

2. Test the quotas by setting them low for a particular user, then start adding files as that user
until the quota is exceeded. What is the observable consequence of exceeding the quota?

8.2.2.5 Exercise 2.4-5. File permissions

1. Practice converting these file modes from octal to symbolic form:

a. 0777

b. 0754

c. 0666

d. 1700

e. 7777

2. Practice converting these file modes from symbolic to octal form. You can assume that x bits are

set under SUID, SGID, and sticky bits:

a. -rwxr-xr-x

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-2.htm (3 of 5) [3/9/2003 11:15:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

b. -r--r--r--

c. -rwsrwsrwx

d. -rw-rw---t

e. -rws-w--w-

3. Create temporary files and use chmod with both symbolic and numeric mode modifications.
Include SUID, SGID, and sticky bits.

4. Using the instructions in Section 4.5 to set up a workgroup directory using group and sticky bits
for access control. Verify that the directory meets the defined requirements.

8.2.2.6 Exercise 2.4-6. File ownership

1. As root, create temporary files and use chown to modify user ownership and group ownership.

2. Use chgrp to modify group ownership on the temporary files created in the previous exercise.

8.2.2.7 Exercise 2.4-7. Links

1. Create a temporary file and links as follows:

$ touch a_file
$ ln -s a_file an_slink
$ ln a_file an_hlink

2. Now verify that the file and the hard link indeed share an inode and that the symbolic link points
to the original file:

$ ls -a_file an_slink an_hlink

8.2.2.8 Exercise 2.4-8. File location

1. Read the latest version of the FHS (it's not very long).

2. Examine your filesystem. Does it match the FHS? If you find discrepancies, is it clear why they
don't?

3. Use which to check on the location of executable files.

4. Use find to search for bash:

$ find / -name bash

Now use locate for the same file:

$ locate bash

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-2.htm (4 of 5) [3/9/2003 11:15:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

How are the results different? Describe a context in which each command would be useful.

5. Update your locate database using updatedb. Note the amount of time this command takes
and the resources it consumes on your system.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-2.htm (5 of 5) [3/9/2003 11:15:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 8. Exam 101 Review Questions and
Exercises

8.3 Boot, Initialization, Shutdown, and Runlevels (Topic 2.6)

8.3.1 Review questions

1. Name and briefly describe the two parts of LILO. Which part has a configuration file and what is
that file called?

2. What are the ramifications relating to new hardware when running a monolithic kernel?

3. Which three runlevels are well defined across Linux distributions, and what actions to they
perform?

4. Describe a situation that would imply the need to switch to single-user mode.

5. What are the two alphabetic prefixes used in the rd directories, and what do they stand for?

6. How can you shutdown and halt a Linux system immediately using shutdown?

8.3.2 Exercises

8.3.2.1 Exercise 2.6-1. Boot

1. Examine the contents of /etc/lilo.conf. How many kernel images or operating systems are
configured for load by LILO? Explain the options you find in the file.

2. Install the boot loader by executing lilo. What happened?

3. Boot your system and manually specify the root filesystem using the root= keyword at the LILO

prompt. What happens if you specify the wrong partition?

4. Use dmesg and less to examine boot-time messages. Compare what you find to the latest boot
messages found in /var/log/messages.

5. Boot your system and use the single or 1 option to boot directly into single-user mode.

8.3.2.2 Exercise 2.6-2. Runlevels

1. After booting to single-user mode, switch to your normal runlevel using init n.

a. Does the system come up as expected?

b. Enter init 1 to go back to single-user mode. What daemons are still running?

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-3.htm (1 of 2) [3/9/2003 11:15:16]

InformIT Online Books > LPI Linux Certification in a Nutshell

2. Familiarize yourself with the contents of a few of the scripts in /etc/rc.d/init.d (your system
directories may vary).

3. Look in rc0.d through rc6.d for links to the scripts you examined. How are the scripts used? In
which runlevels is the corresponding service active?

4. Shut down your system with init 0.

5. Shut down your system with shutdown -h now.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-3.htm (2 of 2) [3/9/2003 11:15:16]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 8. Exam 101 Review Questions and
Exercises

8.4 Documentation (Topic 1.8)

8.4.1 Review questions

1. Describe the PAGER environment variable.

a. How does it affect the man facility?

a. If PAGER is not set, how does man display output?

b. Does this environment variable affect the info facility?

2. In response to your query on a library function, man returns a page on an identically named
user command. Why does this happen?

a. How do you display the page for the function and not the command?

b. How do you display both?

3. Where are the HOWTO documents located on a typical Linux system?

4. Name the program that displays GNU Texinfo pages.

5. What is probably the most important skill you can offer to end users while staffing a helpdesk
service?

8.4.2 Exercises

8.4.2.1 Exercise 1.8 -1. man and /usr/doc

1. Run a man inquiry as follows:

$ man -a -Pless mkfifo

There is both a mkfifo command and a mkfifo function. You'll be looking at the mkfifo
command from section 1 of the manual. Note MKFIFO(1) at the top of the page.

Press the letter q to terminate the pager program. The pager is then invoked again and displays
the mkfifo function from section 3 of the manual. Note MKFIFO(3) at the top of the page.

Run the man command again, using the -Pmore option as follows:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-4.htm (1 of 4) [3/9/2003 11:15:17]

InformIT Online Books > LPI Linux Certification in a Nutshell

$ man -a -Pmore mkfifo

a. What differences do you see in the output?

b. What does the -P option do?

2. Run another man inquiry as follows:

$ man -d ln

a. What output do you get from man?

b. What is the -d option?

c. Did you see information on the ln command?

Now examine the man configuration file:

$ less /etc/man.config

Notice how the contents of this file coincide with the result you received from the -d option.

3. Enter the following command:

$ locate whois

Note that locate shows two commands that match whois, along with a directory and a README
file.

Now use the stat program to evaluate the two commands:

$ stat /usr/bin/whois /usr/bin/fwhois

Examine the inode number for both files. An inode is a unique identifier, or node, of your Linux
filesystem. The fact that these two files show the same inode indicates that they are links to the
same file. That is, one file has two directory entries with different names. This means that you'll
be running the same program regardless of which command name you use.

Next, examine the README file that locate reported:

$ less /usr/doc/fwhois-1.00/README

Your version may be different. Now look for a manpage and an info page for this program:

$ man fwhois
$ info fwhois

As you can see, the program author chose not to offer a manpage or an info page for fwhois,

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-4.htm (2 of 4) [3/9/2003 11:15:17]

InformIT Online Books > LPI Linux Certification in a Nutshell

leaving the README in /usr/doc as the sole documentation for the program.

4. Suppose you are Spanish-speaking and would like to learn about how to use Linux in your
native tongue. Try the following commands:

$ man spanish
$ info spanish
$ find /usr/doc -name "*anish*"

a. Do the man and info utilities have anything to offer on Spanish?

b. Did you find a document in /usr/doc that concerns Spanish?

8.4.2.2 Exercise 1.8-2. Internet documentation resources

1. Using a Usenet news reader program, subscribe to comp.os.linux and comp.os.linux.advocacy.

a. Of these, which has the highest volume, as indicated by the number of unread
messages?

b. Do you see messages of interest in these groups?

8.4.2.3 Exercise 1.8-3. Creating system documentation

1. Using a text editor, create a text file named mycmd.1. Complete the following steps:

a. This page is intended as an example of local documentation, so store it in
/usr/local/man/man1/mycmd.1. Are there other files in this directory already? Why or
why not?

b. What happens when you execute the command:

$ man mycmd

Did you get the result you expected? Experiment with the formatting macros by adding
italic and bold both on a per-line basis (.B) and an in-line basis (\fB).

8.4.2.4 Exercise 1.8-4. Acting as a Linux helpdesk

Suppose you are a helpdesk technician in a mixed-systems office, and you are relatively new to Linux. A
user calls your helpdesk with a general question about Linux system shutdown. He indicates that he's
heard from Unix gurus that using the halt command could be unsafe. He also reports getting frustrated
with Windows NT users who use the Ctrl-Alt-Del key combination on his system console, which causes
his Linux server to shut down. He asks for specific information on:

● How to safely shut down Linux.

● How to allow nonsuperusers the ability to shut down cleanly.

● How to disable the Ctrl-Alt-Del shutdown.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-4.htm (3 of 4) [3/9/2003 11:15:17]

InformIT Online Books > LPI Linux Certification in a Nutshell

Let's further assume you don't know how to answer these questions and that you have access to system
documentation. Complete the following steps:

1. Use the man facility to investigate the halt command. Based on what you find there, answer
the following:

a. In what section of the manual is halt located? Why?

b. Determine if it is "safe" to use halt to shut down Linux. What caused the Unix gurus to
instruct the caller that using halt was not safe?

c. Determine if it would still be safe if the user uses the -n option to halt.

d. Is it appropriate to use halt on a multiuser system to which others are logged in?

e. Use man on the other commands referred to by the halt manpage in the SEE ALSO
section.

2. Evaluate the other commands:

a. Which commands can be used to shut down the system in place of halt?

b. Which commands would be the most appropriate for shutting down a multiuser system?

3. From what you see in the manpages:

a. Where is the Ctrl-Alt-Del system shutdown configured?

b. Explain how to disable it.

c. Do you need to reboot to enable the change? If so, why?

d. How can you configure the system to allow specified nonsuperusers to shut down
cleanly?

e. If you use the info command, are you provided with additional information?

4. After successfully following your instructions, the user calls again. This time he is puzzled by
error messages that are produced when his users attempt a clean shutdown from multiuser
mode using the shutdown command without arguments.

a. Re-evaluate the manpages in question. Are there any clues to common problems? (Hint:
see BUGS.)

b. State the typical shutdown command to issue from multiuser mode.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-4.htm (4 of 4) [3/9/2003 11:15:17]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 8. Exam 101 Review Questions and
Exercises

8.5 Administrative Tasks (Topic 2.11)

8.5.1 Review questions

1. Why is it considered insecure to store encrypted passwords in /etc/passwd ?

a. What is the alternative?

b. When the alternative is implemented, what happens to the password field in /etc/passwd
?

2. What would happen to a user account if the default shell were changed to /bin/false ?

3. When a new account is created with useradd -m, what files are used to populate the new home
directory?

4. Compare and contrast the execution of /etc/profile and /etc/bashrc.

5. What is the complete filename for the file where most syslog messages are sent?

6. Describe the three syslog parameters: facility, level, and action.

7. Compare and contrast cron and at.

8. Is there a cron command?

9. State the format of a crontab file, describing each of the six fields.

10. What does an asterisk mean in crontab fields 1 through 5?

11. Compare and contrast the differential and incremental backup methods.

12. Why is mt usually used along with tar to implement simple backup schemes?

a. What special measures must be taken with regard to device names when using mt for
multiple-volume tar backups?

8.5.2 Exercises

8.5.2.1 Exercise 2.11-1. User accounts

1. Examine the /etc/passwd file on your system.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-5.htm (1 of 3) [3/9/2003 11:15:18]

InformIT Online Books > LPI Linux Certification in a Nutshell

a. Is this the only means of user authentication on your system?

b. Are shadow passwords in use?

c. Are user accounts handled by NIS or are they all local?

2. Repeat the first exercise for groups.

3. If you have an expendable system available, experiment with implementing shadow passwords.

4. Add a user with useradd, including a new home directory populated with files from /etc/skel.

5. Add a group with groupadd.

6. Use usermod to add your new user to the new group.

7. Set the new user's password using passwd.

8. Log into the new account, and use newgrp to change to the new group.

9. Delete the new group and user (including home directory) using groupdel and userdel.

8.5.2.2 Exercise 2.11-2. User environment and variables

1. Examine the contents of /etc/skel. How similar are they to your own home directory?

2. Review the contents of /etc/profile and /etc/bashrc.

8.5.2.3 Exercise 2.11-3. Syslog and log files

1. Add the local5 facility to your configuration as described in Section 7.3. Use logger to write to
your new log file, and verify its contents. Compare your log entries with those in
/var/log/messages.

2. Examine /etc/logrotate.conf. What happens after /var/log/messages is rotated?

8.5.2.4 Exercise 2.11-4. cron and at

1. Add an entry in your personal crontab file to perform a task, such as sending you an email
message. Confirm that the action occurs as expected. Experiment with the five time specifiers.

2. Schedule a command in the future with at. How is at different from cron?

8.5.2.5 Exercise 2.11-5. Backup

1. Imagine that you have recently been made responsible for an important production system. No
formalized backup procedures are in place. Backup operations that are run are not cataloged
and media are scattered. Now imagine that after a holiday weekend the system has crashed due

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-5.htm (2 of 3) [3/9/2003 11:15:18]

InformIT Online Books > LPI Linux Certification in a Nutshell

to a power failure. Upon restart, the system has severe disk errors requiring manual fsck. After
repairs are complete, the system is again usable, but users complain about missing, truncated,
or corrupt files. If a formalized backup procedure had been in place, would the outcome have
been different?

2. If you have a tape drive available, experiment with tar, creating small tarfiles on a tape.

a. Using the nonrewinding tape device, create multiple archives on the tape, and use mt to
position among them.

b. Verify that the various archives you create are accessible to tar.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/08-5.htm (3 of 3) [3/9/2003 11:15:18]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part I: General Linux Exam 101

Chapter 9. Exam 101 Practice Test

Exam 101 consists approximately of 60 questions. Most are multiple-choice single-answer, a few are
multiple-choice multiple-answer, and the remainder are fill-in questions. No notes or other materials are
permitted, and you have 90 minutes to complete the exam. The answers are provided (Section 9.2).

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/09-0.htm [3/9/2003 11:15:18]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 9. Exam 101 Practice Test

9.2 Answers

1. c. Section 8 holds administrative commands such as fsck and mkfs.

2. b. Both ps and top yield process status. None of the other listed commands are related to
processes.

3. e. IDE disk drives are referred to as /dev/hdx, where x is a, b, c, or d. Partitions are numbered

from 1 through 4 for primary and extended partitions and 5 through 16 for logical partitions.

4. d. The tail command is used for checking the last lines of a text file. By default, it displays 10
lines.

5. a. The !! command history expansion executes the previous command. Entering the Ctrl-P
keystroke uses the Emacs key-binding bash to move up one line in the history; pressing Enter
executes that command.

6. b, c, and d. fsck is a frontend for the programs that actually do the checking. e2fsck and
fsck.ext2 are links to the program that checks native Linux ext2 filesystems.

7. The man command displays manpages.

8. c. df reports disk information, including a percentage of the filesystems used. Answer a is
incorrect because /home may not be the only partition on the physical disk.

9. e. /var and /tmp are mainly transient, /usr is typically static, /root is simply a home directory
for root, but /etc contains system configuration information that frequently changes.

10. d. split -n outfile separates a file into multiple output files, each with n lines, and names them
outfileaa, outfileab, and so on. Since the original file had 12 lines and Carolyn split it into sets of
4 lines, the result is three files named glaa, glab, and glac, each containing 4 lines.

11. c. CD-ROMs use the iso9660 filesystem, which is the default for mount, but also indicated using
-t. Without the assistance of an entry in /etc/fstab, both the mount device (/dev/cdrom) and
the mount point (/mnt/cdrom) must be provided.

12. b. The write will continue until the hard limit of 110 MB is reached, after which the write fails
and data is lost.

13. b and d. Without user privilege to the file, jdoe cannot see the contents. However, as the file's
owner, the mode can be changed to gain access. Everyone in finance is granted permission, but
jdoe as the owner is denied.

14. b and c. find and locate do not search the contents of files. /etc/passwd is not a script.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/09-2.htm (1 of 4) [3/9/2003 11:15:20]

InformIT Online Books > LPI Linux Certification in a Nutshell

15. cmd1 | cmd2

16. a. The variable must be set and exported. The semicolon separates the two commands.

17. /etc/group

18. a and c. /etc, /lib, /bin, /sbin, and /dev must be in the /root filesystem.

19. cron.

20. d. The first echo argument is unquoted and thus returns its contents, ls. The second is quoted
with double quotes, which do not preserve the $, so it too returns ls. The third is quoted with
single quotes, which do preserve the $, so it returns the string $MYVAR. The last argument is

backquoted, which means that it returns the result of the command stored in $MYVAR. The

command is ls, which displays the only file in the directory, Afile1.

21. e. Using the & character puts a program in the background.

22. d. The tr program translates characters from one group into another, including case.

23. b. init, the grandfather of all processes, always has PID 1.

24. c. The g indicates that we're operating on the group privilege, and the +s indicates that we

should add the "set id" bit, which means that the SGID property will be applied.

25. a. User mode 7 is the same as u=rwx, group mode 5 is the same as g=rx, and other mode 4 is

the same as o=r. The ~/ syntax implies the user's home directory.

26. ln -s

27. c. The octal dump program, when used with the -t x option, will output in hexadecimal

notation.

28. d. The -p, or preserve, option is required to retain dates.

29. d. The [Ll] matches both letters.

30. a. kill -9 is drastic but necessary for processes unable to respond to other signals.

31. e. Ctrl-Z stops the job and gives control back to the terminal. bg places the job into the
background and restarts it.

32. fdisk

33. b. By default, files do not have the execute privilege, which rules out all responses containing
odd numbers in the mode. They also do not by default have the sticky bit set, which eliminates
response e. Response b is the result of masking initial bits 666 with umask 027, leaving 640,

which is the same as 0640.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/09-2.htm (2 of 4) [3/9/2003 11:15:20]

InformIT Online Books > LPI Linux Certification in a Nutshell

34. e. The script has an error and will not produce the expected output. In a for statement, the

loop variable does not have the dollar sign. Changing line 2 to for v1 in a1 a2 will correct

the error and produce the output in answer B.

35. c. tar should be used with the extraction option x and a tape device, such as SCSI tape
/dev/st0.

36. a. cp should be aliased to the interactive mode with the -i option in .bashrc. .bash_profile
normally doesn't include aliases.

37. d. The nl command numbers lines.

38. b and e. The users option grants non-privileged users the right to mount and unmount the

filesystem. /dev/fd0 is a floppy device.

39. d. Brackets ([]) are used to group a character set consisting of numbers 1-8 and characters A-Z

and a-z. The ^ just inside the opening bracket negates the whole string, such that the string

matches numbers 0, 9, and symbols.

40. d. The shadow password system has been implemented, placing all passwords in /etc/shadow as
denoted by the x following the username.

41. init 1. telinit 1 would also work, as they are both links to the same file.

42. d. The Linux System Administrators' Guide is a free publication of the Linux Documentation
Project (LDP) and is available online at http://www.ibiblio.org/mdw/index.html.

43. c. The sticky bit in the mode prevents deletion by non-owners, but root can still delete the file.

44. PATH.

45. a. The which command is used to search the directories specified in variable PATH.

46. c. The runlevel command yields the previous and present runlevels.

47. b. /etc/syslog.conf is the configuration file for the Syslog daemon syslogd.

48. d. pr converts text files into paginated, columnar versions.

49. c. Since Dave is using a modular kernel, the network driver 3c509.o is a kernel module. LILO
can send kernel parameters but not module parameters. These are stored in /etc/conf.modules.

50. c. While answers b and d are technically correct, answer c best describes /sbin.

51. SUID.

52. nice.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/09-2.htm (3 of 4) [3/9/2003 11:15:20]

http://www.ibiblio.org/mdw/index.html

InformIT Online Books > LPI Linux Certification in a Nutshell

53. a. cat concatenates files, and as a subset, will list one or more files to standard output. tac lists
files in reverse order.

54. b. A metacharacter is a special character that is used to modify and control the interpretation of
literals. File globbing is generally considered distinct but very similar to the use of regular
expressions.

55. d. PCs usually have two IDE interfaces, each capable of handling two devices.

56. e. A filesystem without free inodes cannot create new objects until existing objects are removed.

57. c. This is an example line from the output of df -h, the "human-readable" mode of df.

58. d. The shutdown -f command configures the filesystem to skip the fsck checking. The -F
option forces the check.

59. a. LILO can start the Windows NT boot loader and many other operating systems.

60. b. The > character opens and writes to a new file, while >> appends to an existing file, unless

that file doesn't exist, in which case it is opened first.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/09-2.htm (4 of 4) [3/9/2003 11:15:20]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 9. Exam 101 Practice Test

9.1 Questions

1. What section of the online user's manual and command reference holds administrative (not
user) commands? Select one.

a. Section 1

b. Section 2

c. Section 8

d. Section n

e. Section s

2. What two commands will display the status of processes on a Linux system? Select one.

a. ls and df

b. ps and top

c. ps and df

d. df and top

e. du and df

3. What does the device file /dev/hdb6 represent? Select one.

a. An extended partition on a SCSI disk drive

b. A logical partition on a SCSI disk drive

c. An extended partition on an IDE disk drive

d. A primary partition on an IDE disk drive

e. A logical partition on an IDE disk drive

4. Which command will display the last lines of text file file1? Select one.

a. head -bfile1

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (1 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

b. head --bottomfile1

c. head -vfile1

d. tailfile1

e. tail -n 1file1

5. In the bash shell, entering the !! command has the same effect as which one of the following?

a. Ctrl-P and Enter

b. Ctrl-N and Enter

c. Ctrl-U and Enter

d. !-2

e. !2

6. Which of the following commands can be used to check an ext2 filesystem? Select all that apply.

a. fsck -ext2 /dev/hda5

b. fsck /dev/hda5

c. e2fsck /dev/hda5

d. fsck.ext2 /dev/hda5

e. fsck.linux /dev/hda5

7. Name the command that displays pages from the online user's manual and command reference.

8. In response to the df command, the system reports a Use% of 98% for the filesystem mounted

on /home. Which one of the following best describes the significance of this information?

a. Files on /home are consuming 98 percent of the physical disk.

b. File read/write activity on /home are consuming 98 percent of system I/O capacity.

c. Files on /home are consuming 98 percent of the /home filesystem.

d. Inodes on /home are nearly exhausted.

e. Inodes on /home are 98 percent free.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (2 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

9. Of the following directories, which one is the most important to back up on a routine basis?

a. /var

b. /tmp

c. /usr

d. /root

e. /etc

10. Carolyn has a text file named guest_list containing 12 lines. She executes the following
command. What is the result? Select one.

split - 4 guest_list gl

a. The first four columns in the text are written to new files glaa, glab, glac, and glad.

b. The first four columns in the text are written to new files aagl, abgl, acgl, and adgl.

c. The lines of guest_list are evenly divided among new files glaa, glab, glac, and glad.

d. The lines of guest_list are evenly divided among new files glaa, glab, and glac.

e. The lines of guest_list are evenly divided among new files aagl, abgl, and acgl.

11. Which one of the following commands would be best suited to mount a CD-ROM containing a
Linux distribution, without depending on any configuration files?

a. mount /dev/cdrom /dev/hdc

b. mount -f linux /dev/hdc /mnt/cdrom

c. mount -t iso9660 /dev/cdrom /mnt/cdrom

d. mount -t linux /dev/cdrom /mnt/cdrom

e. mount -t iso9660 /mnt/cdrom /dev/cdrom

12. An ext2 filesystem is configured with user quotas enabled. The soft limit is set at 100 MB per
user, the hard limit is set at 110 MB per user, and the grace period is seven days. User bsmith
already owns 90 MB of the data stored on the filesystem. What happens when bsmith writes a
new file of size 30 MB? Select one.

a. The write will fail, but the superuser can recover the entire file within seven days.

b. The write will fail, and the file will be truncated permanently.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (3 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

c. The write will succeed, but the file will be truncated permanently.

d. The write will succeed, but the file will be available for only seven days.

e. The write will succeed, but the file will be truncated in seven days.

13. User jdoe, a member of the finance group, owns a text file with group owner finance and mode
0077. Which statements are true regarding access to view the contents of the file, assuming the
directory that contains it has mode 0777 ? Select all that apply.

a. jdoe can view the file's contents.

b. jdoe can first change the protection mode of the file and then view the file's contents.

c. root cannot view the file's contents.

d. Everyone in the finance group can view the file's contents except jdoe.

e. Everyone in the finance group can view the file's contents including jdoe.

14. Which of the following commands displays the comments from a bash script? Select all that
apply.

a. find "^#" /etc/rc.d/rc.local

b. sed '/^#/ !d' /etc/rc.d/init.d/httpd

c. grep ^# /etc/rc.d/init.d/httpd

d. grep ^# /etc/passwd

e. locate "^#" /etc/skel/.bashrc

15. State the syntax to direct the standard output of cmd1 directly into the standard input of
cmd2.

16. Which one of the following answers creates an environment variable VAR1, present in the

environment of a bash child process?

a. VAR1="fail" ; export VAR1

b. VAR1="fail" \ export VAR1

c. VAR1="fail"

d. set VAR1="fail" ; enable VAR1

e. export VAR1 \ VAR1="fail"

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (4 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

17. Name the full path and name of the file that holds most of the information on system user
groups.

18. Which of the following directories must be part of the root filesystem? Select all that apply.

a. /etc

b. /home

c. /lib

d. /usr

e. /root

19. Name the facility that independently executes commands on a periodic basis for multiple users.

20. Alex is currently working in a directory containing only one file, Afile1. What is displayed after
the following commands are entered in bash? Select one.

MYVAR=ls
echo $MYVAR "$MYVAR" '$MYVAR' `$MYVAR`

a. Afile1 Afile1 Afile1 Afile1

b. lsAfile1 Afile1 Afile1

c. lslsAfile1 Afile1

d. ls ls$MYVAR Afile1

e. ls ls ls $MYVAR

21. What does the & character do when placed at the end of a command? Select one.

a. It allows another command to be entered on the same line.

b. It causes the process to be stopped.

c. It restarts a stopped process.

d. It causes the process to be placed into the foreground.

e. It causes the process to be placed into the background.

22. Which one of the following commands could be used to change all uppercase characters to
lowercase in the middle of a pipe?

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (5 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

a. grep

b. egrep

c. wc

d. tr

e. pr

23. What is the PID of init? Select one.

a. 0

b. 1

c. 2

d. undefined

e. unknown

24. Which one of the following outcomes results from the following command?

chmod g+s /home/software

a. The SUID bit will be set for /home/software.

b. The SGID bit will be set for /home/software, preventing access by those not a member
of the software group.

c. The SGID bit will be set for /home/software, in order to keep group membership of the
directory consistent for all files created.

d. The sticky bit will be set for /home/software.

e. The sticky bit will be applied to all files in /home/software.

25. Which one of the following commands is equivalent to the following command for user jdoe
whose home directory is /home/jdoe ?

chmod 754 ~/file1

a. # chmod u=rwx,g=rx,o=r /home/jdoe/file1

b. # chmod ugo=rwx ~/file1

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (6 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

c. # chmod u=7,g=5,o=4 ~/file1

d. # chmod 754 \home\jdoe\file1

e. # chmod 754 /usr/jdoe/file1

26. What command and single required option creates a symbolic link in a Linux ext2 filesystem?

27. What command can display the contents of a binary file in a readable hexadecimal form? Select
one.

a. xd

b. hd

c. od

d. Xd

e. dump

28. Which one of the following commands copies files with the .txt extension from /dir1 into /dir2,
while preserving file attributes such as dates?

a. mv --copy /dir1/*.txt /dir2

b. mv /dir1/*.txt /dir2

c. cp -k /dir1/*.txt /dir2

d. cp -p /dir1/*.txt /dir2

e. cp -p /dir2 < /dir1/*.txt

29. Which one of the following file globs matches "Linux" and "linux," but not "linux.com" and not
"TurboLinux"?

a. [L/linux]

b. ?inux

c. \L\linux

d. [Ll]inux

e. [Ll]inux?

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (7 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

30. A process with PID 4077 is misbehaving on your system. As superuser, you enter the following
command:

kill 4077

However, nothing changes as a result. What can you do to terminate the process? Select one.

a. # kill -9 4077

b. # kill -1 4077

c. # kill +9 4077

d. # kill 4078

e. # kill --die 4077

31. Which one of the following key sequences is used to put a noninteractive text-mode program
that is attached to the terminal into the background to allow it to continue processing?

a. Ctrl-C

b. Ctrl-B

c. Ctrl-B and then enter the bg command

d. Ctrl-Z

e. Ctrl-Z and then enter the bg command

32. What basic command is used to create hard disk partitions?

33. With a umask of 027, how is the initial mode set for a newly created file? Select one.

a. 0750

b. 0640

c. 0027

d. 1027

e. 1640

34. Consider the following script, stored in a file with proper modes for execution:

#!/bin/bash

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (8 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

for $v1 in a1 a2
do
echo $v1
done

Which one of the following best represents the output produced on a terminal by this script?

a. in

a1

a2

b. a1

a2

c. $v1

$v1

$v1

d. No output is produced, but the script executes correctly.

e. No output is produced, because the script has an error.

35. Which one of the following commands verbosely extracts files from a tar archive on a magnetic
tape device?

a. tar cvf /dev/st0

b. tar cvf /dev/ttyS0

c. tar xvf /dev/st0

d. tar xvf /dev/ttyS0

e. tar rvf /dev/st0

36. Alex wants to protect himself from inadvertently overwriting files when copying them, so he
wants to alias cp to prevent overwrite. How should he go about this? Select one.

a. Put alias cp='cp -i' in ~/.bashrc.

b. Put alias cp='cp -i' in ~/.bash_profile.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (9 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

c. Put alias cp='cp -p' in ~/.bashrc.

d. Put alias cp='cp -p' in ~/.bash_profile.

e. Put alias cp = `cp -I` in ~/.bashrc.

37. Which one of the following utilities outputs a text file with line numbers along the left margin?

a. tar

b. wc

c. tr

d. nl

e. ln

38. The following line comes from an /etc/fstab file. Which of the statements is accurate given the
contents of this line? Choose all that apply.

/dev/fd0 /mnt/fd0 vfat noauto,users 0 0

a. Users are prohibited from mounting and unmounting the filesystem.

b. Users are permitted to mount and unmount the filesystem.

c. The filesystem will be mounted on mount point /dev/fd0.

d. The filesystem is expected to be a Linux native filesystem.

e. The filesystem is on a floppy disk.

39. Which one of the following is an accurate statement regarding this regular expression?

[^1-8A-Za-z]

a. It matches all letters and numbers.

b. It matches all letters and numbers except 9.

c. It matches all letters and numbers except 9 and 0, but only at the beginning of a line.

d. It matches 9, 0, and other nonletter and nonnumber characters.

e. It matches characters other than letters or numbers.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (10 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

40. Monica consults the /etc/passwd file expecting to find encrypted passwords for all of the users
on her system. She sees the following:

jdoe:x:500:500::/home/jdoe:/bin/bash
bsmith:x:501:501::/home/bsmith:/bin/tcsh

Which of the following is true? Select one.

a. Accounts jdoe and bsmith have no passwords.

b. Accounts jdoe and bsmith are disabled.

c. The passwords are in /etc/passwd-

d. The passwords are in /etc/shadow

e. The passwords are in /etc/shadow-

41. Name the briefest form of the command to initiate a change to runlevel 5.

42. Where does The Linux System Administrators' Guide originate? Select one.

a. Red Hat Software, Inc.

b. O'Reilly and Associates, Inc.

c. The Free Software Foundation.

d. The Linux Documentation Project.

e. Usenet newsgroup comp.os.linux.

43. What does the "sticky bit" do? Select one.

a. It prevents files from being deleted by anyone.

b. It marks files for deletion.

c. It prevents files from being deleted by nonowners except root.

d. It prevents files from being deleted by nonowners including root.

e. It marks files for archive.

44. What variable holds the list of directories searched by the shell to find executable programs?

45. Which one of the following commands displays the full path and name of the executable
program myprog that the shell would execute if myprog were entered as a command?

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (11 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

a. # which myprog

b. # find -name myprog

c. # find myprog

d. # locate myprog

e. # apropos myprog

46. Alex executes the runlevel command and gets 3 5 as the response. What does this tell Alex?

Select one.

a. The system is in runlevel 3 and the default is 5.

b. The system is in runlevel 3 and will next go to runlevel 5.

c. The system was in runlevel 3 and is now in runlevel 5.

d. The system does not have a default runlevel.

e. The system default runlevel is improperly configured.

47. Which one of these files determines how messages are stored using syslogd?

a. /etc/sysconfig/logger.conf

b. /etc/syslog.conf

c. /etc/syslogd.conf

d. /etc/conf.syslog

e. /etc/conf.syslogd

48. What does the pr command do? Select one.

a. It prints files to the default printer.

b. It displays a list of active processes.

c. It modifies the execution priority of a process.

d. It paginates text files.

e. It modifies the command-line prompt.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (12 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

49. Dave has a Linux system with an interrupt conflict caused by his 3C509 network card. Dave's
kernel is fully modular. How could Dave instruct the system to use interrupt 11 for his network
adapter? Select one.

a. Enter linux eth0=irq11 at the LILO boot loader prompt.

b. Enter linux 3c509=irq11 at the LILO boot loader prompt.

c. Add options 3c509 irq=11 to /etc/conf.modules.

d. Add options irq=11 3c509 to /etc/conf.modules.

e. Add ifup -irq 11 eth0 to /etc/rc.d/rc.sysinit.

50. What is contained in directory /sbin? Select the single best answer.

a. Commands needed in the event of a system emergency of interest to all system users.

b. Commands of interest to all system users.

c. Commands needed in the event of a system emergency of interest mainly to the
administrator.

d. Commands of interest mainly to the administrator.

e. Libraries needed in the event of an emergency.

51. What ext2 filesystem attribute allows a process to take on the ownership of the executable file's
owner?

52. What is appended to the beginning of a command line in order to modify the execution priority
of the resulting process?

53. How are the cat and tac commands related? Select one.

a. cat displays files and tac does the same but in reverse order.

b. cat concatenates files while tac splits a file into pieces.

c. cat creates file catalogs while tac displays the catalogs.

d. The two commands are links to the same executable.

e. There is no relation or similarity between cat and tac.

54. With regard to the use of regular expressions to match text in a file, describe a metacharacter.
Select one.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (13 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

a. They are standard text characters used in the regular expression.

b. They are special control characters used in the regular expression.

c. They are used to display results after using a regular expression.

d. They are used by the shell to display graphics.

e. Metacharacters aren't used in regular expressions.

55. How many IDE devices can be installed and simultaneously used in a typical Intel-based
system? Select one.

a. 1

b. 2

c. 3

d. 4

e. 5

56. Which one of the following would be a consequence of a filesystem running out of inodes?

a. More inodes would be automatically created in the filesystem.

b. Quotas would become disabled on the filesystem.

c. The filesystem would be corrupted.

d. The filesystem would be marked read-only.

e. No writes would be possible on the filesystem until existing files were deleted.

57. Consider the following line of console output, excerpted from among other lines of output. Which
one of the commands produced it?

/dev/hda8 1.9G 559M 1.2G 30% /home

a. du -s

b. du -k

c. df -h

d. df -k

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (14 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

e. df -m

58. How can you configure your system at shutdown time to suppress fsck upon the next boot?
Select one.

a. init 6

b. init --suppress 6

c. shutdown -h

d. shutdown -f

e. shutdown -F

59. Which one of the following is true about the LILO boot loader?

a. It can start the Windows NT Loader.

b. It is started using the lilo command.

c. It is the only boot loader available for Linux.

d. It can start multiple Linux kernels, but no foreign operating systems.

e. It resides entirely in the boot sector.

60. Which one of the following statements correctly describes the > and >> symbols in the context

of the bash shell?

a. > appends standard output to an existing file, and >> writes standard output to a new

file.

b. > writes standard output to a new file, and >> appends standard output to an existing

file.

c. > writes standard error to a new file, and >> appends standard error to an existing file.

d. > pipes standard output to a new file, and >> pipes standard output to an existing file.

e. > pipes standard output to an existing file and >> pipes standard error to a new file.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/09-1.htm (15 of 15) [3/9/2003 11:15:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part I: General Linux Exam 101

Chapter 10. Exam 101 Highlighter's Index

Section 10.1. GNU and Unix Commands (Topic 1.3)

Section 10.2. Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 2.4)

Section 10.3. Boot, Initialization, Shutdown, and Runlevels (Topic 2.6)

Section 10.4. Documentation (Topic 1.8)

Section 10.5. Administrative Tasks (Topic 2.11)

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/10-0.htm [3/9/2003 11:15:25]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 10. Exam 101 Highlighter's Index

10.1 GNU and Unix Commands (Topic 1.3)

10.1.1 Objective 1: Work Effectively on the Unix Command Line

10.1.1.1 The interactive shell and shell variables

● A shell provides the command prompt and interprets commands.

● A shell variable holds a value that is accessible to shell programs.

● PATH is a shell variable that contains a listing of directories that hold executable programs.

● Commands must be bash built-ins, found in the PATH, or explicitly defined in order to succeed.

● When shell variables are exported, they become part of the environment.

10.1.1.2 Entering commands

● Commands are comprised of a valid command, with or without one or more options and
arguments, followed by a carriage return.

● Interactive commands can include looping structures more often used in shell scripts.

10.1.1.3 Command history, editing, and substitution

● Shell sessions can be viewed as a conversation. History, expansion, and editing make that
dialogue more productive.

● Commands can be reissued, modified, and edited. Examples are shown in Table 10-1.

● Command substitution allows the result of a command to be placed into a shell variable.

Table 10-1. Shell Expansion, Editing, and Substitution Examples

History Type Examples

Expansion

!!
!n
^string1^string2

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/10-1.htm (1 of 10) [3/9/2003 11:15:27]

InformIT Online Books > LPI Linux Certification in a Nutshell

Editing

Ctrl-P, previous line

Ctrl-K, kill to end of line

Ctrl-Y, paste (yank) text

Substitution
VAR=$(command)

10.1.1.4 Recursive execution

● Many commands contain either a -r or -R option for recursive execution through a directory
hierarchy.

● The find command is inherently recursive, and is intended to descend through directories
looking for files with certain attributes or executing commands.

10.1.2 Objective 2: Process Text Streams Using Text Processing Filters

The following programs modify or manipulate text from files and standard input:

cut [files]

Cut out selected columns or fields from one or more files.

expand files

Convert tabs to spaces in files.

fmt [files]

Format text in files to a specified width by filling lines and removing newline characters.

head [files]

Print the first few lines of files.

join file1 file2

Print a line for each pair of input lines, one each from file1 and file2, that have identical join
fields.

nl [files]

Number the lines of files, which are concatenated in the output.

od [files]

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/10-1.htm (2 of 10) [3/9/2003 11:15:27]

InformIT Online Books > LPI Linux Certification in a Nutshell

Dump files in octal, hexadecimal, ASCII, and other formats.

paste files

Paste together corresponding lines of one or more files into vertical columns.

pr [file]

Convert a text file into a paginated, columnar version, with headers and page fills.

split [infile] [outfile]

Split infile into a specified number of line groups; the output will go into a succession of files of
outfileaa, outfileab, and so on.

tac [file]

Print file to standard output in reverse line order.

tail [files]

Print the last few lines of one or more files.

tr [string1 [string2]]

Translate characters by mapping from string1 to the corresponding character in string2.

wc [files]

Print counts of characters, words, and lines for files.

10.1.2.1 The stream editor, sed

sed is a popular text-filtering program found on nearly every Unix system; it has the following syntax:

sed command [files]

sed -e command1 [-e command2] [files]

sed -f script [files]

Execute sed commands, or those found in script, on standard input or files.

10.1.3 Objective 3: Perform Basic File Management

● Filesystem creation is called formatting, which prepares a disk partition for use. Linux usually
uses the native ext2 (second extended) filesystem.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/10-1.htm (3 of 10) [3/9/2003 11:15:27]

InformIT Online Books > LPI Linux Certification in a Nutshell

● The Linux filesystem is arranged into a hierarchical structure anchored at the root directory, or
/. Beneath this is a tree of directories and files.

● Identification information for a filesystem object is stored in its inode, which holds location,
modification, and security information. Filesystems are created with a finite number of inodes.

10.1.3.1 File and directory management commands

The following commands are essential for the management of files and directories:

cp file1 file2

cp files directory

Copy file1 to file2, or copy files to directory.

mkdir directories

Create one or more directories.

mv source target

Move or rename files and directories.

rm files

Delete one or more files from the filesystem. When used recursively (with the -r option), rm
also removes directories.

rmdir directories

Delete directories, which must be empty.

touch files

Change the access and/or modification times of files by default to the present time.

10.1.3.2 File-naming wildcards

Wildcards (also called file globs) allow the specification of many files at once. A list of commonly used
wildcards can be found in Table 10-2.

Table 10-2. File-Naming Wildcards

Wildcard Function

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/10-1.htm (4 of 10) [3/9/2003 11:15:27]

InformIT Online Books > LPI Linux Certification in a Nutshell

*
Match zero or more characters.

?
Match exactly one character.

[characters] Match any single character from among characters listed between
brackets

[!characters] Match any single character other than characters listed between
brackets.

[a-z] Match any single character from among the range of characters
listed between brackets.

[!a-z] Match any single character from among the characters not in the
range listed between brackets.

{frag1, frag2, frag3, ...} Brace expansion: create strings frag1, frag2, and frag3, etc.,

such that {file_one,two,three} yields file_one, file_two,

and file_three.

10.1.4 Objective 4: Use Unix Streams, Pipes, and Redirects

● A central concept for Linux and Unix systems is that everything is a file.

● Many system devices are represented in the filesystem using a device file, such as /dev/ttyS0
for a serial port.

10.1.4.1 Standard I/O

● The shell provides the standard I/O capability, offering three default file descriptors to running
programs.

● Standard input (stdin) is a text input stream, by default attached to the keyboard.

● Standard output (stdout) is an output stream for normal program output.

● Standard error (stderr) is an additional output stream meant for error messages.

10.1.4.2 Pipes and redirection

● It is possible to tie the output of one program to the input of another. This is known as a pipe
and is created by joining commands using the pipe symbol (|).

● Pipes are a special form of redirection, which allows you to manage the origin of input streams
and the destination of output streams. Redirection syntax for various shells differs slightly. See
Table 10-3 for examples of common redirection operators.

Table 10-3. Common Redirection Operators

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/10-1.htm (5 of 10) [3/9/2003 11:15:27]

InformIT Online Books > LPI Linux Certification in a Nutshell

Redirection Function Syntax for bash

Send stdout to file.

$ cmd > file
$ cmd 1> file

Send stderr to file.
$ cmd 2> file

Send both stdout and stderr to file.
$ cmd > file 2>&1

Receive stdin from fil.e
$ cmd < file

Append stdout to fil.e

$ cmd >> file
$ cmd 1>> file

Append stderr to file.
$ cmd 2>> file

Append both stdout and stderr to file.
$ cmd >> file 2>&1

Pipe stdout from cmd1 to cmd2.
$ cmd1 | cmd2

Pipe stdout and stderr from cmd1 to cmd2.
$ cmd1 2>&1 | cmd2

Pipe stdout from cmd1 to cmd2 while simultaneously writing it to file1
using tee.

$ cmd1 tee file1 | cmd2

10.1.5 Objective 5: Create, Monitor, and Kill Processes

● Processes have:

❍ A lifetime.

❍ A PID.

❍ A UID.

❍ A GID.

❍ A parent process.

❍ An environment.

❍ A current working directory.

10.1.5.1 Monitoring commands

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/10-1.htm (6 of 10) [3/9/2003 11:15:27]

InformIT Online Books > LPI Linux Certification in a Nutshell

ps

Generate a one-time snapshot of the current processes on standard output.

pstree

Display a hierarchical list of processes in a tree format.

top

Generate a continuous, formatted, real-time process activity display on a terminal or in a
terminal window.

10.1.5.2 Signaling processes

● Processes listen for signals sent by the kernel or users using the kill command:

kill

-sigspec [pids]

Send sigspec to pids.

● Common kill signals are listed in Table 10-4.

Table 10-4. Common Signals

Signal Number Meaning

HUP
1 Hangup, reread configuration.

INT
2 Interrupt, stop running.

KILL
9 Stop immediately.

TERM
15 Terminate nicely.

TSTP
18 Stop executing, ready to continue.

10.1.5.3 Shell job control

Shells can run processes in the background, where they execute on their own, or in the foreground,
attached to a terminal. Each process handled in this way is known as a job. Jobs are manipulated using
job control commands:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/10-1.htm (7 of 10) [3/9/2003 11:15:27]

InformIT Online Books > LPI Linux Certification in a Nutshell

bg [jobspec]

Place jobspec in the background as if it had been started with &.

fg [jobspec]

Place jobspec in the foreground, making it the current job.

jobs [jobspecs]

List jobspecs on standard output.

10.1.6 Objective 6: Modify Process Execution Priorities

● A process' execution priority is managed by the kernel.

● You can bias the execution priority by specifying a nice number in the range of -20 to +19
(default is 0).

● Positive nice numbers reduce priority; negative nice numbers increase priority and are reserved
for the superuser.

nice -adjustment [command]

Apply nice number adjustment to the process created to run command.

renice [+|-]nicenumber targets

Alter the nicenumber, and thus the scheduling priority, of one or more running target processes.

10.1.7 Objective 7: Perform Searches of Text Files Making Use of Regular Expressions

● Regular expressions are used to match text. The term is used to describe the loosely defined
text-matching language as well as the patterns themselves. A regular expression is often called
a regex or a regexp.

● Regular expressions are made up of metacharacters (with special meaning) and literals
(everything that is not a metacharacter).

10.1.7.1 Position anchors

These operators match line position:

^

Match the beginning of a line.

$

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/10-1.htm (8 of 10) [3/9/2003 11:15:27]

InformIT Online Books > LPI Linux Certification in a Nutshell

Match the end of a line.

10.1.7.2 Character sets

These operators match text:

[abc]

[a-z]

Match any single character from among listed characters or from among the characters
comprising a range.

[^abc]

[^a-z]

Match any single character not among listed characters or ranges.

\<word\>

Match words bounded by whitespace.

. (A single period, or dot)

Match any single character except a newline.

\

Turn off (escape) the special meaning of a metacharacter that follows.

10.1.7.3 Modifiers

These operators modify the way other operators are interpreted:

*

Match zero or more of the character that precedes it.

?

Match zero or one instance of the preceding regex.

+

Match one or more instances of the preceding regex.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/10-1.htm (9 of 10) [3/9/2003 11:15:27]

InformIT Online Books > LPI Linux Certification in a Nutshell

\{ n,m\}

Match a range of occurrences of the single character or regex that precedes this construct.

|

Match the character or expression to the left or right of the vertical bar.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/10-1.htm (10 of 10) [3/9/2003 11:15:27]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 10. Exam 101 Highlighter's Index

10.2 Devices, Linux Filesystems, and the Filesystem Hierarchy Standard (Topic 2.4)

10.2.1 Objective 1: Create Partitions and Filesystems

10.2.1.1 Disk drives and partitions

● IDE disks are known as /dev/hda, /dev/hdb, /dev/hdc, and /dev/hdd.

● SCSI disks are known as /dev/sda, /dev/sdb, /dev/sdc, and so on.

● Three types of partitions:

Primary

Filesystem container. At least one must exist, and up to four can exist on a single
physical disk. They are identified with numbers 1 to 4, such as /dev/hda1, /dev/hda2,
and so on.

Extended

A variant of a primary partition but it cannot contain a filesystem. Instead, it contains
one or more logical partitions. Only one extended partition may exist, and it takes one of
the four possible spots for primary partitions.

Logical

Created within the extended partition. From 1 to 12 logical partitions may be created.
They are numbered from 5 to 16, such as /dev/hda5, /dev/hda10, and so on.

● Up to 15 partitions with filesystems may exist on a single physical disk.

10.2.1.2 The root filesystem and mount points

● The top of the filesystem tree is occupied by the root filesystem. Other filesystems are mounted
under it, creating a unified filesystem.

● /etc, /lib, /bin, /sbin, and /dev must be part of the root filesystem.

10.2.1.3 Partition and filesystem management commands

The following commands are commonly used to repair and manage filesystems:

fdisk [device]

Manipulate or display the partition table for device using a command-driven interactive text
interface. device is a physical disk such as /dev/hda, not a partition such as /dev/hda1.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-2.htm (1 of 8) [3/9/2003 11:15:28]

InformIT Online Books > LPI Linux Certification in a Nutshell

mkfs device

Make a filesystem on device.

mkswap device

Prepare a partition for use as swap space.

10.2.2 Objective 2: Maintain the Integrity of Filesystems

These commands are commonly used in day-to-day filesystem maintenance:

df [directories]

Display overall disk utilization information for mounted filesystems on directories.

du [directories]

Display disk utilization information for directories.

fsck filesystems

Check filesystems for errors and optionally correct them.

10.2.3 Objective 3: Control Filesystem Mounting and Unmounting

10.2.3.1 Managing the filesystem table

● /etc/fstab contains mount information for filesystems. Each line contains a single filesystem
entry made up of six fields, shown in Table 10-5.

Table 10-5. Fields Found in the /etc/fstab File

Entry Description

Device The device file for the partition holding the filesystem.

Mount point The directory upon which the filesystem is to be mounted.

Filesystem type A filesystem type, such as ext2.

Mount options A comma-separated list.

Dump frequency For use with dump.

Pass number for fsck Used at boot time.

10.2.3.2 Mounting and unmounting

The following commands are used to mount and unmount filesystems:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-2.htm (2 of 8) [3/9/2003 11:15:28]

InformIT Online Books > LPI Linux Certification in a Nutshell

mount device

mount directory

mount device directory

Mount filesystems onto the hierarchy. The first and second forms consult /etc/fstab for
additional information.

umount device

umount directory

Unmount the filesystem on device or mount it on directory.

10.2.3.3 Filesystem types

Common filesystem types compatible with Linux include:

ext2

The standard Linux filesystem.

iso9660

The standard CD-ROM format.

msdos

The MS-DOS FAT filesystem.

nfs

Remote servers.

proc

The proc filesystem, which is a system abstraction for access to kernel parameters.

swap

Swap partitions.

vfat

Virtual FAT, used instead of msdos.

10.2.4 Objective 4: Set and View Disk Quota

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-2.htm (3 of 8) [3/9/2003 11:15:28]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Quotas are used to enforce a disk space or an inode maximum on individuals, groups, or both.

● These types of quota limits can be set:

Per-user hard

The maximum size for an individual.
Per-user soft

A warning threshold.
Per-group hard

The maximum size for a group.
Per-group soft

A warning threshold.
Grace period

A time restriction on the soft limit.

● These commands manipulate quotas:

quota user
quota -g group

Display quota limits on user or group.
quotaon [filesystems]

Enable previously configured disk quotas on one or more filesystems.
quotaoff [filesystems]

Disable disk quotas on one or more filesystems.
quotacheck [filesystems]

Examine filesystems and compile quota databases. Usually run via cron.
edquota names

Modify user or group quotas by spawning a text editor.
repquota filesystems

Display a summary report of quota status for filesystems, or use -a for all filesystems:

Enabling quotas requires usrquota and/or grpquota options in
/etc/fstab, creation of quota.user and quota.group files at the top of
the filesystem, a quotacheck, and a quotaon.

10.2.5 Objective 5: Use File Permissions to Control Accessto Files

10.2.5.1 Access control

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-2.htm (4 of 8) [3/9/2003 11:15:28]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Access control is implemented using a set of properties called the access mode, stored in the
inode. Three classes of user are defined:

User

The user that owns the file.
Group

The group that owns the file.
Other

All other users on the system.
● Three permissions are either granted or not granted to each class of user:

Read (r)

Allows access to file contents and listing of directory contents.
Write (w)

Allows writing a file or creating files in a directory.
Execute (x)

Allows execution of a file and read/write files in a directory.

● These comprise nine bits in the mode User rwx, Group rwx, and Other rwx.

● Three additional mode bits are defined:

SUID

To grant processes the rights of an executable file's owner.
SGID

To grant processes the rights of an executable file's group.
Sticky bit

Prohibits file deletion by nonowners.

● These 12-mode bits are often referred to in octal notation as well as with mnemonic constructs.

● Mode bits are displayed using such commands as ls and stat.

10.2.5.2 Setting access modes

● New files receive initial access mode as described by the umask.

● The umask strips specified bits from the initial mode settings. Typical umasks are 002 and
022.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-2.htm (5 of 8) [3/9/2003 11:15:28]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Existing file modes are changed using chmod with either symbolic or octal mode specifications:

❍ Symbolic:

[ugoa][-+=][rwxXst]

❍ Octal bits:

user r, w, x, group r, w, x, other r, w, x
rwxrwxrwx = 111111111 = 777
rwxr-xr-- = 111101100 = 751

chmod uses the following syntax:

chmod mode files

Modify the access mode on files using a symbolic or octal mode.

10.2.6 Objective 6: Manage File Ownership

● Access modes are tied to file ownership.

● Files have both individual and group ownership:

chown user-owner.group-owner files

Change the owner and/or group of files to user-owner and/or group-owner.
chgrp group-owner files

Change the group ownership of files to group-owner.

● chgrp functionality is included in chown.

10.2.7 Objective 7: Create and Change Hardand Symbolic Links

● A link is a pseudonym for another file.

● Links take very little space in the filesystem.

● A symbolic link is a tiny file that contains a pointer to another file. Symbolic links can span
filesystems.

● A hard link is a copy of a file's directory entry. Both directory entries point to the same inode
and thus the same data, ownership, and permissions.

ln has the following syntax:

ln file link
ln files directory

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-2.htm (6 of 8) [3/9/2003 11:15:28]

InformIT Online Books > LPI Linux Certification in a Nutshell

Create link to file or in directory for all files. Symbolic links are created with the -s option.

10.2.8 Objective 8: Find System Files and Place Filesin the Correct Location

● The FHS is used by Linux distributions to standardize filesystem layout. It defines two categories
of data use, each with opposing subtypes:

❍ Data sharing: sharable data can be used by multiple host systems on a network. Non-
sharable data is unique to one particular host system.

❍ Data modification: variable data is changed continually by naturally occurring (i.e.,
frequent) processes. Static data is left alone, remaining unchanged over extended
periods of time.

● The FHS seeks to define the filesystem contents in these terms and locate information
accordingly.

10.2.8.1 The directory hierarchy

● The root filesystem:

❍ Must contain utilities and files sufficient to boot the operating system, including the
ability to mount other filesystems.

❍ Should contain the utilities needed by the system administrator to repair or restore a
damaged system.

❍ Should be relatively small.
● /usr contains system utilities and programs that do not appear in the /root partition. It includes

directories such as /bin, /lib, /local, and /src.

● /var contains varying data such as printer spools and log files, including directories such as log,
mail, and spool.

10.2.8.2 Locating files

● Various methods can be used to locate files in the filesystem:

which command

Determine the location of command and display the full pathname of the executable
program that the shell would launch to execute it.

find paths expression

Search for files that match expression starting at paths and continuing recursively.
locate patterns

Locate files whose names match one or more patterns by searching an index of files
previously created.

updatedb

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-2.htm (7 of 8) [3/9/2003 11:15:28]

InformIT Online Books > LPI Linux Certification in a Nutshell

Refresh (or create) the slocate database, usually via cron.
whatis keywords

apropos keywords

Search the whatis database for keywords. whatis finds only exact matches, while apropos finds partial word
matches.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-2.htm (8 of 8) [3/9/2003 11:15:28]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 10. Exam 101 Highlighter's Index

10.3 Boot, Initialization, Shutdown, and Runlevels (Topic 2.6)

10.3.1 Objective 1: Boot the System

10.3.1.1 LILO, the Linux loader

● LILO is a utility designed to load a Linux kernel (or another operating system) into memory and
launch it. It has two parts:

The boot loader.

A two-stage program intended to find and load a kernel. The first stage resides in the
disk boot sector and is started by the system BIOS. It locates and launches a second,
larger stage residing elsewhere on disk.

The lilo command

The map installer, used to install and configure the LILO boot loader. It reads
/etc/lilo.conf and writes a corresponding map file.

● The /etc/lilo.conf file contains options and kernel image information. Popular directives are:

boot

The name of the hard disk partition that contains the boot sector.
image

Refers to a specific kernel file.
install

The file installed as the new boot sector.
label

Provides a label, or name, for each image.

map

Directory where the map file is located.
prompt

Prompts the user for input (such as kernel parameters or runlevels) before booting and
without a keystroke from the user.

read-only

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-3.htm (1 of 4) [3/9/2003 11:15:29]

InformIT Online Books > LPI Linux Certification in a Nutshell

The root filesystem should initially be mounted read-only.
root

Used following each image, this specifies the device that should be mounted as root.

timeout

The amount of time, in tenths of a second, the system waits for user input.

10.3.1.2 Kernel parameters and module configuration

● LILO can pass kernel parameters using name=value pairs.

● Linux kernels are modular, with portions of kernel functionality compiled as modules to be used
as needed.

● Parameters to modules can be specified in /etc/conf.modules.

10.3.1.3 Boot-time messages

● The kernel gives detailed status information as it boots. This information can also be found in
system logs such as /var/log/messages and from the dmesg command.

10.3.2 Objective 2: Change Runlevels and Shutdownor Reboot System

● Runlevels specify how a system is used by controlling which services are running.

● Runlevels are numbered through 6, as well as with a few single characters.

● Runlevel 0 implies system shutdown.

● Runlevel 6 implies system reboot.

● The intermediate runlevels differ in meaning among distributions.

● Runlevel 1 (also s or S) is usually single-user (maintenance) mode.

● Runlevels 2 through 5 usually define some kind of multiuser state, including an X login screen.

10.3.2.1 Single-user mode

● Runlevel 1 is a bare-bones operating environment intended for maintenance. Remote logins are
disabled, networking is disabled, and most daemons are shut down.

● Single-user mode can be entered with the single, or simply 1, parameter at the LILO prompt.

● Switching to single-user mode is done using init 1.

10.3.2.2 The /etc/rc.d directory

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-3.htm (2 of 4) [3/9/2003 11:15:29]

InformIT Online Books > LPI Linux Certification in a Nutshell

● The /etc/rc.d file contains initialization scripts and links controlling the boot process for many
Linux distributions:

rc.sysinit

The startup script launched by init at boot time.
rc.local

A script for local startup customizations, started automatically after the system is
running.

rc

A script used to change runlevels.
init.d

The directory containing scripts to start and stop system services.
rc0.d through rc6.d

Links to scripts in init.d.

● Names of the links are [K|S][nn][init.d_name]:

❍ K and S prefixes mean kill and start, respectively.

❍ nn is a sequence number controlling startup or shutdown order.

❍ init.d_name is the name of the script being linked.

10.3.2.3 Default runlevel, determining runlevel, changing runlevels

● The default runlevel is located in /etc/inittab on the line containing initdefault:

id:n:initdefault:

n is a valid runlevel number such as 3.

● Runlevel is determined by the runlevel command, which displays the previous and current
runlevels. An N for previous runlevel indicates that the runlevel has not changed since startup.

● Runlevels can be changed using init:

init n

Change to runlevel n.

● System shutdown can also be initiated using shutdown:

shutdown time

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-3.htm (3 of 4) [3/9/2003 11:15:29]

InformIT Online Books > LPI Linux Certification in a Nutshell

Bring the system down in a secure, organized fashion. time is mandatory, in the form of
hh:mm, now, or +n for n minutes.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-3.htm (4 of 4) [3/9/2003 11:15:29]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 10. Exam 101 Highlighter's Index

10.4 Documentation (Topic 1.8)

10.4.1 Objective 1: Use and Manage Local System Documentation

10.4.1.1 Text and paging

● In the context of Linux systems, plain text means files or streams of both printable characters
and control characters, using a standard encoding scheme such as ASCII.

● Differentiating text from nontext isn't obvious, but the file command examines a file given as its
argument and offers a response that indicates the file type.

● A pager is a program intended to offer a quick and simple interface for viewing text files, one
screen at a time.

● more is a popular pager available on most Unix systems.

● less is a full-featured text pager, which emulates more and offers significant advantages.
Common less commands are listed in Table 10-6.

Table 10-6. Common less Commands

less Command Description

Space Scroll forward one screen.

D Scroll forward one-half screen.

Return Scroll forward one line.

B Scroll backward one screen.

U Scroll backward one-half screen.

Y Scroll backward one line.

g Go to the beginning of the text (could be slow with large amounts of text).

G Go to the end of the text (could be slow with large amounts of text).

/pattern Search forward for pattern, which can be a regular expression.

?pattern Search backward for pattern, which can be a regular expression.

H Display a help screen.

:n Display next file from command line (two-character command).

:p Display previous file from command line (two-character command).

● A pager such as less is used by the man facility.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-4.htm (1 of 3) [3/9/2003 11:15:30]

InformIT Online Books > LPI Linux Certification in a Nutshell

10.4.1.2 The man facility

● A manpage exists for most commands and is viewed using man:

man [section] command

Format and display manpages from the manual section based on the topic of command
using a pager.

● Manpages are usually found in the /usr/man directory, but they can also be found elsewhere in
the filesystem. The manpage location can be found in /etc/man.config, along with the paging
program to use and other information about the manpages.

10.4.1.3 /usr/doc

● Many documents for Linux systems are available in /usr/doc . Included here are package-related
documents, FAQs, HOWTOs, and so on.

10.4.1.4 The info facility

● The Free Software Foundation provides the info documentation format.

● GNU software comes with info documentation.

● The documentation is viewed with the info command, which displays a full-screen editor-like
paging system. Common info commands are listed in Table 10-7.

Table 10-7. Common info Commands

info Command Description

Tab Move among hypertext links.

Enter Follow hypertext links.

d Return to the top (directory node) of the menu.

? List all info commands.

p and n Move to previous and next pages, respectively.

u Move up one level in the Texinfo hierarchy.

q Terminate the system.

h Give a primer for first-time users.

/string Enter a string.

/pattern Search forward for pattern, which can be a regular expression.

10.4.2 Objective 2: Find Linux Documentationon the Internet

10.4.2.1 Linux Documentation Project

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-4.htm (2 of 3) [3/9/2003 11:15:30]

InformIT Online Books > LPI Linux Certification in a Nutshell

● A loosely knit team of writers, proofreaders, and editors who work together to create the
definitive set of documentation for Linux. The Linux Documentation Project can be found online
at http://www.linuxdoc.org/.

● The LDP has a wide range of documents, from complete books to personal accounts of problem-
solving techniques.

10.4.2.2 Other sources

● Many Usenet newsgroups, such as comp.os.linux, comp.os.linux.advocacy,
comp.os.linux.development, and others, are dedicated to Linux.

● Mailing lists offered by many Linux groups serve to keep members informed through email
distribution of information.

10.4.3 Objective 3: Write System Documentation

● System manpages are an excellent place to create local documentation.

● Raw man files are usually processed using nroff for display purposes. You can use this format
or simply create a text file and store it in the appropriate cat directory.

● Local manpages will probably go in /usr/local/man.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-4.htm (3 of 3) [3/9/2003 11:15:30]

http://www.linuxdoc.org/
http://safari.informit.com/comp.os.linux
http://safari.informit.com/comp.os.linux.advocacy
http://safari.informit.com/comp.os.linux.development
http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 10. Exam 101 Highlighter's Index

10.5 Administrative Tasks (Topic 2.11)

10.5.1 Objective 1: Manage Users and Group Accountsand Related System Files

10.5.1.1 passwd and group

● User account information is stored in /etc/passwd.

● Each line in /etc/passwd contains a username, password, UID, GID, user's name, home
directory, and default shell.

● Group information is stored in /etc/group.

● Each line in /etc/group contains a group name, group password, GID, and group member list.

● passwd and group are world-readable.

10.5.1.2 Shadow files

● To prevent users from obtaining encrypted passwords from passwd and group, shadow files are
implemented.

● Encrypted passwords are moved to a new file, which is readable only by root.

● The shadow file for /etc/passwd is /etc/shadow.

● The shadow file for /etc/group is /etc/gshadow.

10.5.1.3 User and group management commands

The following commands are commonly used for manual user and group management:

useradd user

Create the account user.

usermod user

Modify the user account.

userdel user

Delete the user account.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-5.htm (1 of 5) [3/9/2003 11:15:31]

InformIT Online Books > LPI Linux Certification in a Nutshell

groupadd group

Add group.

groupmod group

Modify the parameters of group.

groupdel group

Delete group.

passwd username

Interactively set the password for username.

gpasswd groupname

Interactively set the password for groupname.

pwconv

Convert a standard password file to a shadow configuration.

pwunconv

Revert from a shadow password configuration.

grpconv

Convert a standard group file to a shadow configuration.

grpunconv

Revert from a shadow group configuration.

chage user

Modify password aging and expiration settings for user.

10.5.2 Objective 2: Tune the User Environment and System Environment Variables

10.5.2.1 Configuration scripts

● The bash shell uses system-wide configuration scripts -- such as /etc/profile and /etc/bashrc --
when it starts.

● Commands in /etc/profile are executed at login time.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-5.htm (2 of 5) [3/9/2003 11:15:31]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Commands in /etc/bashrc are executed for each invocation of bash.

● Changes to these system-wide files affect all users on the system.

10.5.2.2 New account home directories

● New user directories are populated automatically by copying /etc/skel and its contents.

● The system administrator may add, modify, and delete files in /etc/skel as needed for the local
environment.

10.5.3 Objective 3: Configure and Use System Log Filesto Meet Administrative and Security Needs

10.5.3.1 Syslog

● The syslog system displays and records messages describing system events.

● Messages can be placed on the console, in log files, and on the text screens of users.

● syslog is configured by /etc/syslog.conf in the form facility.level action:

facility

The creator of the message, selected from among auth, authpriv, cron, daemon, kern,
lpr, mail, mark, news, syslog, user, or local0 through local7.

level

Specifies a severity threshold beyond which messages are logged and is one of (from
lowest to highest severity) debug, info, notice, warning, err, crit, alert, or emerg. The
special level none disables a facility.

action

The destination for messages that correspond to a given selector. It can be a filename,
@hostname, a comma-separated list of users, or an asterisk, meaning all logged-in
users.

● Together, facility.levels comprise the message selector.

● Most syslog messages go to /var/log/messages.

10.5.3.2 Log file rotation

● Most system log files are rotated to expire old information and prevent disks from filling.

● logrotate accomplishes log rotation and is configured using /etc/logrotate.conf.

10.5.3.3 Examining log files

● Files in /var/log (such as messages) and elsewhere can be examined using utilities such as tail,

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-5.htm (3 of 5) [3/9/2003 11:15:31]

InformIT Online Books > LPI Linux Certification in a Nutshell

less, and grep.

● Information in syslog log files includes date, time, origin hostname, message sender, and
descriptive text.

● To debug problems using log file information, first look at the hostname and sender, then at the
message text.

10.5.4 Objective 4: Automate System Administration Tasksby Scheduling Jobs to Run in the Future

● Both cron and at can be used to schedule jobs in the future.

● Scheduled jobs can be any executable program or script.

10.5.4.1 Using cron

● The cron facility consists of crond, the cron daemon, and crontab files containing job-
scheduling information.

● cron is intended for the execution of commands on a periodic basis.

● crond examines all crontab files every minute.

● Each system user has access to cron through a personal crontab file.

● The crontab command, shown here, allows the crontab file to be edited and viewed:

crontab

View, or with -e, edit crontab files.

● Entries in the crontab file are in the form of:

minute hour day month dayofweek command

● Asterisks in any of the time fields match all possible values.

● In addition to personal crontab files, the system has its own crontab files: /etc/crontab as well
as files in /etc/cron.d.

10.5.4.2 Using at

● The at facility, shown here, is for setting up one-time future command execution:

at time

Enter an interactive session with at, where commands may be entered. time is of the
form hh:mm, midnight, noon, and so on.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-5.htm (4 of 5) [3/9/2003 11:15:31]

InformIT Online Books > LPI Linux Certification in a Nutshell

10.5.4.3 User access

● Access to cron can be controlled using lists of users in cron.allow and cron.deny.

● Access to at can be controlled using lists of users in at.allow and at.deny.

10.5.5 Objective 5: Maintain an Effective Data Backup Strategy

● System backup provides protection against disk failures, accidental file deletion, accidental file
corruption, and disasters.

● System backup provides access to historical data.

● Full backups save all files.

● Differential backups save files modified or created since the last full backup.

● Incremental backups save files modified or created since the last full or incremental backup.

● A full backup will be coupled with either differential or incremental backups, but not both.

● Backup media are rotated to assure high-quality backups.

● Backup media must be verified to assure data integrity.

● Backup is often performed using tar and mt, as follows:

tar files

Archive or restore files recursively, to tape or to a tarfile.
mt operation

Control a tape drive, including skipping over multiple archives on tape, rewinding, and
ejecting. operations include fsf, bsf, rewinde, and offline (see the manpage for a
complete list).

● Backup should include everything necessary to restore a system to operation in the event of a
disaster. Examples include /etc, /home, /var/log, and /var/spool, though individual
requirements vary.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/10-5.htm (5 of 5) [3/9/2003 11:15:31]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 11. Exam 102 Overview

LPI Exam 102 is the second of two exams required for the LPI's Level 1 certification. This exam tests
your knowledge on 9 of the 14 major Topic areas specified for LPIC Level 1.

Exam Topics are numbered using a level.topic notation (i.e., 1.1, 2.2, etc.). In the LPI's early stages of
development, Topics were assigned to exams based on a different scheme than we see today. When the
scheme changed, the Topics were redistributed to Exams 101 and 102, but the pairing of Topic numbers
to exams was dropped. As a result, we have 1.x and 2.x Topics in both Level 1 Exams.

The Level 1 Topics are distributed between the two exams to create tests of similar length and difficulty
without subject matter overlap. As a result, there's no requirement or advantage to taking the exams in
sequence.

Each Topic contains a series of Objectives covering specific areas of expertise. Each of these Objectives
is assigned a numeric weight, which acts as an indicator of the importance of the Objective. Weights run
between 1 and 10, with higher numbers indicating more importance. An Objective carrying a weight of
1 can be considered relatively unimportant and isn't likely to be covered in much depth on the exam.
Objectives with larger weights are sure to be covered on the exam, so you should study these topics
closely. The weights of the Objectives are provided at the beginning of each Topic section.

The Topics for Exam 102 are listed in Table 11-1.

Table 11-1. LPI Topics for Exam 102

Name Number of Objectives Description

Chapter 13 3
Covers PC architecture issues, such as IRQs, I/O addresses, SCSI
BIOS, NICs, modems, and sound cards.

Chapter 14 6
Covers hard disk layout, LILO, making and installing programs
from source, managing shared libraries, and using Red Hat and
Debian packages.

Chapter 15 2
Covers kernel module management, as well as building and
installing a custom kernel.

Chapter 16 4 Covers vi and printer management.

Chapter 17 2
Covers the shell and its startup files and writing bash scripts.
Despite the name, compiling programs from source is not included
(it's covered in Topic 2.2).

Chapter 18 4
Includes an overview of XFree86, using XDM, and customizing a
window manager.

Chapter 19 3
Explores TCP/IP, network interfaces, DHCP, and PPP and includes
troubleshooting commands.

Chapter 20 5
Covers inetd and basic sendmail, Apache, NFS, Samba, and DNS
configuration.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/11-0.htm (1 of 2) [3/9/2003 11:15:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

Chapter 21 3
Covers security issues such as package verification, SUID issues,
shadow passwords, and user limits.

As you can see from Table 11-1, the Topic numbers assigned by the LPI are not sequential, due to
various modifications made by the LPI to their exam program as it developed. In particular, in Exam
102 two last-minute Objectives covering Red Hat and Debian package management were added to
Topic 2.2. Regardless, the Topic numbers serve only as a reference and are not used on the exam.

Exam 102 lasts a maximum of 90 minutes and contains approximately 72 questions. The exam is
administered using a custom application on a PC in a private room with no notes or other reference
material. About 90 percent of the exam is made up of multiple-choice single-answer questions. These
multiple-choice questions have only one correct answer, which are answered using radio buttons. A few
of the questions present a scenario needing administrative action. Others seek the appropriate
commands for performing a particular task or for proof of understanding of a particular concept.

The exam also includes a few multiple-choice multiple-answer questions, which are answered using
checkboxes. These questions can have multiple correct responses, each of which must be checked.
These are probably the most difficult type of question to answer because the possibility of multiple
answers increases the likelihood of mistakes. An incorrect response on any one of the possible answers
causes you to miss the entire question.

The exam also has some fill-in-the-blank questions. These questions provide a one-line text area input
box for you to fill in your answer. These questions check your knowledge of concepts such as important
files, commands, or well-known facts that you are expected to know.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/11-0.htm (2 of 2) [3/9/2003 11:15:32]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 16. Text-Editing, Processing, and Printing (Topic 1.7)

Two general areas of text handling under Linux are described in this section: editing with vi and
printing. The vi editor is important for everyone, because it is available with just about every Linux
distribution. Also, despite new automated Linux configuration tools, proficiency with at least one text
editor is extremely important for system administration. Printing is covered from an installation and
management perspective. This section includes four Objectives:

Objective 1: Perform Basic File Editing Operations Using vi

No matter what your opinion on what the best text editor is, vi is available everywhere, and
administrators must be familiar with it in order to pass the exam. This Objective covers vi
basics. Weight: 2.

Objective 2: Manage Printers and Print Queues

Printer management can be easy given a general understanding of lpq, lprm, and lpc. Weight:
2.

Objective 3: Print Files

This Objective is short, covering only lpr. Weight: 1.

Objective 4: Install and Configure Local and Remote Printers

This Objective involves the installation of lpd and related utilities, filters, and remote printers.
Weight: 3.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/16-0.htm [3/9/2003 11:15:32]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 19. Networking Fundamentals (Topic 1.12)

While it is not necessary for you to be a networking expert to pass the LPIC Level 1 exams, you must be
familiar with networking, network-related vocabulary, and Linux networking configuration. This section
introduces fundamental networking, troubleshooting, and dialup concepts specifically included in the
exams. However, it is not a complete introductory treatment, and you are encouraged to review
additional material for more depth. This section covers these three Objectives:

Objective 1: Fundamentals of TCP/IP

This Objective includes TCP/IP basics such as network masks, ports, and utility programs.
Weight: 4.

Objective 2: (Superseded by LPI.)

An Objective 2 was originally included by the LPI in this Topic, but was later superseded by
other Objectives. It remains in place to keep Objective numbering historically consistent and is
likewise included here.

Objective 3: TCP/IP Troubleshooting and Configuration

This Objective describes how to configure Linux network interfaces, including DHCP. Weight: 10.

Objective 4: Configure and Use PPP.

This Objective includes the description of PPP client and server configuration. Weight: 4.

What follows is not a complete treatment of TCP/IP, but rather a refresher of its core concepts as they
apply to Exam 102.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/19-0.htm [3/9/2003 11:15:33]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 20. Networking Services (Topic 1.13)

Much of the success of Linux can be attributed to bundled networking services, such as the Apache web
server, sendmail, NFS and Windows file sharing, and others. This section covers these five Objectives on
networking services:

Objective 1: Configure and Manage inetd and Related Services

This Objective includes the so-called Internet superdaemon, or inetd . This single daemon
manages other service-specific daemons, dispatching them as needed in response to inbound
requests. Also included is the TCP wrappers facility for adding access control to inetd. Weight:
5.

Objective 2: Operate and Perform Basic Configuration of sendmail

sendmail is probably the most common mail transfer agent on the Internet. This Objective
covers only the basics of sendmail configuration, including its alias feature. Weight: 5.

Objective 3: Operate and Perform Basic Configuration of Apache

Apache is the most popular HTTP server on the Internet and is the default web server for most
Linux distributions. This Objective covers basic configuration of Apache. Weight: 3.

Objective 4: Properly Manage the NFS, smb, and nmb Daemons

This Objective covers file sharing using both NFS (Unix) and SMB (Samba, the open source file
server for integrating Linux within a Windows network). Weight: 4.

Objective 5: Set Up and Configure Basic DNS Services

This Objective covers the basic configuration of DNS and address resolution settings. Weight: 3.

For systems deployed as servers, even in a small department, these Objectives cover some of most
important system administration concepts to be performed for Linux.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/20-0.htm [3/9/2003 11:15:33]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 21. Security (Topic 1.14)

As with any multiuser-networked operating system, a secure environment is essential to system
stability. This Topic covers basic Linux security administration. The following three Objectives are
included:

Objective 1: Perform Security Administration Tasks

This Objective includes the configuration of TCP wrappers (a facility that monitors inbound
network connections), management of SUID and SGID properties, corrupted package files,
management of user passwords, and the use of the secure shell (ssh). Weight: 4.

Objective 2: Set Up Host Security

This Objective examines how to implement shadowed passwords, eliminate unnecessary
network services, configure syslogd, and examine web sites with security information. Weight:
4.

Objective 3: Set Up User-Level Security

This Objective covers the creation for user limits on logins, processes, and memory usage.
Weight: 2.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/21-0.htm [3/9/2003 11:15:34]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 12. Exam 102 Study Guide

Part II of this book contains a section for each of the nine Topics found on Exam 102 for LPIC Level 1
certification. Each of the following nine sections detail the Objectives described for the corresponding
Topic on the LPI web site, http://www.lpi.org/p-obj-102.html.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/12-0.htm [3/9/2003 11:15:34]

http://www.lpi.org/p-obj-102.html
http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 12. Exam 102 Study Guide

12.1 Exam Preparation

LPI Exam 102 is thorough, but if you have a solid foundation in Linux concepts as described here, you
should find it straightforward. If you've already taken Exam 101, you'll find that 102 contains 20
percent more questions and covers a broader range of Linux administration skills. Included are basics
such as PC architecture and Linux installation, and more advanced topics such as GUI (X Windows),
customization, and networking. Exam 102 is quite specific on some Topics, such as package managers.
However, you won't come across questions intended to trick you, and you're unlikely to find questions
that you feel are ambiguous.

For clarity, this material is presented in the same order as the LPI Topics and Objectives. It may be
helpful to devise a sequence of study in some areas. For example, working on "Networking
Fundamentals" (Topic 1.12) prior to "Networking Services" (Topic 1.13) may be helpful. However, other
Topics stand alone, and you may choose to study the Topics in any order. To assist you with your
preparation, Table 12-1 through Table 12-9 provide a complete listing of the Topics and Objectives for
Exam 102. After you complete your study of each Objective, simply check it off here to measure and
organize your progress.

Table 12-1. Hardware and Architecture (Topic 1.1)

Objective Weight Description

1 3 Section 13.1

2 4 Section 13.2

3 3 Section 13.3

Table 12-2. Linux Installation and Package Management (Topic 2.2)

Objective Weight Description

1 2 Section 14.1

2 2 Section 14.2

3 2 Section 14.3

4 3 Section 14.4

5 5 Section 14.5

6 8 Section 14.6

Table 12-3. Kernel (Topic 1.5)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/12-1.htm (1 of 3) [3/9/2003 11:15:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

Objective Weight Description

1 3 Section 15.1

2 4 Section 15.2

Table 12-4. Text Editing, Processing, and Printing (Topic 1.7)

Objective Weight Description

1 2 Section 16.1

2 2 Section 16.2

3 1 Section 16.3

4 3 Section 16.4

Table 12-5. Shells, Scripting, Programming, and Compiling (Topic 1.9)

Objective Weight Description

1 4 Section 17.1

2 5 Section 17.2

Table 12-6. X (Topic 2.10)

Objective Weight Description

1 4 Section 18.2

2 1 Section 18.3

3 1 Section 18.4

4 4 Section 18.5

Table 12-7. Networking Fundamentals (Topic 1.12)

Objective Weight Description

1 4 Section 19.1

2 NA Superseded by information from other Topics

3 10 Section 19.2

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/12-1.htm (2 of 3) [3/9/2003 11:15:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

4 4 Section 19.3

Table 12-8. Networking Services (Topic 1.13)

Objective Weight Description

1 5 Section 20.1

2 5 Section 20.2

3 3 Section 20.3

4 4 Section 20.4

5 3 Section 20.5

Table 12-9. Security (Topic 1.14)

Objective Weight Description

1 4 Section 21.1

2 4 Section 21.2

3 2 Section 21.3

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/12-1.htm (3 of 3) [3/9/2003 11:15:35]

http://safari.informit.com/?xmlid=1-56592-748-6/3071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 13. Hardware and Architecture (Topic
1.1)

13.1 Objective 1: Configure Fundamental System Hardware

Setting up a PC for Linux (or any other operating system) requires some familiarity with the devices
installed in the system and their configuration. Items to be aware of include installed modems, serial
and parallel ports, network adapters, SCSI (pronounced "scuzzy") adapters, and sound cards. Many of
these devices, particularly older ones, require manual configuration of some kind to avoid conflicting
resources. The rest of the configuration for the system hardware is done in the PC's firmware, or BIOS.

13.1.1 BIOS

The firmware located in a PC, commonly called the Basic Input/Output System, or BIOS, is responsible
for bringing all of the system hardware to a state at which it is ready to boot an operating system.
Systems vary, but this process usually includes system initialization, the testing of memory and other
devices, and ultimately locating an operating system from among several storage devices. In addition,
the BIOS provides a low-level system configuration interface, allowing the user to choose such things as
boot devices and resource assignments. Quite a few vendors of BIOS firmware provide customized

versions of their products for various PC system architectures.[1] Due to these variations, it's
impossible to test specifics, but the LPIC Level 1 exams do require an understanding of the basics.

[1] For example, a laptop BIOS may differ significantly from a desktop
system of similar capability from the same manufacturer.

At boot time, most PCs display a method of entering the BIOS configuration utility, usually by entering a
specific keystroke during startup. Once the utility is started, a menu-based screen in which system
settings can be configured appears. Depending on the BIOS vendor, these will include settings for disks,
memory behavior, onboard ports (such as serial and parallel ports), the clock, as well as many others.

13.1.1.1 Date and time

One of the basic functions of the BIOS is to manage the onboard hardware clock. This clock is initially
set in the BIOS configuration by entering the date and time in the appropriate fields. Once set, the
internal clock keeps track of time and makes the time available to the operating system. The operating
system can also set the hardware clock, which is often useful if an accurate external time reference is
available on the network while the system is running.

13.1.1.2 Disks and boot devices

Another fundamental configuration item required in BIOS settings is the selection of storage devices.
Modern PCs can contain a variety of removable and fixed media, including floppy disks, hard disks, CD-
ROMs, CD-RWs, DVD-ROMs, and Zip and/or Jaz drives. Newer systems are able to detect and properly
configure much of this hardware automatically. However, older BIOS versions require manual
configuration. This may include the selection of floppy disk sizes and disk drive parameters.

Most PCs have at least three bootable media types: an internal hard disk (IDE or SCSI, or perhaps
both), a CD-ROM drive (again IDE or SCSI), and a floppy disk. After initialization, the BIOS seeks an

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/13-1.htm (1 of 3) [3/9/2003 11:15:36]

InformIT Online Books > LPI Linux Certification in a Nutshell

operating system (or an operating system loader such as the Linux Loader, LILO) on one or more of
these media. By default, many BIOS configurations enable booting from the floppy or CD-ROM first,
then the hard disk, but the order is configurable in the BIOS settings.

On the Exam

You should be familiar with the general configuration requirements and layout of the BIOS
configuration screens for a typical PC.

13.1.2 Resource Assignments

Some of the details in the BIOS configuration pertain to the internal resources of the PC architecture,
including selections for interrupts (or IRQs), I/O Addresses, and Direct Memory Access (DMA) Channels.
Interrupts are electrical signals sent to the PC's microprocessor, instructing it to stop its current activity
and respond to an asynchronous event (a keystroke, for example). Modern devices in PCs often share
interrupts, but older hardware requires manual verification that interrupt settings are unique to avoid
conflicts with other devices.

I/O addresses are locations in the microprocessor's memory map (a list of defined memory addresses)
reserved for input/output devices such as network interfaces. The microprocessor can write to the
devices in the same way it writes to memory, which simplifies the device interface. If multiple devices
inadvertently share the same I/O address, the system might behave oddly or crash.

DMA allows some devices to work directly with memory through a DMA "channel," freeing the
microprocessor for other tasks. Without DMA, data must be read from I/O ports for a device and stored
in memory -- all by the microprocessor. A device that has DMA capabilities has direct access to memory
and writes its own data there when the microprocessor is busy with computation. This can improve
performance.

All of these are finite resources, and it is important to avoid conflicting settings. Common devices such
as serial and parallel ports have standard assignments, as shown in Table 13-1.

Table 13-1. Common Device Settings

Device I/O Address IRQ DMA

ttyS0 (COM1)
3f8

4 NA[2]

ttyS1 (COM2)
2f8

3 NA

ttyS2 (COM3)
3e8

4 NA

ttyS3 (COM4)
2e8

3 NA

lp0 (LPT1)
378-37f

7 NA

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/13-1.htm (2 of 3) [3/9/2003 11:15:36]

InformIT Online Books > LPI Linux Certification in a Nutshell

lp1 (LPT2) [3]
278-27f

5 NA

fd0, fd1 (floppies 1 and 2)
3f0-3f7

6 2

fd2, fd3 (floppies 3 and 4)
370-377

10 3

[2] NA: not applicable.

[3] lp1 uses IRQ 5. Some older PC audio devices commonly use this
interrupt, which could be a problem if two parallel ports are required.

Most PCs don't contain all of these devices. For example, a typical configuration includes two serial
ports, ttyS0 and ttyS1. These two ports can be used to attach external modems or terminals and
occupy interrupts 4 and 3, respectively. For systems with additional serial ports installed, ttyS0 and
ttyS2 share interrupt 4, and ttyS1 and ttyS3 share interrupt 3. However, the system design does not
allow these ports to concurrently share the interrupt and exchange serial data. Otherwise,
communications would fail if both ports from either pair were to be used together.

On the Exam

You don't have to memorize all the possible device settings for the PC architecture, but you
should be ready to answer specific questions regarding some of the more common ones,
such as interrupt settings for serial and parallel ports. You should also be able to identify
conflicting I/O and IRQ assignments given a scenario.

13.1.3 1024 -Cylinder Limit

With most PC operating systems, data loaded by the BIOS to boot the operating system is found at the
beginning of the disk in the Master Boot Record, or MBR. Windows users rarely have to think about the
MBR because there is no alternate location for the boot record. With Linux, however, the user can place
the boot loader (LILO) into either the MBR or the root partition. This flexibility can lead to a problem for
the BIOS and LILO and cause a failure at boot time. The failure can occur because the BIOS must load
LILO into memory and start it, but the BIOS can't always access portions of the disk beyond the 1024th
cylinder. If the BIOS can't read all of LILO, the boot fails. Also, older versions of LILO must have a
kernel image located within the first 1024 cylinders for similar reasons. These limitations aren't
significant, but do require planning during the partitioning of disks at installation time. This Topic is
discussed further in Section 14.2.

On the Exam

Be aware that LILO and kernels should be installed below cylinder 1024 on larger disks.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/13-1.htm (3 of 3) [3/9/2003 11:15:36]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 13. Hardware and Architecture (Topic
1.1)

13.2 Objective 2: Set Up SCSI and NIC Devices

As described in Objective 1, when you add hardware to a PC you must accommodate the resource
requirements of all installed devices. Some devices, in particular SCSI controllers and older network
interfaces, require special configuration. This Objective describes in general terms some of these
considerations.

13.2.1 NICs

More than ever before, today's PCs are expected to be connected to a network. This means that some
form of network interface card (or NIC) is used to make the connection between the computer and the
network. Older hardware, particularly Industry Standard Architecture (ISA) bus hardware, requires
manual configuration. Exam 102 requires familiarity with these configuration problems.

Generally speaking, we may think about device configuration methodologies from one of three general
eras:

Jumper era

This hardware was constructed in such a way that settings were controlled by changing the
position of shorting jumpers on terminal strips. This method is inconvenient in that it requires
internal access to the PC as well as available documentation on the jumper locations. On the
other hand, it is a hardware-only solution, and the settings are obvious to the observer. Many
such devices are still in service on older PCs.

Nonvolatile era

These more recent hardware designs abandoned jumpers in favor of settings that, while still
manually set, are stored in a nonvolatile memory space. This design eliminated the physical
access problem with jumpered hardware, but introduced a requirement that custom
configuration programs be written, supported, and provided to consumers by hardware vendors.
This software was almost always based on MS-DOS. Using these configuration tools to program
a card for use under Linux may require a working MS-DOS machine to provide initial
configuration.

Modern era

Most recent NICs work with the PCI bus to automatically configure themselves. The settings are
done during system initialization, prior to loading the operating system. This automation
eliminates manual configuration and frees the user from worrying about device conflicts.

To configure an older NIC, you may need to set jumpers or possibly run MS-DOS and a proprietary
configuration utility. More often than not, factory default settings can be used with the Linux networking
drivers. However manual configuration is accomplished, you'll need to be sure that you don't have
conflicts with IRQs, I/O addresses, and possibly DMA channel assignments.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/13-2.htm (1 of 6) [3/9/2003 11:15:37]

InformIT Online Books > LPI Linux Certification in a Nutshell

13.2.1.1 Using the /proc filesystem

When adding new hardware to an existing Linux system, you may wish to verify which resources the
existing devices are using. The /proc filesystem, the kernel's status repository, contains this
information. The proc files -- interrupts, dma, and ioports -- show how system resources are currently
utilized. Here is an example of /proc/interrupts from a dual-CPU system with an Adaptec dual-AIC7895
SCSI controller:

cat /proc/interrupts
 CPU0 CPU1
 0: 98663989 0 XT-PIC timer
 1: 34698 34858 IO-APIC-edge keyboard
 2: 0 0 XT-PIC cascade
 5: 7141 7908 IO-APIC-edge MS Sound System
 6: 6 7 IO-APIC-edge floppy
 8: 18098274 18140354 IO-APIC-edge rtc
 10: 3234867 3237313 IO-APIC-level aic7xxx, eth0
 11: 36 35 IO-APIC-level aic7xxx
 12: 233140 216205 IO-APIC-edge PS/2 Mouse
 13: 1 0 XT-PIC fpu
 15: 44118 43935 IO-APIC-edge ide1
NMI: 0
ERR: 0

In this example, you can see that interrupt 5 is used for the sound system, thus it isn't available for a
second parallel port. The two SCSI controllers are using interrupts 10 and 11, respectively, while the
Ethernet controller shares interrupt 10. You may also notice that only one of the two standard IDE
interfaces is enabled in the system BIOS, freeing interrupt 14 use for another device.

Here are the /proc/dma and /proc/ioports files from the same system:

cat /proc/dma
 0: MS Sound System
 1: MS Sound System
 2: floppy
 4: cascade
cat /proc/ioports
0000-001f : dma1
0020-003f : pic1
0040-005f : timer
0060-006f : keyboard
0070-007f : rtc
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : ide1
02f8-02ff : serial(auto)
0370-0371 : OPL3-SAx
0376-0376 : ide1
0388-0389 : mpu401
03c0-03df : vga+
03f0-03f5 : floppy
03f7-03f7 : floppy DIR
03f8-03ff : serial(auto)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/13-2.htm (2 of 6) [3/9/2003 11:15:37]

InformIT Online Books > LPI Linux Certification in a Nutshell

0530-0533 : WSS config
0534-0537 : MS Sound System
e800-e8be : aic7xxx
ec00-ecbe : aic7xxx
ef00-ef3f : eth0
ffa0-ffa7 : ide0
ffa8-ffaf : ide1

On the Exam

You should be aware of the default resource assignments listed in Table 13-1. You should
also know how to examine a running Linux system's resource assignments using the /proc
filesystem.

13.2.2 SCSI

SCSI is an interface for streaming devices and block storage devices such as tape drives, hard disks, CD-
ROMs, and other peripheral instruments. SCSI is the standard interface on server-style PCs, Unix
workstations, and many older Apple models (mostly 604 and earlier systems). Desktop PCs and newer
Apple systems (G3 and above) usually opt for the IDE (ATA)-style disk interfaces because they are less
expensive. The advantage that SCSI has over IDE is that it offers much more flexibility and
expandability, as well as faster throughput.

SCSI defines a bus to which multiple devices are connected. The medium is a high-quality cable or a
series of cables connected to daisy-chained devices in series. One of the devices in the chain is the SCSI
controller, which is the host interface to the other connected SCSI devices. The controller and all of the
other devices on the bus are assigned a permanent SCSI address, also known as the SCSI ID, which
defines each SCSI device uniquely on the bus. The controller can access devices individually by using
the unique SCSI address to access a specific device.

13.2.2.1 SCSI types

The world of SCSI can be a little confusing, despite the standards set by ANSI. The original SCSI-1
interface is a 5-MBps (megabytes per second) 8-bit interface. It uses a 50-pin Centronics connector,
similar to but larger than those found on most printers. This interface is still in popular use today,
although the connector is usually replaced by a 50-pin micro-D connector. (This connector is similar to
the DB-25 used for serial ports but has a much higher pin density.) As performance demands escalated,
manufacturers began offering enhanced products with faster data transfer rates:

SCSI-1

The original: 8-bit, 5-MBps Centronics 50 connector.

SCSI-2

8-bit, 5-MBps Micro-D 50-pin connector. Interchangeable with SCSI-1. This interface is still
adequate for low-end to midrange tape drives but is too slow for current technology disks.

Wide SCSI

16-bit, 10-MBps, Micro-D 68-pin connector. This standard uses a wider cable to support 16-bit
transfers, obtaining faster throughput using the same clock rate.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/13-2.htm (3 of 6) [3/9/2003 11:15:37]

InformIT Online Books > LPI Linux Certification in a Nutshell

Fast SCSI

8-bit, 10-MBps, Micro-D 50-pin connector. Higher throughput is obtained by doubling the
original clock rate.

Fast Wide SCSI

16-bit, 20-MBps, Micro-D 68-pin connector. This interface combines both the higher clock rate
and the wider bus.

Ultra SCSI

8-bit, 20-MBps, Micro-D 50-pin connector. Additional changes to clocking yield still better
performance.

Ultra Wide SCSI (also known as SCSI-3)

16-bit, 40-MBps.

Ultra2

8-bit, 40-MBps.

Wide Ultra2

16-bit, 80-MBps.

Recent developments have yielded additional SCSI interface types with up to 160 MBps throughput, and
efforts continue to keep SCSI competitive with other technologies. As performance increases, however,
constraints on cabling and connectors become more significant. Such constraints are a major factor in
deploying large SCSI-based systems. Also, with the variety of connectors, cables, and transfer rates
available in the SCSI standards, it's important to plan carefully. The other inhibiting factor, at least on
the consumer level, is that SCSI hard drives tend to cost two to three times the amount of a similar-
sized IDE drive.

13.2.3 SCSI IDs

Each device on a SCSI bus, including the controller, has an address based on a binary reading of the
address lines. The 8-bit SCSI buses have three address lines and thus will accommodate 23=8 devices,
including the controller. For the 16-bit busses, there are four address lines resulting in a possible 24=16
devices. This results in a maximum of 7 and 15 devices, respectively. These addresses can be
configured using jumpers (typical for disk drives) or switches. SCSI addresses run from to 7 for 8-bit
buses and from to 15 for 16-bit buses. It is customary for the controller to occupy address 7 for both
bus widths. Disks and other devices must be assigned a unique address on the bus, and they must be
provided with proper termination, discussed later in this section.

13.2.3.1 SCSI logical unit numbers

Some SCSI devices, such as RAID controllers, appear to the SCSI controller as a disk drive with a single
SCSI address. In order for the controller to access multiple logical devices using a single SCSI address,

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/13-2.htm (4 of 6) [3/9/2003 11:15:37]

InformIT Online Books > LPI Linux Certification in a Nutshell

an accompanying logical unit number (LUN), is reported to the controller. Single disks and tape drives
don't usually use the LUN or report LUN zero.

13.2.3.2 Linux SCSI disk device files

On Linux systems, IDE disk devices are known as /dev/hda, /dev/hdb, /dev/hdc, and /dev/hdd. For
SCSI, a similar pattern emerges, with /dev/sda, /dev/sdb, and so on. The first partition on disk
/dev/sda will be /dev/sdal -- but remember that the partition number has nothing to do with the SCSI
ID. Instead, the letter names of the Linux SCSI devices start with sda and proceed across all SCSI IDs
and LUNs. The numbers are sequentially assigned to partitions on a single ID/LUN combination.

For example, a SCSI-2 bus with two disks, a tape drive, a RAID controller with two LUNs, and the SCSI
controller might be assigned addresses as shown in Table 13-2.

Table 13-2. Sample SCSI Configuration

Device SCSI Address LUN Linux Device

Disk 0 0 - /dev/sda

Disk 1 1 - /dev/sdb

Tape drive 5 - /dev/st0

RAID controller device 0 6 0 /dev/sdc

RAID controller device 1 6 1 /dev/sdd

Controller 7 - -

If a disk on the SCSI bus is to be bootable, you may need to configure the SCSI controller's BIOS with
the disk's address. By default, address is expected to be a bootable disk.

13.2.3.3 Termination

Another facet of SCSI that can be confusing is termination. A SCSI bus can be considered a cable with
devices connected along its length, but not at the ends. Instead of devices, the ends of the SCSI bus
have terminators, which are simple electrical devices that condition the signal and reduce electrical
noise on the bus. However, most external terminators look like a bare connector at the end of a SCSI
cable. Without a terminator, a SCSI bus can be marginally functional, but it's more likely that it will fail
completely, so proper termination is extremely important. Termination can be particularly problematic if
you attempt to mix 8- and 16-bit devices on a single bus and use an 8-bit terminator, leaving half of the
16-bit SCSI bus unterminated.

External terminators are straightforward because they are visible. Most device manufacturers include
termination circuitry on their devices, so the application of an external terminator device is not always
necessary. SCSI controllers can terminate one end of the SCSI bus while an external terminator or a
disk's internal terminator is used on the other end. Whichever type of terminator is being used, you
must be sure that exactly one terminator is placed at each end of the SCSI bus (for a total of exactly
two terminators), otherwise the bus may fail.

13.2.3.4 SCSI controllers on PCs

Most PCs don't come with integrated SCSI controllers, but a number of add-on cards are available. SCSI
controllers have their own firmware installed along with an accompanying BIOS, which has its own

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/13-2.htm (5 of 6) [3/9/2003 11:15:37]

InformIT Online Books > LPI Linux Certification in a Nutshell

configuration menus. If you're using SCSI on a PC, it's important to be able to manipulate these settings
appropriately.

Like the BIOS, a SCSI controller BIOS usually has a keyboard combination, announced at boot time, to
enter the setup utility. Once the utility is launched, you can control a number of aspects of the
controller, including:

Controller SCSI address

The default controller address is usually 7, but you may use any address.

Default boot device

Typically this is set to address 0 for a hard disk.

Onboard termination

Depending upon how a controller is utilized (internal or external bus, or both) you may elect to
turn on the controller's terminator.

SCSI bus speed

Most SCSI adapters that are capable of higher speeds (Ultra SCSI, for example) can be
manually set to lower speeds to accommodate older devices or longer cable lengths.

On the Exam

Be sure to be familiar with SCSI IDs, termination, the SCSI BIOS, and Linux SCSI device
naming for the 102 exam.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/13-2.htm (6 of 6) [3/9/2003 11:15:37]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 13. Hardware and Architecture (Topic
1.1)

13.3 Objective 3: Configure Modems and Sound Cards

Like NICs and SCSI adapters, modems and sound adapters have a few special considerations during
installation. This Objective covers some of these issues.

13.3.1 Modems

A modem (a word derived from mo dulate and dem odulate) is that familiar device that modulates a
digital signal into an analog signal for transmitting information via telephone lines. A modem on the
other end of the connection demodulates the signal back into its digital form. Modems can also add
digital compression and error correction capabilities to increase speed and reliability.

13.3.1.1 Modem types

Modems are serial devices, where data enters and exits one bit at a time. Traditionally, modems were
external devices attached via cable to industry standard RS-232 serial ports, such as those still found on
most PCs. This arrangement continues to work well, because the data rates of telephone connections
are still below the maximum rate of the serial ports. As a result, external devices yield solid
performance. Internal modems (ISA or PCI bus cards that reside inside a PC) were developed to reduce
costs associated with external modems (namely, the case, power supply, and shipping charges) and
offer the same functionality as an external modem.

Most internal modems present themselves to the PC as a standard serial port. In a typical PC with the
first two serial ports built in (/dev/ttyS0 and /dev/ttyS1), an internal modem will appear as the third
port (/dev/ttys2). This means that from a programming point of view, internal modems are
indistinguishable from external modems. While there is some variation in modem configuration across
manufacturers, the differences are small, and most serial-port-style modems will work with Linux. One
exception is a modem designed specifically to work with the Windows operating system. These so-called
WinModems rely on the CPU and a special software driver to handle some of the communications
processing, thus lack the full hardware capabilities of standard modems. As such, WinModems are not
compatible with Linux unless a Linux-specific driver is available. Information on such support is
available from http://www.linmodems.org/. One example of such support is an effort by IBM to support

Mwave WinModems installed in its laptop line.[4]

[4] A search for "mwave" on http://oss.software.ibm.com/should yield
information on the WinModem driver.

13.3.1.2 Modem hardware resources

As with any add-on card, particularly cards configured manually, the user must be careful to avoid
resource conflicts. Modems shouldn't cause much difficulty since they're simple serial ports. However,
you should confirm that the correct interrupt and I/O addresses are set on your modem. If the modem
shares an interrupt with another serial port, that port cannot be used at the same time as the modem.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/13-3.htm (1 of 2) [3/9/2003 11:15:38]

http://www.linmodems.org/
http://oss.software.ibm.com/

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

Watch out for WinModems, which often don't work with Linux. Remember that PC serial
ports may share an interrupt (but not an I/O port).

This Objective requires knowledge regarding the setup of a modem for outbound dialup. For
this information, see Section 19.3.

13.3.2 Sound Devices

Nearly every laptop and desktop PC shipped today includes a sound device. Fortunately, Linux sound
drivers are available for most sound chipsets, including the industry standard chipset originally defined
by Creative Labs with its SoundBlaster series. Part of the configuration for a sound card involves
correctly specifying the sound card's resources to the sound driver, which is a kernel module.

On the Exam

Be aware that the sound driver is a kernel module that has its settings stored in
/etc/modules.conf.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/13-3.htm (2 of 2) [3/9/2003 11:15:38]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 19. Networking Fundamentals (Topic
1.12)

19.3 Objective 4: Configure and Use PPP

The Point-to-Point Protocol (PPP) is a method of constructing a network connection between two
systems using a serial interface. Usually, this interface is a pair of modems connected by a telephone
call over a switched voice network. However, PPP isn't specifically tied to the use of modems and can
also work with a direct serial connection using a null modem cable (sometimes known as a crossover
cable, which is not covered on LPI Exam 102). When PPP is implemented on a Linux system, it creates a
new network interface, usually ppp0, which is configured for use with TCP/IP and an IP address.

In order to use PPP, your kernel must be compiled with PPP support. Most distributions include PPP
support in the kernels they install, but if yours doesn't or if you build your own kernels, you must select
PPP Support under Network Device Support in your kernel configuration (see Chapter 15 for information
on compiling kernels).

19.3.1 Clients and servers

PPP is a peer-to-peer protocol, in which there is no technical difference between the two systems
sharing a PPP link. When used for dialup communications, however, it is convenient to think of the
system making the call as a PPP client and the system being called as a PPP server. Linux can do both
jobs simultaneously if multiple serial interfaces are available, but this section covers only the client-side
configuration as required by Exam 102.

19.3.1.1 Serial ports and modems

The only hardware required to create a PPP dialup connection are a serial interface and a modem. These
may be separate devices, including an external modem device cabled to an internal serial interface.
Internal modems implement both the port and the modem hardware on a single board, reducing costs.
Serial ports are a standard item on most small computers and communicate using RS-232, an old
standard for serial communications with terminals, modems, and other devices. On Linux, serial ports

are accessed via device files, usually referred to as /dev/ttyS0 and /dev/ttyS1.[8] In addition, a link for
a default modem device, /dev/modem, is often made to point to the serial port where a modem is
attached. For example:

[8] These device names were /dev/cua0 and /dev/cua1 in previous Linux
kernels. They're referred to as COM1: and COM2: in MS-DOS and Windows.

crw------- 1 root tty Apr 25 18:28 /dev/ttyS0
crw------- 1 root tty May 5 1998 /dev/ttyS1
lrwxrwxrwx 1 root root Dec 7 23:04 /dev/modem -> ttyS0

Each byte of information to be sent through a serial interface is sent bit by bit at a periodic rate known
as the baud rate. In the early days of modems, data was transmitted over the phone at the same baud
rate as it was encoded by the serial port. However, modern modems compress data before transmitting
it and can accommodate higher data rates from host systems. As a result, the serial port typically runs
at its fastest speed, allowing the modem to independently set a line speed after negotiating with the

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-3.htm (1 of 10) [3/9/2003 11:15:40]

InformIT Online Books > LPI Linux Certification in a Nutshell

server's modem. By keeping the data rate between computer and modem high, the modem has a
constant stream of data ready for transmission, maximizing throughput.

Built into each serial interface is a data buffer capable of holding a finite amount of information. When
serial data enters the buffer faster than it can be removed, a data overrun occurs unless the data flow is
stopped through the use of a flow control signal. For example, when a system is sending data into a
modem through a serial interface, the modem must send a stop signal when it has no more room in its
buffer, and later send a start signal when the buffer again has free space. The result is that while the
modem sends a constant stream to the other modem, the serial interface is running bursts of data
managed by flow controls. In simple cases such as terminals, two flow control characters named XON

and XOFF are transmitted in the serial data stream and are interpreted as controls to hardware.

However, PPP uses the entire serial byte and is less efficient if control characters are allowed, so
another means -- known as ready-to-send (RTS) and clear-to-send (CTS) -- is used for flow control.
These signals are included in standard serial cables and allow hardware flow control between devices.

19.3.1.2 PPP overview

PPP connections are established through these general steps:

1. A serial connection is created with a remote PPP server. This involves setting local serial port
parameters, setting local modem parameters, and instructing the modem to dial the telephone
number of the PPP server. After the modem on the other end answers, the two modems
negotiate the best possible link speed, depending on their capabilities and the quality of the
telephone line.

2. User account authentication information is supplied to the PPP server. More than one method
exists for this task, but in many cases, the PPP server simply provides clear text login and
password prompts, and the client responds in the same way.

3. PPP is started on the client. Many servers automatically initiate PPP upon successful
authentication, while others offer a sort of command-line interface where PPP can be started
with a command.

4. The PPP server selects an IP address from a pool of addresses reserved for PPP connections and
provides it to the client in plain text. The server then initiates a binary data stream to link the
PPP client and server software.

5. The PPP client software uses the temporarily assigned IP address to configure the new interface

and its required routes.[9] It then joins the server in establishing the PPP binary data stream.

[9] Additional information beyond the IP address can be provided to clients using
DHCP. Examples include the default gateway and DNS servers.

19.3.1.3 Chat scripts

Most of this process requires a dialog between the calling computer and its modem, and subsequently
the PPP server, including the interpretation of responses. For example, it's common to begin the entire
process by instructing the modem to reset itself, ensuring that settings from previous communications
sessions don't affect the current session. After the reset instruction is completed, the modem responds
with OK on a line by itself. It would be impractical to proceed if the reset command fails, so the

modem's response must be tested, and further modem commands presented only if the appropriate

responses are received. This command/response dialog function is implemented using the chat[10]

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-3.htm (2 of 10) [3/9/2003 11:15:40]

InformIT Online Books > LPI Linux Certification in a Nutshell

utility, intended specifically for use with modems. chat executes a script that contains lines of text to
send to the modem as well as fragments of what to expect from the modem itself. The chat scripts also
allow for default actions to typical modem responses, such as the ability to abort a call attempt if the
modem reports a busy signal. Here is a typical chat script for a simple dialup configuration:

[10] The chat program is unrelated to the notion of Internet Relay Chat
(IRC) and chat rooms.

ABORT BUSY
ABORT ERROR
ABORT 'NO CARRIER'
ABORT 'NO DIALTONE'
ABORT 'Invalid Login'
ABORT 'Login incorrect'
'' ATZ
OK ATDT8005551212
CONNECT ''
ogin: jdoe
ssword: jdoepasswd
TIMEOUT 5
> ppp

In this chat script, the first six lines use the ABORT keyword to provide strings that chat should consider

to be fatal errors, terminating the call attempt. Any of the modem or PPP server responses -- BUSY,

ERROR, NO CARRIER, NO DIALTONE, Invalid Login, and Login incorrect -- will cause the script

to terminate.

Each subsequent line of this example is constructed using two items: an expected response, followed by
a send string. Here, the first response is simply no response at all, indicated by the empty quotes, "".

This causes chat to issue a send string consisting of the modem reset sequence ATZ without expecting

any input. chat then waits for the next expected response, which should be an OKfrom the modem

indicating a successful reset. After verifying that, the modem dials as a result of the ATDT command,

and chat waits to receive a CONNECT response from the modem. If the modem returns BUSY instead of

CONNECT, chat terminates as a result of the ABORT string at the top of the file. When CONNECT is

received, chat simply sends a carriage return, indicated in the script by another set of empty quotes, to
stimulate the PPP server to prompt for authentication (some PPP servers require this stimulation, others
don't). Because this will be the first text from the server, it's possible that the first character could be
garbled, so only the fragment ogin: is used to look for the login: prompt. In response, a username (

jdoe) is sent, and then the user is prompted for a password. After successful authentication, this
particular PPP server (a dedicated Cisco dialup server managed by an ISP) requires PPP to be started
using the ppp command at the > prompt.

Note that strings with spaces or no characters are delimited with quotes and that a depiction of carriage
returns isn't required. Neither must separate lines be used for each expect/send pair. This example
could also look like this:

ABORT BUSY ABORT ERROR ABORT 'NO CARRIER'
ABORT 'NO DIALTONE' ABORT 'Invalid Login'
ABORT 'Login incorrect'
'' ATZ OK ATDT8005551212 CONNECT ''
ogin: jdoe ssword: jdoepasswd
TIMEOUT 5
> ppp

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-3.htm (3 of 10) [3/9/2003 11:15:40]

InformIT Online Books > LPI Linux Certification in a Nutshell

It's important that chat is given send/expect commands in pairs. Creating the file with separate lines
for each pair makes for easy comprehension, but it isn't really necessary. Regardless of the chat script
format, here's what the conversation looks like from chat's point of view:

ATZ
OK
ATDT8005551212
CONNECT 31200/ARQ/V34/LAPM/V42BIS

User Access Verification

login:jdoe
Password:<jdoepasswd>

mxusw5>ppp
Entering PPP mode.
Async interface address is unnumbered (Loopback0)
Your IP address is 192.168.50.211. MTU is 1500 bytes

~ÿ}#.!}!C} }4}"}&} }*} } }%}&bGab}'}"}(}"V}?~~ÿ}#.!}!
4}"}&} }*} } }%}&bGab}'}"}(}".ÿ~~

The garbled text at the end is a terminal's attempt to render the binary PPP data as characters and is
expected.

On the Exam

You should be able to create a basic chat script from scratch, providing basic login and PPP
server information.

19.3.1.4 The PPP daemon

In addition to the kernel support mentioned at the beginning of this Objective, the PPP daemon (pppd)
is required to run PPP on Linux. When used by a client computer to establish a dialup connection, pppd
does not start at boot time and remain active as do many other daemons. Instead, it runs as directed
by users or automatically when a network connection is required. pppd has a large number of available
options, but only a general understanding is necessary for Exam 102.

pppd

Syntax

pppd [device] [speed] [options]

Description

Start the PPP daemon on device with serial interface rate speed. The speed parameter is almost always
set to the maximum speed of the serial interface (115200 bits per second) to allow the modem to keep
data compression running at full capacity.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-3.htm (4 of 10) [3/9/2003 11:15:40]

InformIT Online Books > LPI Linux Certification in a Nutshell

Frequently used options

asyncap map

This option can be used to eliminate bits of the serial byte from use by pppd, preserving control
characters. Each bit in map is excluded. It is common to set map to 00000000 to allow all 8 bits

to be used.

connect script-command

This option calls the script that handles the modem setup and authentication, usually chat.
script-command is a complete command string that initiates the modem dialup sequence,
including chat, its parameters and the chat script. Since it includes the chat command, options,
and a script, the entire script-command should be quoted so that pppd does not attempt to
interpret it as options.

crtscts

This option instructs pppd to set the serial port to use hardware flow control (CTS/RTS).

debug

This option turns on debugging. Information is logged to syslog and also to the calling terminal,
unless pppd detached (see the nodetach option).

defaultroute

By setting this option, pppd creates a default route in the routing table for the new PPP device.
This is a typical need for a dialup system without network access. Note, however, that a
networked system that already has a default route to its network interface would then have two
default routes, which doesn't make sense. In this case, the administrator must determine how
best to configure the routing for PPP connections.

ipparam name

If this option is included, name is included as the sixth argument to /etc/ppp/ip-up, a script that
handles a few logging and network details after the PPP link is established.

lock

This instructs pppd to establish a lock file to claim exclusive access to device.

nodetach

This option prevents pppd from putting itself in the background, instead remaining attached to
the calling terminal. This is helpful for interactive use and debugging.

persist

In situations in which you want PPP to be constantly available (such as with dedicated modem

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-3.htm (5 of 10) [3/9/2003 11:15:40]

InformIT Online Books > LPI Linux Certification in a Nutshell

links or direct system-to-system cable links), use the persist option. pppd attempts to
reestablish a terminated PPP connection. This can protect your PPP link from modem power
failure, line degradation, or line interruption. Note that this capability is specifically mentioned in

Objective 4, and is likely to appear on Exam 102.[11]

[11] It is likely that your distribution's automated for PPP scripts are capable of
reestablishing terminated PPP links, perhaps without the persist option. This can be
achieved with the use of a while loop.

On the Exam

You should have a firm understanding of pppd and the nature and form of its options. In
particular, be familiar with the persist option.

19.3.1.5 Manual PPP connection

Here's a simple one-command example of a manual PPP connection, using the chat script presented
earlier. In the pppd command, each option appears on a separate line for clarity, though this is not
required in practice:

/usr/sbin/pppd /dev/ttyS0 115200 \
 nodetach \
 lock \
 debug \
 crtscts \
 asyncmap 00000000
 connect "/usr/sbin/chat -vf \
 /etc/sysconfig/network-scripts/chat-ppp0"

pppd first calls the chat script,[12] the results of which can be found in /var/log/messages:[13]

[12] Your chat script location may vary; this example is from a Red Hat
Linux system.

[13] chat logs output as a result of the -v option, as passed to pppd in the
quoted chat command.

kernel: PPP: version 2.3.3 (demand dialing)
kernel: PPP line discipline registered.
kernel: registered device ppp0
pppd[1291]: pppd 2.3.7 started by root, uid 0
chat[1295]: abort on (BUSY)
chat[1295]: abort on (ERROR)
chat[1295]: abort on (NO CARRIER)
chat[1295]: abort on (NO DIALTONE)
chat[1295]: abort on (Invalid Login)
chat[1295]: abort on (Login incorrect)
chat[1295]: send (ATZ^M)
chat[1295]: expect (OK)
chat[1295]: ATZ^M^M
chat[1295]: OK
chat[1295]: -- got it

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-3.htm (6 of 10) [3/9/2003 11:15:40]

InformIT Online Books > LPI Linux Certification in a Nutshell

chat[1295]: send (ATDT8005551212^M)
chat[1295]: expect (CONNECT)
chat[1295]: ^M
chat[1295]: ATDT8005551212^M^M
chat[1295]: CONNECT
chat[1295]: -- got it
chat[1295]: send (^M)
chat[1295]: expect (ogin:)
chat[1295]: 31200/ARQ/V34/LAPM/V42BIS^M
chat[1295]: ^M
chat[1295]: ^M
chat[1295]: User Access Verification^M
chat[1295]: ^M
chat[1295]: login:
chat[1295]: -- got it
chat[1295]: send (jdow^M)
chat[1295]: expect (ssword:)
chat[1295]: jdoe^M
chat[1295]: Password:
chat[1295]: -- got it
chat[1295]: send (<jdoepasswd>^M)
chat[1295]: timeout set to 5 seconds
chat[1295]: expect (>)
chat[1295]: ^M
chat[1295]: ^M
chat[1295]: ^M
chat[1295]: mxusw5>
chat[1295]: -- got it
chat[1295]: send (ppp^M)
pppd[1291]: Serial connection established.
pppd[1291]: Using interface ppp0
pppd[1291]: Connect: ppp0 <--> /dev/modem
pppd[1291]: local IP address 192.168.100.202
pppd[1291]: remote IP address 192.168.100.1

The calling terminal, remaining attached to pppd due to the nodetach option, shows debugging
information:

Serial connection established.
Using interface ppp0
Connect: ppp0 <--> /dev/ttyS0
sent [LCP ConfReq id=0x1 <asyncmap 0x0>
 <magic 0x5f6ecfaa> <pcomp> <accomp>]
rcvd [LCP ConfReq id=0x46 <asyncmap 0xa0000>
 <magic 0x77161be5> <pcomp> <accomp>]
sent [LCP ConfAck id=0x46 <asyncmap 0xa0000>
 <magic 0x77161be5> <pcomp> <accomp>]
rcvd [IPCP ConfReq id=0x3e <addr 192.168.100.1>]
sent [LCP ConfReq id=0x1 <asyncmap 0x0>
 <magic 0x5f6ecfaa> <pcomp> <accomp>]
rcvd [LCP ConfReq id=0x47 <asyncmap 0xa0000>
 <magic 0x7716279c> <pcomp> <accomp>]
sent [LCP ConfAck id=0x47 <asyncmap 0xa0000>
 <magic 0x7716279c> <pcomp> <accomp>]
rcvd [LCP ConfAck id=0x1 <asyncmap 0x0>
 <magic 0x5f6ecfaa> <pcomp> <accomp>]
sent [IPCP ConfReq id=0x1 <addr 192.168.1.30>

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-3.htm (7 of 10) [3/9/2003 11:15:40]

InformIT Online Books > LPI Linux Certification in a Nutshell

rcvd [IPCP ConfReq id=0x3f <addr 192.168.100.1>]
sent [IPCP ConfAck id=0x3f <addr 192.168.100.1>]
rcvd [IPCP ConfRej id=0x1 <compress VJ 0f 01>]
sent [IPCP ConfReq id=0x2 <addr 192.168.1.30>]
rcvd [IPCP ConfNak id=0x2 <addr 192.168.100.96>]
sent [IPCP ConfReq id=0x3 <addr 192.168.100.96>]
rcvd [IPCP ConfAck id=0x3 <addr 192.168.100.96>]
local IP address 192.168.1.220
remote IP address 192.168.1.1
Script /etc/ppp/ip-up started; pid = 3759
Script /etc/ppp/ip-up finished (pid 3759), status = 0x0

At this point, the PPP connection is up and these two new routes should appear in the routing table:

● A route to the new ppp0 interface.

● A default route through the new ppp0 interface.

For example (here, the Met and Ref columns, mentioned earlier, are deleted for clarity):

route
Kernel IP routing table
Destination Gateway Genmask Flags Use Iface
192.168.100.1 * 255.255.255.255 UH 0 ppp0
192.168.1.30 * 255.255.255.255 UH 0 eth0
192.168.1.0 * 255.255.255.0 U 0 eth0
127.0.0.0 * 255.0.0.0 U 0 lo
default 192.168.100.1 0.0.0.0 UG 0 ppp0

When your dialup session is complete, you can terminate pppd easily by entering Ctrl-C on the calling
terminal:

^C
pppd[1291]: Terminating on signal 2.
pppd[1291]: Connection terminated.
pppd[1291]: Connect time 5.9 minutes.
pppd[1291]: Sent 22350 bytes, received 34553266 bytes.
pppd[1291]: Exit.

When pppd is running in the background, terminate a PPP link by sending a SIGTERM signal to the

running pppd.

19.3.1.6 Authentication protocols

In the examples presented in this Objective, authentication with the PPP server is handled by means of
a clear text username/password dialog and implemented using chat. This is a common setup, but three
additional authentication techniques also exist. All of them embed the authentication information into
the PPP data stream instead of using a clear text dialog prior to initiating PPP. These methods maintain
authentication information, or secrets, in a file.

PAP

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-3.htm (8 of 10) [3/9/2003 11:15:40]

InformIT Online Books > LPI Linux Certification in a Nutshell

The Password Authentication Protocol (PAP) is initiated by the connecting client, which sends a
username/password pair. Secret information is stored in /etc/ppp/pap-secrets.

CHAP

The Challenge Handshake Authentication Protocol (CHAP) is initiated by the server, which sends
a challenge. The challenge data contains the server's name, and the client must respond with its
name plus a new value derived from the challenge information and the stored authentication
information. For CHAP, this information is stored in /etc/ppp/chap-secrets). CHAP may also
include additional challenges over the life of the PPP connection.

MSCHAP

This is a Microsoft-specific variant of CHAP implemented on Windows NT systems using RAS. It
is supported by pppd, although special provisions are required. See the Linux PPP HOWTO for
more information if you're dialing into a Windows NT RAS server using MSCHAP.

The authentication information stored in the secrets files for PAP and CHAP has a common format but is
beyond the scope of the Exam 102.

On the Exam

Be aware that PAP, CHAP, and MSCHAP exist and may be required for some dialup
situations.

19.3.1.7 PPP over ISDN

Objective 4 makes casual mention of initiating ISDN connections using PPP over ISDN technology, but
ISDN devices are beyond the scope of both LPIC Level 1 exams. That said, getting PPP running on an
existing ISDN setup using supported hardware is very similar to a modem connection. Most ISDN
terminal adapters supported by Linux behave much like modems, so the same connection methods may
be employed. A chat script sets up the terminal adapter and instructs it to dial (probably with a special
dial string that implies both ISDN BRI phone numbers), and pppd continues as usual. However, ISDN
connections will likely require the use of one of the authentication protocols already mentioned. If PAP is
used, the corresponding pap-secrets file is necessary. While creating this file is trivial (it just contains
your username and password on two separate lines), this file and PAP are beyond the scope of the LPIC
Level 1 exams.

19.3.1.8 Too many variables

Unfortunately, many of the elements involved in a dialup PPP connection lack specific standards:

● Modems from various manufacturers may require unique settings to be made prior to dialing the
PPP server. This means that setup strings included in chat scripts may be hardware-specific. The
Linux Modem-HOWTO contains information on modem requirements.

● Authentication and PPP startup schemes vary among ISPs and other PPP servers. Therefore, the
configuration of a dialup interface depends on the server's requirements. Specific information
from the PPP server provider is necessary.

● PPP automation techniques vary among Linux distributions. While pppd comes with a default
configuration style, there's no guarantee that your distribution will fully utilize it. This is

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-3.htm (9 of 10) [3/9/2003 11:15:40]

InformIT Online Books > LPI Linux Certification in a Nutshell

particularly true for systems that include custom configuration tools that may use special
configuration files and scripts.

On the Exam

PPP setup can be confusing, particularly when your Linux distribution adds additional
complexity in order to make dialup carefree. Be sure that you've been able to establish a
PPP session with a server through both automated configuration and manual methods. You'll
also need to understand how and why chat is used, how expect/send strings are
constructed, how to get debugging information from pppd, and the routing implications of
PPP (the default route). You don't need to memorize all of pppd's many options or
understand each script associated with automated startup of pppd, as these are beyond the
scope of Exam 102. Nonchat authentication schemes and the setup of PPP servers are also
beyond the scope of this exam.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-3.htm (10 of 10) [3/9/2003 11:15:40]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 14. Linux Installation and Package
Management (Topic 2.2)

14.1 Objective 1: Design a Hard Disk Layout

Part of the installation process for Linux is the design of the hard disk partitioning scheme. If you're
used to systems that reside on a single partition, this step may seem to complicate installation.
However, there are advantages to splitting the filesystem into multiple partitions, potentially on multiple
disks. Details about disks, partitions, and Linux filesystem top-level directories are provided in Chapter
4. This Topic covers considerations for implementing Linux disk layouts.

14.1.1 System Considerations

A variety of factors influence the choice of a disk layout plan for Linux, including:

● The amount of disk space

● The size of the system

● What the system will be used for

● How and where backups will be performed

14.1.1.1 Limited disk space

Except for read-only filesystems (such as CD-ROMs or a shared /usr partition), most Linux filesystems
should have some free space available. Filesystems holding user data should be maintained with a
generous amount of free space to accommodate user activity. Unfortunately, if there are many
filesystems and all of them contain free space, a significant portion of disk space could be considered
wasted. This presents a tradeoff between the number of filesystems in use and the availability of free
disk space. Finding the right configuration depends on system requirements and available disk
resources.

When disk space is limited, it is desirable to reduce the number of filesystems, thereby combining free
space into a single contiguous pool. For example, installing Linux on a PC with only 1 GB of available
disk space might best be implemented using only a few partitions:

/boot

50 MB. A small /boot filesystem in the first partition ensures that all kernels are below the 1024-
cylinder limit.

/swap

100 MB.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-1.htm (1 of 4) [3/9/2003 11:15:41]

InformIT Online Books > LPI Linux Certification in a Nutshell

/

850 MB. A large root partition holds everything on the system that's not in /boot.

The /boot partition could be combined with the root partition as long as the entire root partition fits
within the 1024-cylinder limit (see Chapter 13).

On older systems with smaller hard drives, Linux is often installed by spreading the directory tree across
multiple physical disks. This is no different in practice than using multiple partitions on a single disk and
often encourages the reuse of older hardware. An additional disk might be dedicated to /home in order
to allow a larger work area for the users' home directories.

14.1.1.2 Larger systems

On larger platforms, functional issues such as backup strategies and required filesystem sizes can
dictate disk layout. For example, suppose a file server is to be constructed serving 100 GB of executable
datafiles to end-users via NFS. Such as system will have enough resources to compartmentalize various
parts of the directory tree into separate filesystems and might look like this:

/boot

50 MB. Keep kernels under the 1024-cylinder limit.

/swap

100 MB.

/

100 MB.

/usr

1 GB. All of the executables in /usr are shared to workstations via read-only NFS.

/var

500 MB. By placing log files in their own partition, they won't threaten system stability if the
filesystem is full.

/tmp

100 MB. By placing temporary files in their own partition, they won't threaten system stability if
the filesystem is full.

/home

98 GB. This is the big filesystem, offered to users for their home directories.

On production servers, much of the system is often placed on redundant media, such as mirrored disks.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-1.htm (2 of 4) [3/9/2003 11:15:41]

InformIT Online Books > LPI Linux Certification in a Nutshell

Large filesystems, such as /home, may be stored on some form of disk array using a hardware
controller.

14.1.1.3 System role

The role of the system also can dictate disk layout. In a traditional Unix-style network with NFS file
servers, most of the workstations won't necessarily need all of their own executable files. In the days
when disk space was at a premium, this represented a significant savings in disk space. While space on
workstation disks isn't the problem it once was, keeping executables on a server still eliminates the
administrative headache of distributing updates to workstations.

14.1.1.4 Backup

Some backup schemes use disk partitions as the basic unit of system backup. In such a scenario, each
of the filesystems listed in /etc/fstab is backed up separately, and they are arranged so that each
filesystem fits within the size of the backup media. For this reason, the available backup device
capabilities can play a role in determining the ultimate size of partitions.

14.1.2 Swap Space

When you install Linux, you're asked to configure a swap, or virtual memory, partition. This special disk
space is used to temporarily store portions of main memory containing programs or program data that
is not needed constantly, allowing more processes to execute concurrently. An old rule of thumb for
Linux is to set the size of the system's swap space to be equal to the amount of physical RAM in the
machine. For example, if your system has 64 MB of RAM, it would be reasonable to set your swap size
to at least 64 MB. Another rule of thumb that predates Linux says swap space should equal three times
the main memory size. These are just guidelines, of course, because a system's utilization of virtual
memory depends on what the system does and the number and size of processes it runs. Using the size
of main memory, or thereabouts, is a good starting point.

Spreading swap space across multiple disk drives can allow better swap performance because multiple
accesses can occur concurrently when multiple devices are used. For even better performance, place
those disks on separate controllers, increasing bandwidth. For example, you could place half of your
planned swap space on each of two IDE disks in your system. Those disks could be attached to the two
separate IDE interfaces.

14.1.3 General Guidelines

Here are some guidelines for partitioning a Linux system:

● Keep the root filesystem (/) small by distributing larger portions of the directory tree to other
partitions. A small root filesystem is less likely to be corrupted than a large one.

● Separate a small /boot partition below cylinder 1024 for kernels.

● Separate /var. Make certain it is big enough to handle your logs and their rotation scheme, but
not so large that disk space is wasted when the rotation is filled.

● Separate /tmp. Its size depends on the demands of the applications you run. It should be large
enough to handle temporary files for all of your users simultaneously.

● Separate /usr and make it big enough to accommodate kernel building. Making it standalone

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-1.htm (3 of 4) [3/9/2003 11:15:41]

InformIT Online Books > LPI Linux Certification in a Nutshell

allows you to share it read-only via NFS.

● Separate /home for machines with multiple users. For production use, put it on a disk array
subsystem.

● Set swap space around the same size as the main memory. If possible, try to split the swap
space across multiple disks and controllers.

On the Exam

Since a disk layout is the product of both system requirements and available resources, no
single example can represent the best configuration. Factors to remember include placing
the kernel below cylinder 1024, ways to effectively utilize multiple disks, sizing of partitions
to hold various directories such as /var and /usr, the importance of the root filesystem, and
swap space size. Also remember the trick of splitting swap space across multiple physical
disks to increase virtual memory performance .

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-1.htm (4 of 4) [3/9/2003 11:15:41]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 14. Linux Installation and Package
Management (Topic 2.2)

14.3 Objective 3: Make and Install Programs from Source

Open source software is credited with offering value that rivals or even exceeds that of proprietary
vendors' products. While binary distributions make installation simple, you sometimes won't have
access to a binary package. In these cases, you'll have to compile the program from scratch.

14.3.1 Getting Open Source and Free Software

Source code for the software that makes up a Linux distribution is available from a variety of sources.
Your distribution media contain both source code and compiled binary forms of many software projects.
Since much of the code that comes with Linux originates from the Free Software Foundation (FSF), the

GNU web site contains a huge array of software.[5] Major projects, such as Apache
(http://www.apache.org/), distribute their own code. Whatever outlet you choose, the source code must
be packaged for your use, and among the most popular packaging methods for source code is the
tarball.

[5] Not just for Linux, either. Although Linux distributions are largely made
up of GNU software, that software runs on many other Unix and Unix-like
operating systems, including the various flavors of BSD (e.g., FreeBSD,
NetBSD, and OpenBSD).

14.3.1.1 What's a tarball?

Code for a significant project that a software developer wishes to distribute is originally stored in a
hierarchical tree of directories. Included are the source code (in the C language), a Makefile, and some
documentation. In order to share the code, the entire tree must be encapsulated in a way that is
efficient and easy to send and store electronically. A common method of doing this is to use tar to
create a single tarfile containing the directory's contents, and then use gzip to compress it for
efficiency. The resulting compressed file is referred to as a tarball. This method of distribution is popular
because both tar and gzip are widely available and understood, ensuring a wide audience. A tarball is
usually indicated by the use of the multiple extensions .tar and .gz, put together into .tar.gz. A
combined single extension of .tgz is also popular.

14.3.1.2 Opening a tarball

The contents of a tarball is obtained through a two-step process. The file is first uncompressed with
gzip and then extracted with tar. Following is an example, starting with tarball.tar.gz:

gzip -d tarball.tar.gz
tar xvf tarball.tar

The -d option to gzip indicates "decompress mode." If you prefer, you can use gunzip in place of gzip -
d to do the same thing:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-3.htm (1 of 7) [3/9/2003 11:15:42]

http://www.apache.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

gunzip tarball.tar.gz
tar xvf tarball.tar

You can also avoid the intermediate unzipped file by piping the output of gzip straight into tar:

gzip -dc tarball.tar.gz | tar xv

In this case, the -c option to gzip tells it to keep the compressed file in place. By avoiding the full-sized
version, disk space is saved. For even more convenience, avoid using gzip entirely and use the

decompression capability in tar:[6]

[6] GNU tar offers compression; older tar programs didn't.

tar zxvf tarball.tar.gz

On the Exam

All of these methods achieve the same result. Be sure you understand that tar can archive
directly to files (not just to a tape drive) and that a compressed version of a tarfile is made
with gzip. Be familiar with the various ways you could extract files from a tarball, including
gzip -d; tar, gunzip; tar, gzip -d | tar; and tar z. You should be comfortable using tar
and gzip and their more common options.

14.3.2 Compiling Open Source Software

Once you've extracted the source code, you're ready to compile it. You'll need to have the appropriate
tools available on your system, namely a configure script, the GNU C compiler, gcc, and the
dependency checker, make.

14.3.2.1 configure

Most larger source code packages include a configure script[7] located at the top of the source code
tree. This script needs no modification or configuration from the user. When it executes, it examines
your system to verify the existence of a compiler, libraries, utilities, and other items necessary for a
successful compile. It uses the information it finds to produce a custom Makefile for the software
package on your particular system. If configure finds that something is missing, it fails and gives you a
terse but descriptive message. configure succeeds in most cases, leaving you ready to begin the actual
compile process.

[7] configure is produced for you by the programmer using the autoconf
utility. autoconf is beyond the scope LPIC Level 1 exams.

14.3.2.2 make

make is a utility for compiling software. When multiple source-code files are used in a project, it is
rarely necessary to compile all of them for every build of the executable. Instead, only the source files
that have changed since the last compilation really need to be compiled again.

make works by defining targets and their dependencies. The ultimate target in a software build is the
executable file or files. They depend on object files, which in turn depend on source-code files. When a

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-3.htm (2 of 7) [3/9/2003 11:15:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

source file is edited, its date is more recent than that of the last compiled object. make is designed to
automatically handle these dependencies and do the right thing.

To illustrate the basic idea, consider this trivial and silly example. Suppose you're writing a program
with code in two files. The C file, main.c, holds the main() function:

int main() {
 printit();
}

and printit.c contains the printit() function, which is called by main():

#include <stdio.h>
void printit() {
 printf("Hello, world\n");
}

Both source files must be compiled into objects main.o and printit.o, and then linked together to form
an executable application called hw. In this scenario, hw depends on the two object files, a relationship
that could be defined like this:

hw: main.o printit.o

Using this syntax, the dependency of the object files on the source files would look like this:

main.o: main.c
printit.o: printit.c

With these three lines, there is a clear picture of the dependencies involved in the project. The next step
is to add the commands necessary to satisfy each of the dependencies. Compiler directives are added
next:

gcc -c main.c
gcc -c printit.c
gcc -o hw main.o printit.o

To allow for a change of compilers in the future, a variable can be defined to hold the actual compiler
name:

CC = gcc

To use the variable, use the syntax $(variable) for substitution of the contents of the variable.

Combining all this, the result is:

CC = gcc

hw: main.o printit.o
 $(CC) -o hw main.o printit.o

main.o: main.c
 $(CC) -c main.c

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-3.htm (3 of 7) [3/9/2003 11:15:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

printit.o: printit.c
 $(CC) -c printit.c

This illustrates a simple Makefile, the default control file for make. It defines three targets: hw (the
application), and main.o and printit.o (the two object files). A full compilation of the hw program is
invoked by running make and specifying hw as the desired target:

make hw
gcc -c main.c
gcc -c printit.c
gcc -o hw main.o printit.o

make automatically expects to find its instructions in Makefile. If a subsequent change is made to one
of the source files, make will handle the dependency:

touch printit.c
make hw
gcc -c printit.c
gcc -o hw main.o printit.o

This trivial example doesn't illustrate a real-world use of make or the Makefile syntax. make also has
powerful rule sets that allow commands for known dependency relationships to be issued automatically.
These rules would shorten even this tiny Makefile.

14.3.2.3 Installing the compiled software

Most mature source-code projects come with a predetermined location in the filesystem for the
executable files created by compilation. In many cases, they're expected to go to /usr/local/bin. To
facilitate installation to these default locations, many Makefiles contain a special target called install. By
executing the make install command, files are copied and set with the appropriate attributes.

The default installation directory included in a project's Makefile may differ
from that defined by your Linux distribution. If you upgrade software you are
already using, this could lead to confusion over versions.

On the Exam

A basic understanding of make is sufficient for Exam 102. In addition, be prepared to add to
or modify the contents of variables in a Makefile, such as include directories or paths. This
could be necessary, for example, if additional libraries must be included in the compilation
or if a command must be customized.

14.3.2.4 Example: Compiling bash

GNU's bash shell is presented here as an example of the process of compiling. You can find a
compressed tarball of the bash source at the GNU FTP site, ftp://ftp.gnu.org/gnu/bash/. Multiple
versions might be available. Version 2.03 is used in this example (you will find more recent versions).
The compressed tarball is bash-2.03.tar.gz. As you can see by its name, it is a tar file that has been
compressed with gzip. To uncompress the contents, use the compression option in tar:

tar zxvf bash-2.03.tar.gz

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-3.htm (4 of 7) [3/9/2003 11:15:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

bash-2.03/
bash-2.03/CWRU/
bash-2.03/CWRU/misc/
bash-2.03/CWRU/misc/open-files.c
bash-2.03/CWRU/misc/sigs.c
bash-2.03/CWRU/misc/pid.c
... (extraction continues) ...

Next move into the new directory, take a look around, and read some basic documentation:

cd bash-2.03
ls
AUTHORS NEWS
CHANGES NOTES
COMPAT README
COPYING Y2K
CWRU aclocal.m4
INSTALL alias.c
MANIFEST alias.h
Makefile.in ansi_stdlib.h
... (listing continues) ...
less README

The build process for bash is started by using the dot-slash prefix to launch configure:

./configure
creating cache ./config.cache
checking host system type... i686-pc-linux-gnu
Beginning configuration for bash-2.03 for i686-pc-linux-gnu
checking for gcc... gcc
checking whether the C compiler (gcc) works... yes
checking whether the C compiler (gcc) is a
 cross-compiler... no
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking whether large file support needs explicit
 enabling... yes
checking for POSIXized ISC... no
checking how to run the C preprocessor... gcc -E # make
... (configure continues) ...

Next, compile:

make
/bin/sh ./support/mkversion.sh -b -s release -d 2.03 \
 -p 0 -o newversion.h && mv newversion.h version.h

* *
* Making Bash-2.03.0-release for a i686 running linux-gnu
* *

rm -f shell.o
gcc -DPROGRAM='"bash"' -DCONF_HOSTTYPE='"i686"' \

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-3.htm (5 of 7) [3/9/2003 11:15:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

 -DCONF_OSTYPE='"linux-gnu"' -DCONF_MACHTYPE='"i686
-pc-linux-gnu"' -DCONF_VENDOR='"pc"' -DSHELL \
 -DHAVE_CONFIG_H -D_FILE_OFFSET_BITS=64 -I. -I. -I./
lib -I/usr/local/include -g -O2 -c shell.c
rm -f eval.o
... (compile continues) ...

If the compile yields fatal errors, make terminates and the errors must be addressed before
installation. Errors might include problems with the source code (unlikely), missing header files or
libraries, and other problems. Error messages will usually be descriptive enough to lead you to the
source of the problem.

The final step of installation requires that you are logged in as root in order to copy the files to the
system directories:

make install
/usr/bin/install -c -m 0755 bash /usr/local/bin/bash
/usr/bin/install -c -m 0755 bashbug /usr/local/bin/bashbug
(cd ./doc ; make \
 man1dir=/usr/local/man/man1 man1ext=1 \
 man3dir=/usr/local/man/man3 man3ext=3 \
 infodir=/usr/local/info install)
make[1]: Entering directory `/home/ftp/bash-2.03/doc'
test -d /usr/local/man/man1 || /bin/sh ../support/mkdirs /usr/local/man/man1
test -d /usr/local/info || /bin/sh ../support/mkdirs
 /usr/local/info
/usr/bin/install -c -m 644 ./bash.1
 /usr/local/man/man1/bash.1
/usr/bin/install -c -m 644 ./bashbug.1
 /usr/local/man/man1/bashbug.1
/usr/bin/install -c -m 644 ./bashref.info
 /usr/local/info/bash.info
if /bin/sh -c 'install-info --version'
 >/dev/null 2>&1; then \
 install-info --dir-file=/usr/local/info/dir
 /usr/local/info/bash.info; \
else true; fi
make[1]: Leaving directory `/home/ftp/bash-2.03/doc'

The installation places the new version of bash in /usr/local/bin. Now, two working versions of bash are
available on the system:

which bash
/bin/bash
/bin/bash -version
GNU bash, version 1.14.7(1)
/usr/local/bin/bash -version
GNU bash, version 2.03.0(1)-release (i686-pc-linux-gnu)
Copyright 1998 Free Software Foundation, Inc.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-3.htm (6 of 7) [3/9/2003 11:15:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

Familiarize yourself with the acquisition, configuration, compilation, and installation of
software from source. Be prepared to answer questions on make and Makefile, the function
of the configure utility, gzip, and tar.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-3.htm (7 of 7) [3/9/2003 11:15:42]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 14. Linux Installation and Package
Management (Topic 2.2)

14.4 Objective 4: Manage Shared Libraries

When a program is compiled under Linux, many of the functions required by the program are linked
from system libraries that handle disks, memory, and other functions. For example, when printf() is

used in a program, the programmer doesn't provide the printf() source code, but instead expects

that the system already has a library containing such functions. When the compiler needs to link the
code for printf(), it can be found in a system library and copied into the executable. A program that

contains executable code from these libraries is said to be statically linked because it stands alone,
requiring no additional code at runtime.

Statically linked programs can have a few liabilities. First, they tend to get large, because they include
executables for all of the library functions linked into them. Also, memory is wasted when many
different programs running concurrently contain the same library functions. To avoid these problems,
many programs are dynamically linked. Such programs utilize the same routines but don't contain the
library code. Instead, they are linked into the executable at runtime. This dynamic linking process
allows multiple programs to use the same library code in memory and makes executable files smaller.
Dynamically linked libraries are shared among many applications and are thus called shared libraries. A
full discussion of libraries is beyond the scope of the LPIC Level 1 exams. However, a general
understanding of some configuration techniques is required.

14.4.1 Shared Library Dependencies

Any program that is dynamically linked will require at least a few shared libraries. If the required
libraries don't exist or can't be found, the program will fail to run. This could happen, for example, if you
attempt to run an application written for the GNOME graphical environment but haven't installed the
required GTK+ libraries. Simply installing the correct libraries should eliminate such problems. The ldd
utility can be used to determine which libraries are necessary for a particular executable.

ldd

Syntax

ldd programs

Description

Display shared libraries required by each of the programs listed on the command line. The results
indicate the name of the library and where the library is expected to be in the filesystem.

Example

In Objective 3, a trivial executable called hw was created. Despite its small size, however, hw requires

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-4.htm (1 of 4) [3/9/2003 11:15:43]

InformIT Online Books > LPI Linux Certification in a Nutshell

two shared libraries:

ldd /home/jdean/hw
/home/jdean/hw:
 libc.so.6 => /lib/libc.so.6 (0x40018000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

The bash shell requires three shared libraries:

ldd /bin/bash
/bin/bash:
 libtermcap.so.2 => /lib/libtermcap.so.2 (0x40018000)
 libc.so.6 => /lib/libc.so.6 (0x4001c000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

14.4.2 Linking Shared Libraries

Dynamically linked executables are examined at runtime by the shared object dynamic linker, ld.so.
This program looks for dependencies in the executable being loaded and attempts to satisfy any
unresolved links to system-shared libraries. If ld.socan't find a specified library, it fails, and the
executable won't run.

To illustrate this, let's assume that the printit() function from the hw example in Objective 3 is

moved to a shared library instead of being compiled into the program. The custom library is called

libprintit.so and stored in /usr/local/lib. hw is reconfigured and recompiled to use the new library.[8]
By default, ld.sodoesn't expect to look in /usr/local/lib for libraries, and fails to find printit() at

runtime:

[8] Though not complicated, the compilation of libprintit.so and hw is
beyond the scope of the LPIC Level 1 exams.

./hw
./hw: error in loading shared libraries: libprintit.so:
 cannot open shared object file: No such file or directory

To find the new library, ld.so must be instructed to look in /usr/local/lib. There are a few ways to do
this. One simple way is to add a colon-separated list of directories to the shell environment variable
LD_LIBRARY_PATH, which will prompt ld.soto look in any directories it finds there. However, this

method may not be appropriate for system libraries, because users might not set their
LD_LIBRARY_PATH correctly.

To make the search of /usr/local/lib part of the default behavior for ld.so, files in the new directory must
be included in an index of library names and locations. This index is /etc/ld.so.cache. It's a binary file,
which means it can be read quickly by ld.so. To add the new library entry to the cache, its directory is
first added to the ld.so.conf file, which contains directories to be indexed by the ldconfig utility.

ldconfig

Syntax

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-4.htm (2 of 4) [3/9/2003 11:15:43]

InformIT Online Books > LPI Linux Certification in a Nutshell

ldconfig [options] lib_dirs

Description

Update the ld.so cache file with shared libraries specified on the command line in lib_dirs, in trusted
directories /usr/lib and /lib, and in the directories found in /etc/ld.so.conf.

Frequently used options

-p

Display the contents of the current cache instead of recreating it.

-v

Verbose mode. Display progress during execution.

Example 1

Examine the contents of the ld.so library cache:

ldconfig -p
299 libs found in cache `/etc/ld.so.cache' (version 1.7.0)
 libzvt.so.2 (libc6) => /usr/lib/libzvt.so.2
 libz.so.1 (libc6) => /usr/lib/libz.so.1
 libz.so.1 (ELF) => /usr/i486-linux-libc5/lib/libz.so.1
 libz.so (libc6) => /usr/lib/libz.so
 libx11amp.so.0 (libc6) => /usr/X11R6/lib/libx11amp.so.0
 libxml.so.0 (libc6) => /usr/lib/libxml.so.0
(... listing continues ...)

Example 2

Look for a specific library entry in the cache:

ldconfig -p | grep "printit"
 libprintit.so (libc6) => /usr/local/lib/libprintit.so

Example 3

Rebuild the cache:

ldconfig

After /usr/local/lib is added, ld.so.conf might look like this:

/usr/lib
/usr/i486-linux-libc5/lib
/usr/X11R6/lib

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-4.htm (3 of 4) [3/9/2003 11:15:43]

InformIT Online Books > LPI Linux Certification in a Nutshell

/usr/local/lib

Next, ldconfig is run to include libraries found in /usr/local/lib in /etc/ld.so.cache :

ldconfig
./hw
Hello, world

Now the hw program can execute correctly because ld.so can find libprintit.so in /usr/local/lib. It is
important to run ldconfig after any changes in system libraries to be sure that the cache is up-to-date.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-4.htm (4 of 4) [3/9/2003 11:15:43]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 14. Linux Installation and Package
Management (Topic 2.2)

14.5 Objective 5: Use Debian Package Management

The Debian package management system is a versatile and automated suite of tools used to acquire
and manage software packages for Debian Linux. The system automatically handles many of the
management details associated with interdependent software running on your system.

14.5.1 Debian Package Management Overview

Each Debian package contains program and configuration files, documentation, and noted dependencies
on other packages. The names of Debian packages have three common elements, including:

Package name

A Debian package name is short and descriptive. When multiple words are used in the name,
they are separated by hyphens. Typical names include binutils, kernel-source, and telnet.

Version number

Each package has a version number. Most package versions are the same as that of the
software they contain, thus the format of package versions varies from package to package.
Most are numeric, with major, patch, and release numbers, but other information may appear
as well. Typical versions are 0.6.7-7, 0.96a-14, 6.05, 80b2-8, and 2.0.7.19981211. The version
is separated from the package name with an underscore.

A file extension

By default, all Debian packages end with .deb file extension.

Figure 14-1 illustrates a Debian package name.

Figure 14-1. The structure of a Debian GNU/Linux package name

14.5.2 Managing Debian Packages

The original Debian package management tool is dpkg, which operates directly on .deb package files
and can be used to automate the installation and maintenance of software packages. The alternative

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-5.htm (1 of 8) [3/9/2003 11:15:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

apt-get tool operates using package names, obtaining them from a predefined source (such as CD-
ROMs, FTP sites, etc.). Both tools work from the command line.

The dselect command offers an interactive menu that allows the administrator to select from a list of
available packages and mark them for subsequent installation. The alien command allows the use of
non-Debian packages, such as the Red Hat RPM format.

For complete information on Debian package management commands, see details in their respective
manpages.

dpkg

Syntax

dpkg [options] action

Description

The Debian package manager command, dpkg, consists of an action that specifies a major mode of
operation as well as zero or more options, which modify the action's behavior.

The dpkg command maintains package information in /var/lib/dpkg. Two files located there of
particular interest are:

available

The list of all available packages.

status

Contains package attributes, such as whether it is installed or marked for removal.

These files are modified by dpkg, dselect, and apt-get, and it is unlikely that they will ever need to be
edited.

Frequently used options

-E

Using this option, dpkg will not overwrite a previously installed package of the same version.

-G

Using this option, dpkg will not overwrite a previously installed package with an older version of
that same package.

-R (also -- recursive)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-5.htm (2 of 8) [3/9/2003 11:15:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

Recursively process package files in specified subdirectories. Works with -i, -- install, --
unpack, and so on.

Frequently used actions

-- configure package

Configure an unpacked package. This involves setup of configuration files.

-i package_ file (also -- install package_ file)

Install the package contained in package_ file. This involves backup of old files, unpacking and
installation of new files, and configuration.

-l [pattern] (also -- list [pattern])

Display information for installed package names that match pattern.

-L package (also -- listfiles package)

List files installed from package.

-- print-avail package

Display details found in /var/lib/dpkg/available about package.

-- -purge package

Remove everything for package.

-r package (also -- remove package)

Remove everything except configuration files for package.

-s package (also -- status package)

Report the status of package.

-S search_pattern (also -- search search_ pattern)

Search for a filename matching search_ pattern from installed packages.

-- unpack package_ file

Unpack package_ file, but don't install the package it contains.

14.5.2.1 Example 1

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-5.htm (3 of 8) [3/9/2003 11:15:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

Install a package using dpkg -i with the name of an available package file:

dpkg -i ./hdparm_3.3-3.deb
(Reading database ... 54816 files and directories
 currently installed.)
Preparing to replace hdparm 3.3-3 (using hdparm_3.3-3.deb)
Unpacking replacement hdparm ...
Setting up hdparm (3.3-3) ...

Alternatively, use apt-get install with the name of the package. In this case, the package comes from
the location or locations configured in /etc/apt/sources.list. For this example, the location is
http://http.us.debian.org/:

apt-get install elvis
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
 libncurses4 xlib6g
The following NEW packages will be installed:
 elvis
2 packages upgraded, 1 newly installed, 0 to remove
 and 376 not upgraded.
Need to get 1678kB of archives. After unpacking 2544kB
 will be used.
Do you want to continue? [Y/n] y
Get:1 http://http.us.debian.org stable/main
 libncurses4 4.2-9 [180kB]
Get:2 http://http.us.debian.org stable/main
 xlib6g 3.3.6-11 [993kB]
Get:3 http://http.us.debian.org stable/main
 elvis 2.1.4-1 [505kB]
Fetched 1678kB in 4m11s (6663B/s)
(Reading database ... 54730 files and directories
 currently installed.)
Preparing to replace libncurses4 4.2-3 (using
 .../libncurses4_4.2-9_i386.deb) ...
Unpacking replacement libncurses4 ...
(installation continues...)

14.5.2.2 Example 2

Upgrading a package is no different from installing one. However, you should use the -G option when
upgrading with dpkg to ensure that the installation won't proceed if a newer version of the same
package is already installed.

14.5.2.3 Example 3

Use dpkg -r or dpkg -- purge to remove a package:

dpkg --purge elvis
(Reading database ... 54816 files and directories
 currently installed.)
Removing elvis ...
(purge continues...)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-5.htm (4 of 8) [3/9/2003 11:15:44]

http://http.us.debian.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

14.5.2.4 Example 4

Use the dpkg -S command to find a package containing specific files. In this example, apt-get is
contained in the apt package:

dpkg -S apt-get
apt: /usr/share/man/man8/apt-get.8.gz
apt: /usr/bin/apt-get

14.5.2.5 Example 5

Obtain package status information, such as version, content, dependencies, integrity, and installation
status, using dpkg -s:

dpkg -s apt
Package: apt
Status: install ok installed
Priority: optional
Section: admin
Installed-Size: 1388
(listing continues...)

14.5.2.6 Example 6

List the files in a package using dpkg -L and process the output using grep or less:

dpkg -L apt | grep '^/usr/bin'
/usr/bin
/usr/bin/apt-cache
/usr/bin/apt-cdrom
/usr/bin/apt-config
/usr/bin/apt-get

14.5.2.7 Example 7

List the installed packages using dpkg -l; if you don't specify a pattern, all packages will be listed:

dpkg -l xdm
ii xdm 3.3.2.3a-11 X display manager

14.5.2.8 Example 8

Use dpkg -S to determine the package from which a particular file was installed with the filename:

dpkg -S /usr/bin/nl
textutils: /usr/bin/nl

apt-get

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-5.htm (5 of 8) [3/9/2003 11:15:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

apt-get [options] [command] [package_name ...]

Description

The apt-get command is part of the Advanced Package Tool (APT) management system. It does not
work directly with .deb files like dpkg, but uses package names instead. apt-get maintains a database
of package information that enables the tool to automatically upgrade packages and their dependencies
as new package releases become available.

Frequently used options

-d

Download files, but do not install. This is useful when you wish to get a large number of package
files but delay their installation to prevent installation errors from stopping the download
process.

-s

Simulate the steps in a package change, but do not actually change the system.

-y

Automatically respond "yes" to all prompts, instead of prompting you for a response during
package installation/removal.

Frequently used commands

dist-upgrade

This command is used to automatically upgrade to new versions of Debian Linux.

install

The install command is used to install or upgrade one or more packages by name.

remove

This command is used to remove the specified packages.

update

Running apt-get update fetches a list of currently available packages. This is typically done
before any changes are made to existing packages.

upgrade

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-5.htm (6 of 8) [3/9/2003 11:15:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

The upgrade command is used to safely upgrade a system's complete set of packages to
current versions. It is conservative and will not process upgrades that could cause a conflict or
break an existing configuration; it also will not remove packages.

Additional commands and options are available. See the apt-get manpage for more information.

apt-get uses /etc/apt/sources.list to determine where packages should be obtained. This file is not in
the Objectives for Exam 102.

Example

Remove the elvis package using apt-get.

apt-get remove elvis
Reading Package Lists... Done
Building Dependency Tree... Done
The following packages will be REMOVED:
 elvis
0 packages upgraded, 0 newly installed, 1 to remove
 and 376 not upgraded.
Need to get 0B of archives. After unpacking 1363kB
 will be freed.
Do you want to continue? [Y/n] y
(Reading database ... 54816 files and directories
 currently installed.)
Removing elvis ...
(removal continues...)

In this example, the user is required to respond with y when promted to continue. Using the -y option

to apt-get would eliminate this interaction.

dselect

Syntax

dselect

Description

dselect is an interactive, menu-driven, frontend tool for dpkg and is usually invoked without
parameters. The dselect command lets you interactively manage packages by selecting them for
installation, removal, configuration, and so forth. Selections are made from a locally stored list of
available packages, which may be updated while running dselect. Package actions initiated by dselect
are carried out using dpkg.

alien

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-5.htm (7 of 8) [3/9/2003 11:15:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

alien [--to-deb] [--patch=patchfile] [options] file

Description

Convert to or install a non-Debian (or "alien") package. Supported package types include Red Hat .rpm,
Stampede .slp, Slackware .tgz, and generic .tar.gz files. rpm must also be installed on the system in
order to convert an RPM package into a .deb package. The alien command produces an output package
in Debian format by default after conversion.

Frequently used option

-i

Automatically install the output package and remove the converted package file.

Example

Install a non-Debian package on Debian system using alien with the -i option:

alien -i package.rpm

On the Exam

dselect, apt-get, and alien are important parts of Debian package management, but
detailed knowledge of dpkg is of primary importance for Exam 102.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-5.htm (8 of 8) [3/9/2003 11:15:44]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 14. Linux Installation and Package
Management (Topic 2.2)

14.6 Objective 6: Use Red Hat Package Manager (RPM)

The Red Hat Package Manager is among the most popular methods for the distribution of software for
Linux and is installed by default on many distributions. It automatically handles many of the
management details associated with interdependent software running on your system.

14.6.1 RPM Overview

RPM automates the installation and maintenance of software packages. Built into each package are
program files, configuration files, documentation, and dependencies on other packages. Package files
are manipulated using the rpm command, which maintains a database of all installed packages and
their files. Information from new packages is added to this database, and it's consulted on a file-by-file
basis for dependencies when packages are removed, queried, and installed.

As with Debian packages, RPM filenames have three common elements:

Name

An RPM package name is short and descriptive. If multiple words are used, they are separated
by hyphens (not underscores, as you might expect). Typical names include binutils, caching-
nameserver, cvs, gmc, kernel-source, and telnet.

Version

Each package has a version. Most package versions are the same as that of the software they
contain, thus the format of package versions varies from package to package. Most are numeric,
with major, patch, and release numbers, but other information may appear as well. Typical
versions are 3.0beta5-7, 1.05a-4, 2.7-5, 1.10.5-2, 1.1.1pre2-2, 1.14r4-4, 6.5.2-free3-rsaref,
and 0.9_alpha3-6. The version is separated from the name by a hyphen.

Architecture

Packages containing binary (compiled) files are by their nature specific to a particular type of
system. For PCs, the RPM architecture designation is i386, meaning the Intel 80386 and
subsequent line of microprocessors and compatibles. For Sun and Sun-compatible processors,
the architecture is sparc. The architecture is separated from the version with a dot.

A .rpm extension

All RPM files end with .rpm extension by default.

An RPM filename is constructed by tying these elements together in one long string, as shown in Figure
14-2.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-6.htm (1 of 7) [3/9/2003 11:15:46]

InformIT Online Books > LPI Linux Certification in a Nutshell

Figure 14-2. The structure of an RPM package name

As you can see, there are three uses for hyphens in RPM filenames. They appear as word separators in
package names, as a delimiter between names and versions, and as part of the version. This may be

confusing at first, but the version is usually obvious, making the use of hyphens unambiguous.[9]

[9] Perhaps this won't be clear at first glance, but once you're used to RPM
names you'll know what to expect.

14.6.2 Running rpm

The rpm command provides for the installation, removal, upgrade, verification, and other management
of RPM packages and has a bewildering array of options. Some are of the traditional single-letter style,
while others are the -- option variety. In most cases, both styles exist and are interchangeable. At first
glance, configuring rpm may appear to be a bit daunting. However, its operation is segmented into
modes, which are enabled using one (and only one) of the mode options. Within a mode, additional
mode-specific options become available to modify the behavior of rpm. The major modes of rpm and
some of the most frequently used mode-specific options follow. For complete information on how to use
and manage RPM packages, see the rpm manpage or the synopsis offered by rpm -- help.

rpm

Syntax

rpm -i (also rpm -- install),
rpm -U (also rpm -- upgrade)
rpm -e (also -- uninstall)
rpm -q (also -- query)
rpm -V

Install/Upgrade mode

The install mode (rpm -i) is used to install new packages. A variant of install mode is the upgrade mode
(rpm -U), where an installed package is upgraded to a more recent version.

Frequently used install- and upgrade-mode options

-- force

This option allows the replacement of existing packages and of files from previously installed
packages; for upgrades, it allows the replacement of a newer package with an older one.

-h (also -- hash)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-6.htm (2 of 7) [3/9/2003 11:15:46]

InformIT Online Books > LPI Linux Certification in a Nutshell

This option adds a string of 50 hash marks (#) during installation as a sort of progress indicator.

-- nodeps

rpm will skip dependency checking with this option enabled. This allows you to install a package
without regard to dependencies.

-- test

This option will run through all the motions except for actually writing files; it's useful to verify
that a package will install correctly prior to making the attempt. Note that verbose and hash
options cannot be used with -- test, but -vv can.

-v

This option sets verbose mode.

-vv

This sets really verbose mode. The manpage describes this as "print lots of ugly debugging
information."

Example 1

To install a new package, simply use the rpm -i command with the name of a package file. If the new
package depends upon another package, the install fails, like this:

rpm -iv netscape-communicator-4.72-3.i386.rpm
error: failed dependencies:
 netscape-common = 4.72 is needed by
 netscape-communicator-4.72-3

To correct the problem, the dependency must first be satisfied. In this example, netscape-
communicator is dependent on netscape-common, which is installed first:

rpm -iv netscape-common-4.72-3.i386.rpm
netscape-common
rpm -iv netscape-communicator-4.72-3.i386.rpm
netscape-communicator

Example 2

Upgrading an existing package to a newer version can be done with the -U option. Upgrade mode is
really a special case of the install mode, where existing packages can be superseded by newer versions.
Using -U, a package can be installed even if it doesn't already exist, in which case it behaves just like -
i:

rpm -U netscape-common-4.72-3.i386.rpm

Uninstall mode

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-6.htm (3 of 7) [3/9/2003 11:15:46]

InformIT Online Books > LPI Linux Certification in a Nutshell

This mode is used to remove installed packages from the system. By default, rpm uninstalls a package
only if no other packages are dependent on it.

Frequently used uninstall-mode options

-- nodeps

rpm skips dependency checking with this option enabled.

-- test

This option runs through all the motions except for actually uninstalling things; it's useful to
verify that a package can be uninstalled correctly without breaking other dependencies prior to
making the attempt. Note that verbose and hash options cannot be used with -- test, but -vv
can.

Example

Package removal is the opposite of installation and has the same dependency constraints:

rpm -e netscape-common
error: removing these packages would break dependencies:
 netscape-common = 4.72 is needed by
 netscape-communicator-4.72-3

Query mode

Installed packages and raw package files can be queried using the rpm -q command. Query-mode
options exist for package and information selection.

Frequently used query-mode package selection options

-a (also -- all)

Display a list of all packages installed on the system. This is particularly useful when piped to
grep if you're not sure of the name of a package or when you want to look for packages that
share a common attribute.

-f filename (also -- file)

Display the package that contains a particular file.

-p package_ filename

Query a package file. Most useful with -i, described next.

Frequently used query-mode information selection options

-c (also -- configfiles)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-6.htm (4 of 7) [3/9/2003 11:15:46]

InformIT Online Books > LPI Linux Certification in a Nutshell

List only configuration files.

-d (also -- docfiles)

List only documentation files.

-i package

Not to be confused with the install mode. Display information about an installed package, or
when combined with -p, about a package file. In the latter case, package is a filename.

-l package (also -- list)

List all of the files contained in package. When used with -p, the package is a filename.

-R (also -- requires)

List packages on which this package depends.

Example 1

To determine the version of the software contained in an RPM file, use the query and package
information options:

rpm -qpi xv-3.10a-13.i386.rpm | grep Version
Version : 3.10a Vendor: Red Hat Software

For installed packages, omit the -p option and specify a package name instead of a package filename:

rpm -qi kernel-source | grep Version
Version : 2.2.5 Vendor: Red Hat Software

Example 2

Enter query mode and list the files contained in a package:

rpm -qlp gnucash-1.3.0-1.i386.rpm
/usr/bin/gnc-prices
/usr/bin/gnucash
/usr/bin/gnucash.gnome
/usr/doc/gnucash
/usr/doc/gnucash/CHANGES
 (...output continues ...)

For an installed package, enter query mode and use the -l option along with the package name:

rpm -ql kernel-source
/usr/src/linux-2.2.5/COPYING
/usr/src/linux-2.2.5/CREDITS
/usr/src/linux-2.2.5/Documentation

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-6.htm (5 of 7) [3/9/2003 11:15:46]

InformIT Online Books > LPI Linux Certification in a Nutshell

/usr/src/linux-2.2.5/Documentation/00-INDEX
/usr/src/linux-2.2.5/Documentation/ARM-README
 (...output continues ...)

Example 3

List the documentation files in a package:

rpm -qd at
/usr/doc/at-3.1.7/ChangeLog
/usr/doc/at-3.1.7/Copyright
/usr/doc/at-3.1.7/Problems
/usr/doc/at-3.1.7/README
/usr/doc/at-3.1.7/timespec
/usr/man/man1/at.1
/usr/man/man1/atq.1
/usr/man/man1/atrm.1
/usr/man/man1/batch.1
/usr/man/man8/atd.8
/usr/man/man8/atrun.8

Use -p for package filenames.

Example 4

List configuration files or scripts in a package:

rpm -qc at
/etc/at.deny
/etc/rc.d/init.d/atd

Example 5

Determine the package from which a particular file was installed. Of course, not all files originate from
packages:

rpm -qf /etc/issue
file /etc/issue is not owned by any package

Those that are package members look like this:

rpm -qf /etc/aliases
sendmail-8.9.3-10

Example 6

List the packages that have been installed on the system (all or a subset):

rpm -qa
 (... hundreds of packages are listed ...)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-6.htm (6 of 7) [3/9/2003 11:15:46]

InformIT Online Books > LPI Linux Certification in a Nutshell

To search for a subset with kernel in the name, pipe the previous command to grep:

rpm -qa | grep kernel
kernel-headers-2.2.5-15
kernel-2.2.5-15
kernel-pcmcia-cs-2.2.5-15
kernel-smp-2.2.5-15
kernel-source-2.2.5-15
kernelcfg-0.5-5
kernel-ibcs-2.2.5-15
kernel-doc-2.2.5-15

Verify mode

Files from installed packages can be compared against their expected configuration from the RPM
database by using rpm -V. The output is described in Section 21.1.

Frequently used verify-mode options

-- nofiles

Ignores missing files.

-- nomd5

Ignores MD5 checksum errors.

-- nopgp

Ignores PGP checking errors.

Additional operational modes

There are also modes in RPM for building, rebuilding, signing, and checking the signature of RPM files;
however, these are beyond the scope of the LPIC Level 1 exams.

On the Exam

Make certain that you are aware of RPM's major operational modes and their commonly
used mode-specific options. Knowledge of specific options will be necessary. Read through
the rpm manpage at least once.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/14-6.htm (7 of 7) [3/9/2003 11:15:46]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 21. Security (Topic 1.14)

21.1 Objective 1: Perform Security Administration Tasks

A good security policy includes such things as securing inbound network requests, verifying the
authenticity of software packages to assure they are not hostile, and managing local security resources.
This Objective details some of the most common of these activities that a system administrator
performs.

21.1.1 TCP Wrappers

As a Linux system operates in a networked environment, it is constantly "listening" for inbound requests
from the network. Many requests come into Linux on the same network interface, but they are
differentiated from one another by their port address, a unique numeric designator used by network
protocols. Each type of service listens on a different port. Established port numbers and their
corresponding services are listed in /etc/services. Here are some lines from that file:

/etc/services:
#
ftp 21/tcp
ssh 22/tcp
ssh 22/udp
telnet 23/tcp
smtp 25/tcp
www 80/tcp
www 80/udp

The left column lists various services that could be provided by the system.[1] The right column lists
the port numbers assigned to the services and the protocol (TCP or UDP) used by the service. For
example, the telnet service uses port 23, and web servers use port 80. When a browser wishes to
contact the web server on a specific IP address, it attempts to attach to port 80 at that address.
Likewise, Telnet clients attach to port 23. If the appropriate service is listening, it responds and a new
communications session is established. Linux networking software consults this table to determine port
numbers.

[1] Just being listed doesn't imply that a service is really active.

21.1.1.1 On the attack

As the Internet has grown, the frequency of computer break-in attempts has kept pace. To gain entry to
an unsuspecting host system, some intruders configure their systems to appear to target servers (that
is, your servers) as trusted hosts. This could include a forged IP address or hostname, or the
exploitation of aspects of the TCP protocol. Such attacks are carried out against multiple ports,
sometimes in a port scan where multiple ports at a single IP address are attacked in succession.

In response to these threats, the TCP wrapper concept was created. The "wrappers" name comes from
the idea that the services are "wrapped" in a protective layer. TCP wrappers consist of a single program,
tcpd, which is called in place of actual services like ftpd or telnetd, among others. tcpd performs the
following functions:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (1 of 12) [3/9/2003 11:15:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Responds to network requests and does security tests on the information provided in the
connection message

● Consults local configuration files (/etc/host.allow and /etc/host.deny) to restrict access

● Provides detailed logging via the authpriv facility of syslog for connection requests

If a connection is approved, tcpd steps aside and allows the connection to be received by the true
service. You could consider tcpd to be a gatekeeper of sorts, asking for identification at the door, and
once satisfied, getting out of the way and allowing entry. By doing so, tcpd does not impact subsequent
performance of the network connection. However, this aspect of tcpd prevents its use for services that
handle multiple clients at one time, such has NFS and httpd. Instead, services protected by tcpd
include single-client programs such as telnet and ftp.

21.1.1.2 Configuring inetd and tcpd

Section 20.1 examines inetd and its configuration file, /etc/inetd.conf. Without tcpd, a typical service
configuration looks like this:

telnet stream tcp nowait root \
 /usr/sbin/in.telnetd in.telnetd

In this example, /usr/sbin/in.telnetd is the executable program that is called when a Telnet client tries
to attach to the system on the Telnet port (23). With this configuration, in.telnetd responds directly and
immediately to inbound requests. To enable the use of TCP wrappers for in.telnetd, it is specified that
tcpd be called instead. Making this change yields this revised inetd.conf line:

telnet stream tcp nowait root \
 /usr/sbin/tcpd in.telnetd

Now, /usr/sbin/tcpd is called in response to an inbound Telnet connection.

tcpd interacts with only the initial network connection. It does not interact with the client process
(remote Telnet), the client user (the remote person initiating the Telnet session), or the server process
(the local in.telnetd). Since it is autonomous, tcpd has these properties:

Application independence

The same small tcpd program can be used on many different network services. This simplicity
makes tcpd easy to install, configure, and upgrade.

Invisible from outside

Anyone trying to gain access has no direct evidence that tcpd is in use.[2]

[2] However, it is customary for tcpd to be in use by default on modern Linux
installations.

21.1.1.3 tcpd access control

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (2 of 12) [3/9/2003 11:15:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

tcpd provides a method of limiting access from external sources both by name and by address. After
receiving a network request, tcpd first does its IP address and hostname checks. If those pass, tcpd
then consults two control files, named hosts.allow and hosts.deny, for access control information. These
are text files that contain rules (one per line) against which incoming network connections are tested:

/etc/hosts.allow

tcpd consults this file first. When an incoming network request matches one of these rules,
tcpd immediately grants access by passing the network connection over to the server daemon.
If none of the rules are matched, the next file is consulted.

/etc/hosts.deny

This file is consulted second. If a network request matches one of these rules, tcpd denies
access to the service.

If no matches are made in either of the files, then the connection is allowed. This implies that missing
hosts.allow and hosts.deny files means that no access control is implemented.

The form of the rules in these two files is simple:

service_list : foreign_host_list

The service list is made up of space-separated program names, such as in.telnetd and in.ftpd. The
foreign host list can contain special codes, which can be used on both sides of the colon:

ALL

This is the universal wildcard, which always matches all requests. When used on the left side of
a rule, ALL indicates every service protected by tcpd. On the right side, it means all possible

hosts.

EXCEPT

In the context of:

list1 EXCEPT list2

this operator matches anything that matches list1 unless it also matches list2.

LOCAL

This wildcard matches machines on the local network -- any host whose name does not contain
a dot character.

KNOWN

This matches with a successful DNS lookup. Dependent on DNS servers.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (3 of 12) [3/9/2003 11:15:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

PARANOID

This wildcard matches when a hostname lookup returns a different address than the inbound
network connection is offering. tcpd must be compiled with the -DPARANOID option to enable
this capability. By default, connections in this category are dropped prior to testing against the
rules in the control files.

UNKNOWN

Opposite of KNOWN. When a DNS lookup for a host fails, this wildcard matches. This could

happen for valid reasons, such as a DNS server failure, so use this one with caution.

To create a system closed to all remote systems except those on the local network, the following line is
placed in /etc/hosts.allow :

ALL: LOCAL

This rule allows connections to ALL services from LOCAL machines. If LOCAL does not match, this single

line in /etc/hosts.deny is tested:

ALL : ALL

This rule denies ALL services from ALL machines anywhere. Remember that matches found in

hosts.allow cause the search to stop, so that LOCAL machines are not tested against the rules in

hosts.deny.

To enable access from systems in domain otherdom.com except its web server, and to allow access

from systems in network 192.168.100.0, you could change the /etc/hosts.allow file from the previous

example to:

ALL: LOCAL
ALL: .otherdom.com EXCEPT www.otherdom.com
ALL: 192.168.100.

Note that the leading and trailing dots are significant. .otherdom.com matches any system in that

domain, such as ftp.otherdom.com and lab1.otherdom.com. The address rule with 192.168.100.

matches all of the addresses on that network, including 192.168.100.1, 192.168.100.2,

192.168.100.100, and so on.

On the Exam

Remember that hosts.allow is evaluated prior to hosts.deny. This means that if a match
occurs in hosts.allow, the connection succeeds and any potential matches from hosts.deny
are ignored. Also remember that, in the absence of control, file access is permitted.

Keep in mind that services that are not in use may have control settings. A configuration in
/etc/hosts.allow or /etc/hosts.deny does not imply that listed services are actually running
on the system. Evaluate the complete setup of inetd.conf, hosts.allow, and hosts.deny when
answering questions about tcpd.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (4 of 12) [3/9/2003 11:15:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

21.1.1.4 tcpd logging

When tcpd is enabled, it logs to the authpriv facility in syslog (syslog and its configuration are
described in Section 7.3.) Check your /etc/syslog.conf file to confirm where this facility will be logged on
your system. For example, this /etc/syslog.conf configuration line puts all authpriv messages in
/var/log/secure:

authpriv.* /var/log/secure

Most system service daemons will do some logging on their own. For example, in.telnetd writes the
following line to authpriv as the result of a Telnet connection:

Feb 8 17:50:04 smp login: LOGIN ON 0 BY jdean
 FROM 192.168.1.50

When tcpd is listening to the Telnet port in place of in.telnetd, it logs the request first, does its
verifications, and then passes the connection on to in.telnetd, which then starts a login process as

before. In this case, /var/log/secure looks like this:

Feb 8 17:53:03 smp in.telnetd[1400]: connect
 from 192.168.1.50
Feb 8 17:53:07 smp login: LOGIN ON 0 BY jdean
 FROM 192.168.1.50

The first line was logged by tcpd. It indicates that a connection was received from 192.168.1.50

bound for the in.telnetd daemon.[3] As you can see, the tcpd report precedes the login report.

[3] The smp on these example lines is the name of the host making the log
entries.

21.1.2 Finding Executable SUID Files

The set user ID (SUID) capability of the Linux ext2 filesystem was covered in Section 4.5. In that
section, the SUID property was described as both a security enhancement and a security risk. It can be
considered an enhancement because it allows administrators to grant superuser privileges to specific,
trusted programs that may be executed by anyone on the system. The example given is lpr, which
needs special access to manipulate the print spools. Without using the SUID property, everyone on the
system would need administrative rights to use lpr, which is clearly undesirable. It is also mentioned
that an SUID capability that is granted unwisely can be a security risk, and all applications of SUID must
be considered carefully. The reason for this concern is that the potential exists for an attacker to exploit
the superuser privilege on an SUID file. For example, if the attacker is able to somehow overwrite the
contents of lpr, he could effectively gain superuser access to the system by running an lpr of his own
design that changes passwords, adds new accounts, or something else shady and unrelated to printing.

For systems on corporate networks and on the Internet, it is common to minimize the number of SUID
files on the system and to regularly monitor the known list of programs for changes. In the event that a
new SUID program is found that was not legitimately created or if an attribute of a known file changes,
it could be a warning that system security has been compromised.

The find command can perform the searches for attributes such as SUID (see Section 3.1 for details on

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (5 of 12) [3/9/2003 11:15:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

find). In this example, a find command is constructed that searches the entire filesystem for files that
have the SUID bit set; it avoids the /proc filesystem (kernel information) to prevent permission
problems. The example generates verbose output using ls to log detailed information about the SUID
files found:

find / \
 -path '/proc' -prune \
 -or \
 -perm -u+s \
 -exec ls -l {} \; \
 > /usr/local/etc/suid_list &

The first line calls the find program and indicates that the search should begin at the root directory /.

The second line specifies a -path directive to match /proc utilizing the -prune modifier. This

eliminates (or prunes) the /proc directory from the search. The next line joins the -path directive to the

-perm (permissions) directive with a logical -or, skipping execution of the -perm directive when -path

matches /proc. The -perm directive uses a permission mode of -u+s, which indicates "match SUID."

The next line with the -exec directive indicates what find is to do for each SUID file found. Here, the ls -

l command is invoked and fed the response from find to verbosely list the SUID file's attributes. The

curly braces ({}) are replaced with the matched text once for each match.[4] The final line redirects

output from find into a new file and puts the command in the background with &.

[4] Note that a backslash in front of the semicolon is required with -exec.

Admittedly, find can get a bit long in the tooth but is nevertheless powerful. The result of this command
is a listing of files on your system with the SUID property; the following is just a snippet of what that
output would look like:

-rwsr-xr-x 1 root root 33120 Mar 21 1999 /usr/bin/at
-rwsr-xr-x 1 root root 30560 Apr 15 1999 /usr/bin/chage
-rwsr-xr-x 1 root root 29492 Apr 15 1999 /usr/bin/gpasswd

As you can see, the s bit is set on the user of the file, indicating SUID. Keeping this complete list in a
file can be useful, because you'll want to check your system periodically for changes.

21.1.3 Verifying Packages

Package management systems provide a convenient method of managing software on Linux systems.
The Red Hat Package Manager (RPM) not only can install package files but also can provide for the
verification of package files and software installed on your system.

21.1.3.1 Checking installed packages

If an intruder were able to penetrate your system, it is likely that she would attempt to modify or
replace executable files in order to grant herself special abilities. To check for such files, the verification
option of the package manager can be used to check installed files. With RPM, it is possible to verify the
installed files contained in a specific package like this:

rpm -V apache
S.5....T c /etc/httpd/conf/httpd.conf
.......T c /etc/httpd/conf/srm.conf

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (6 of 12) [3/9/2003 11:15:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

missing /home/httpd/html/index.html
missing /home/httpd/html/poweredby.gif

In this example, rpm is reporting that four files do not match the original installed configuration. None
is an executable file, and all are easy to explain, so no intruder is suspected here. If an executable file
does turn up in the list, you may wish to investigate. For example:

rpm -V XFree86-I128
S.5....T /usr/X11R6/bin/XF86_I128

This shows that the file XF86_I128 is not the same as the one originally installed. Unless you know why

the file has changed, corrective action may be necessary to maintain security. In this case, the file in
question is an X Server binary that was intentionally upgraded to a newer version than that supplied in
the original package. Again, this is an expected result.

The output from rpm -V consists of an eight-character string, an optional c (indicating that the file is a
configuration file), and the filename. Each column in the result string contains a dot when an attribute
has not changed. The output codes listed in Table 21-1 can replace dots to indicate discrepancies.

Table 21-1. RPM Verification Codes

Dot Code Description

5
The MD5 checksum, a sort of "fingerprint" for the file, is different.

S
The file size has changed.

L
Symlink attributes have changed.

T
The file's modification time (or mtime) has changed.

D
Device file has changed.

U
The file's user/owner has changed.

G
The file's group has changed.

M
The file's mode (permissions and file type) has changed.

?
Unknown or unexpected result.

It can be helpful to monitor all of the packages on your system and track changes to the resulting list on
a regular basis. To check all installed packages, use the a verification option as follows:

rpm -Va

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (7 of 12) [3/9/2003 11:15:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

S.5....T c /etc/exports
S.5....T c /etc/hosts.deny
S.5....T c /etc/printcap
S.5....T c /etc/services
.M...... /root
S.5....T c /usr/share/applnk/Multimedia/aktion.kdelnk
S.5....T c /etc/info-dir
..5....T c /etc/mime.types
S.5....T c /etc/httpd/conf/httpd.conf
.......T c /etc/httpd/conf/srm.conf
missing /home/httpd/html/index.html
missing /home/httpd/html/poweredby.gif
S.5....T c /etc/named.conf
S.5....T c /var/named/named.local
.M...... /dev/hdc
.M...... /dev/log
.M?....T /dev/printer
.M...... /dev/pts
......G. /dev/tty0
(... list continues ...)

This list will be large. As your system is configured, upgraded, and modified, you're likely to change
many of the files from their original configurations. The important part is being able to explain changes
that occur, particularly on executable files.

21.1.3.2 Checking packages prior to installation

From time to time, you may obtain precompiled software from various sources to add to your system.
This may include updated versions of software you already have or new software you don't yet have.
It's always best to obtain package files from a trusted source, such as the manufacturer or a well-known
distributor. However, as an added safeguard. you may wish to verify that the packages you obtain have
not been tampered with or otherwise corrupted. To check an RPM file, use the -- checksig option:

rpm --checksig --nopgp fileutils-4.0-1.i386.rpm
fileutils-4.0-1.i386.rpm: size md5 OK

The size md5 OK status indicates that "size" and "md5" checksum tests passed for the .rpm file. This

means that the size of the file and its checksum[5] matched expected values. A NOT OK status could

indicate a problem. In this example, the -- nopgp option is also used to ignore PGP signatures, which
may be necessary for you unless you have PGP installed and configured on your system.

[5] A checksum is a calculated value based on the contents of a file (or
other piece of information) used as a sort of "fingerprint."

21.1.4 SGID Workgroups

This Objective requires an understanding of the SGID (set group ID) mode bit and its application to a
directory. When SGID is set on a directory, new files created within that directory are assigned the
same group ownership as the directory itself. This is explored in detail in Section 3.5. If you're currently
preparing for Exam 102, be sure to refer back to Part I for a refresher on SGID.

21.1.5 Password Management

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (8 of 12) [3/9/2003 11:15:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

When a user calls saying he's forgotten his password, you need to use the superuser account to create
a new one for him:

passwd bsmith
Changing password for user bsmith
New UNIX password:(new password)
Retype new UNIX password:(new password again)
passwd: all authentication tokens updated successfully

Resist the temptation to use an easily guessed password, even if you expect the user to change it
immediately.

Linux offers you the ability to set expiration dates on passwords. This is done to limit their lifetime,
which presumably enhances security by forcing password changes. If a password has been discovered
or broken, the password change will eventually correct the security lapse. The chage command
configures password aging parameters on a per-user basis when using password aging. The following
parameters are defined:

Minimum password age

The minimum number of days between password changes.

Maximum password age

The maximum number of days between password changes. The user is forced to change his
password before using the account after the number of days has elapsed without a password
change.

Last password change

The date on which the password was last changed.

Password expiration warning

The number of days' warning that are issued in advance of a password expiration.

Password inactive

The number of days of inactivity the system allows before locking a password. This is an
automated way of avoiding stale but valid user accounts.

Account expiration date

The date on which an account expires.

chage

Syntax

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (9 of 12) [3/9/2003 11:15:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

chage user
chage [options] user

Description

In the first form without options, chage is interactive. In the second form, chage may be used with
parameters specified via options on the command-line.

Options

-d lastday

lastday is the number of days between the last password change and January 1, 1970. As an
administrator, you may need to modify this value. lastday may also be specified as a date in
/MM/DD/YY format.

-E expiredate

expiredate is a date on which an account will no longer be accessible. Like lastday, it is stored as
the number of days since January 1, 1970, and may be specified as a date in /MM/DD/YY
format.

-I inactive

inactive is the number of days of inactivity allowed after a password expires before an account is
locked. A value of disables the inactive feature.

-m mindays

mindays is the minimum number of days between password changes. This prevents a user from
making multiple password changes at one time.

-M maxdays

maxdays is the maximum number of days that a password remains valid. This forces users to
change their passwords periodically.

-W warndays

warndays is the number of days before a password expires that the user is warned of the
upcoming expiration.

Examples

User bsmith is to be provided with a password that cannot be changed more than once every 2 days,
that must be changed at least every six months (180 days), that retains its default 7-day warning
interval, that is set to lock after three weeks' of inactivity, and that expires altogether at the end of
2002. The following interactive session with chage makes these settings:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (10 of 12) [3/9/2003 11:15:48]

InformIT Online Books > LPI Linux Certification in a Nutshell

chage bsmith
Changing the aging information for bsmith
Enter the new value, or press return for the default

 Minimum Password Age [0]: 2
 Maximum Password Age [99999]: 180
 Last Password Change (MM/DD/YY) [02/10/00]:<return>
 Password Expiration Warning [7]: <return>
 Password Inactive [0]: 21
 Account Expiration Date (MM/DD/YY)
 [12/31/69]: 12/31/2002

This creates the same settings using the command line:

chage -m 2 -M 180 -I 21 -E 12/31/2002 bsmith

If you wish to set these parameters for groups of users or everyone on the system, you could create a
simple shell script to loop over all users in /etc/passwd and run the chage command with options.

The information on password aging is stored in either the /etc/passwd file, or if shadow passwords are
enabled, in the /etc/shadow file.

21.1.6 The Secure Shell

Among the security issues surrounding networked computer systems is the problem of plain text
communications. Much of the information traveling between systems is simply sent as text, including
passwords at login time. If someone were able to capture the network packets of your communications
without your knowledge, your passwords and other information could be compromised. While this may
seem like a remote possibility, such activity has become much easier than it was just a few years ago,
because low-cost hardware can be used to make a network analyzer for just this purpose.

In 1995, a researcher developed an application intended to replace some of the plain text
communications programs such as telnet, rlogin, and rsh. The new application was titled Secure Shell,
or SSH. This application may also be used to secure other communications such as the X Window
System, though such use is beyond the requirements for the LPIC Level 1 exams. The following tutorial
explains how to acquire, compile, install, and configure ssh for Linux, so that you can use it in place of

Telnet.[6]

[6] Licensing restrictions apply to the commercial use of SSH. Verify your
intended use and license type.

While you may find a precompiled package, it is a simple matter to compile and install ssh if you have a
C compiler. SSH is available at http://www.ssh.org/ and at many mirror (copy) sites around the world.
Using your browser or FTP client, download the latest version to your system and extract the tarball
with the following command:

tar zxvf ssh-2.0.13.tar.gz

The z option to tar instructs it to invoke gzip to decompress the archive before reading it. You now
have a directory hierarchy called ssh-2.0.13 (your version may be different). You should cd into the
new directory and examine the documents you find there, then configure, compile, and install the
software:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (11 of 12) [3/9/2003 11:15:48]

http://www.ssh.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

cd ssh-2.0.13
./configure
make
make install

If you have a recent compiler such as gcc, you shouldn't have any difficulty with these steps.
Configuration and compilation present typical output, so you won't see any surprises there if you've
compiled software from source before. The installation, however, generates keys for the software to use
in its encrypted communications. This process may take a few extra minutes.

Once SSH is installed, you may need to add /usr/local/bin and /usr/local/sbin to your PATH or use full

pathnames. To enable login from remote systems using SSH, you must start sshd, which may be done
simply by issuing the following command:

sshd

Note that you do not need to put this command in the background, as it handles this detail itself. Once
the sshd daemon is running, you may connect from another SSH-equipped system:

ssh mysecurehost

The default configuration should be adequate for basic use of SSH. One common problem you may
encounter is that a system may not be specifically listed by a DNS server. In this case, comment out
(that is, put # in front of it using a text editor) the following line from /etc/ssh/sshd2_config:

RequireReverseMapping yes

This eliminates the DNS lookup and allow your configuration to function. If your systems are configured
with a proper DNS server, this step should not be necessary. If you have difficulty with SSH, examine
the log for syslog facility auth, which is most likely /var/log/messages, for information.

On the Exam

The Secure Shell (SSH) is an involved and highly configurable piece of software, and
detailed knowledge of its setup is not required. However, SSH is an important part of the
security landscape. Be aware that all communications using SSH are encrypted using
public/private key encryption, which means that plain text passwords are unlikely to be
compromised.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/21-1.htm (12 of 12) [3/9/2003 11:15:48]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 20. Networking Services (Topic 1.13)

20.1 Objective 1: Configure and Manage inetd and Related Services

Most network services execute as software daemons, which "listen" to a specific port for inbound requests from client
software on the outside. (See Section 19.1 for a discussion on ports.) For example, the Telnet daemon, telnetd, listens on
port 23 for inbound requests from Telnet clients. Each such request is handled by the daemon, which starts the login
process for the client. If a single server were to offer many such services, many of the telnetd daemons would be running
at any one time to handle multiple inbound Telnet requests.

In order to reduce the number of daemons necessary to service requests, the Internet superdaemon, or inetd, was created.
Instead of running individual daemons for each service, inetd runs as a single service listening to all of the desired port
numbers (23 for telnet, 21 for ftp, etc.). When an inbound request is received, it is handed off to the actual daemon for
processing. With this scheme, the host daemons are still used as before, but they run only when needed and are started by
inetd, freeing resources for other tasks.

This scheme also offers another convenience. Instead of launching the target daemons directly, inetd is usually configured
to use the TCP wrappers access control facility. TCP wrappers, or tcpd , allows the administrator to define restrictions on the
origin of inbound requests. TCP wrappers is described fully in Section 21.1.

inetd is well suited for services requested on a relatively infrequent basis, such as telnet and ftp. However, using inetd on
services such as Apache would significantly impact the performance of a heavily used server under constant load. In such
cases, it is common to simply configure the web server to handle its own connections.

20.1.1 The inetd Configuration File

inetd is usually started during system initialization and continues to run indefinitely (or until the process is stopped). When
started (and later in response to signal SIGHUP), inetd reads its configuration file from /etc/inetd.conf, which is nothing

more than a plain text file that defines the services managed by inetd. (Commented lines begin with #.) Example 20-1

shows portions of an inetd.conf, with lines wrapped to fit the page (your inetd.conf will be different and should be configured
with your security requirements in mind; more on this later).

Example 20-1. Sample inetd.conf File

/etc/inetd.conf
Internet server configuration database
See inetd(8) for further information.
#
<service_name> <socket_type> <proto> <flags> <user> <server_path> <args>
#
ftp stream tcp nowait root /user/sbin/tcpd /user/sbin/in.ftpd
telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.telnetd
#
pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d
pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
imap stream tcp nowait root /usr/sbin/tcpd imapd
#
finger stream tcp nowait nobody /usr/sbin/tcpd /usr/sbin/in-fingerd
ident stream tcp nowait nobody /usr/sbin/identd identd -I
#
tftp dgram udp wait nobody /usr/sbin/tcpd /usr/sbin/in.tftpd /boot
bootps dgram udp wait root /usr/sbin/bootpd bootpd -i -t 120

Each noncommented line in inetd.conf must contain each of the following fields:

service_name

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-1.htm (1 of 3) [3/9/2003 11:15:49]

InformIT Online Books > LPI Linux Certification in a Nutshell

This is the name of a service as defined in /etc/services.

socket_type

This entry specifies one of a few types of communications the service will use. It's usually stream or dgram.

proto

This field specifies the service's protocol from among those in /etc/protocols. For most services, it will be either tcp

or udp, which correspond to the stream and dgram socket types.

flags

The wait/nowait (.max) flag is used only for datagram services, where it helps to control the handling of inbound

requests and is typically set to wait. It should be set to nowait for others. You can limit the number of server

instances spawned by inetd within any 60-second interval by appending a dot and the maximum number (.max).

For example, to limit the service to 20 instances, use .20 after the nowait flag:

nowait.20

The default maximum is 40 instances (.40).

user[.group]

This entry specifies the username (and optionally the group name) under which the service should execute, allowing
them to be run with fewer permissions than root. A typical entry is the user nobody.

server_ path

This field is the full path to the executable daemon of the server program. When TCP wrappers is used, this entry
specifies tcpd, as shown in Example 20-1.

args

This last entry on the line may consist of multiple fields. It contains the name of the server daemon and all

arguments that are to be passed to it.[1]

[1] The daemon name is actually the first argument, or argv[0] from a programming point of view.

In many Linux installations, a majority of the lines in inetd.conf are commented out to increase security. The fewer services
a system offers, the more likely it is to stand up to an attack. You should review your file to be certain that only necessary
services are offered.

20.1.1.1 TCP wrappers with inetd

If you have a need to control access to inetd-managed services by IP address or by domain name, you may wish to
configure TCP wrappers. For each inbound connection to a service protected by TCP wrappers, tcpd consults two files that
define access:

/etc/hosts.allow

If a rule in this file is met, access to the service is allowed.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-1.htm (2 of 3) [3/9/2003 11:15:49]

InformIT Online Books > LPI Linux Certification in a Nutshell

/etc/hosts.deny

If a rule in this file is met, access to the service is denied.

Rules in these files can be constructed to match all services or alternatively to match specific services. If no match occurs in
the two files, access to the service (or services) is allowed. It is common to specify particular rules in the .allow file and
provide a blanket denial in the .deny file, thereby limiting access to clients you specifically allow.

The language in the control files consists of a service list, followed by a colon, followed by a list of hosts. Hosts may be
specified by name or by IP address. For example, to deny access to all service except inbound ftp from the local domain,

these two simple files could be used:

hosts.allow

This entry allows FTP access to clients in the local domain:

ftp: LOCAL

hosts.deny

This entry denies access to all services from all clients:

ALL: ALL

The hosts.deny file is consulted after hosts.allow, enabling the administrator to define specific allow rules that will be
matched prior to deny rules or a blanket denial.

20.1.2 Starting and Stopping Services

If inetd is not running, all of the services it manages are disabled. Likewise, if inetd is reconfigured, any changes to
individual managed services take effect at the same time. To cause inetd to reread its configuration file, simply send it
SIGHUP:

$ killall -HUP inetd

All inetd services that are commented out or missing from /etc/inetd.conf will be disabled. However, a number of other
services on Linux systems are managed through other means -- typically through the runlevel system and the series of
scripts and links in /etc/rc.d. See Section 5.2 for details on starting and stopping services such as Apache (httpd).

On the Exam

You must be generally familiar with the content and function of inetd.conf, hosts.allow, and hosts.deny.
Memorizing configuration details is not necessary, but be prepared for questions on available services and the
effect of TCP wrappers rules in the hosts.allow and hosts.deny files. Be sure you understand what happens to
services that are commented out of inetd.conf, and that inetd must be signaled to reread the control file after
any changes.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-1.htm (3 of 3) [3/9/2003 11:15:49]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 19. Networking Fundamentals (Topic
1.12)

19.1 Objective 1: Fundamentals of TCP/IP

The TCP/IP suite of protocols was adopted as a military standard in 1983 and has since become the
world standard for network communications on the Internet and on many LANs, replacing proprietary
protocols in many cases. Much has been written about TCP/IP and the history of the Internet. This
section includes only material cited by LPI Objectives.

19.1.1 Addressing and Masks

The early specification of the Internet Protocol (IP) recognized that it would be necessary to divide one's
given allotment of IP addresses into manageable sub-networks. Such division allows for distributed
management, added security (fewer hosts can potentially snoop network traffic), and the use of
multiple networking technologies (Ethernet, Token Ring, ATM, etc.). IP also enables convenient
partitioning of the physical portions of a network across physical and geographical boundaries. To
provide the capability to locally define networks, IP addresses are considered as having two distinct

parts: the part that specifies a subnet and the one that specifies a network interface.[1] The boundary
between the network and host portions of an IP address is delineated by a subnet mask, required by the
TCP/IP configuration of any network interface. Like the IP address, the subnet mask is simply a 32-bit
number specified in four 8-bit segments using dotted quad decimal notation. The familiar class A, B, and
C networks have these subnet masks:

[1] Remember that IP addresses are assigned to network interfaces, not
host computers, which can have multiple interfaces. For this discussion,
however, we assume a 1:1 relationshipbetween hosts and interfaces.

Class A: 255.0.0.0 (binary 11111111.00000000.00000000.00000000)

8-bit network address and 24-bit host address

Class B: 255.255.0.0 (binary 11111111.11111111.00000000.00000000)

16-bit network address and 16-bit host address

Class C: 255.255.255.0 (binary 11111111.11111111.11111111.00000000)

24-bit network address and 8-bit host address

When logically AND'd with an IP address, the bits set to in the subnet mask obscure the host portion of
the address. The remaining bits represent the network address. For example, a host on a class C
network might have an IP address of 192.168.1.127. Applying the class C subnet mask 255.255.255.0,
the network addressof the subnet would be 192.168.1.0, and the host address would be 127, as
depicted in Figure 19-1.

Figure 19-1. Host interface address calculation

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-1.htm (1 of 11) [3/9/2003 11:15:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

While it is typical to use the predefined classes (A, B, and C), the boundary can be moved left or right in
the IP address, allowing for fewer or more subnets, respectively. For example, if a single additional bit
were added to the class C subnet mask, its IP address would be:

255.255.255.128 (binary 11111111.11111111.11111111.10000000)

25-bit network address and 7-bit host address

With such a subnet defined on an existing class C network such as 192.168.1.0, the 256-bit range is
split into two subnets, each with seven host bits. The first of the two subnets begins at 192.168.1.0 (the
subnet address) and continues through 192.168.1.127 (the subnet broadcast address). The second
subnet runs from 192.168.1.128 through 192.168.1.255. Each of the two subnets can accommodate
126 hosts. To extend this example, consider two additional bits:

255.255.255.192 (binary 11111111.11111111.11111111.11000000)

26-bit network address and 6-bit host address

When applied to a class C network, four subnets are created, each with six host bits. Just as before, the
first subnet begins at 192.168.1.0 but continues only through 192.168.1.63. The next subnet runs from
192.168.1.64 through 192.168.1.127 and so on. Each of the four subnets can accommodate 62 hosts.
Table 19-1 shows more detail on class C subnets, considering only the host portion of the address.

Table 19-1. Class C IP Subnet Detail

Subnet
Mask

Number of
Subnets

Network
Address

Broadcast
Address

Minimum IP

Address

Maximum IP

Address

Number of
Hosts

Total
Hosts

128 2 0 127 1 126 126
 128 255 129 254 126 252

192 4 0 63 1 62 62
 64 127 65 126 62
 128 191 129 190 62
 192 255 193 254 62 248

224 8 0 31 1 30 30

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-1.htm (2 of 11) [3/9/2003 11:15:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

 32 63 33 62 30
 64 95 65 94 30
 96 127 97 126 30
 128 159 129 158 30
 160 191 161 190 30
 192 223 193 222 30
 224 255 225 254 30 240

On the Exam

Be prepared to define network and host addresses when provided an IP address and a
subnet mask. Practice with a few subnet sizes within at least one classification (A, B, or C).
Also, because the use of decimal notation can cloud human interpretation of IP addresses
and masks, be ready to do binary-to-decimal conversion on address numbers.

As you can see, as the number of subnets increases, the total number of hosts that can be deployed
within the original class C address range reduces. This is due to the loss of both broadcast addresses
and network addresses to the additional subnets.

19.1.2 Protocols

TCP/IP is a suite of protocols, including the Transmission Control Protocol (TCP), Internet Protocol (IP),
User Datagram Protocol (UDP), and Internet Control Message Protocol (ICMP), among others. Some
protocols use handshaking (the exchange of control information among communicating systems) to
establish and maintain a connection. Such a protocol is said to be connection-oriented and reliable,
because the protocol itself is responsible for handling transmission errors, lost packets, and packet
arrival order. A protocol that does not exchange control information is said to be connectionless and
unreliable. In this context, "unreliable" simply means that the protocol doesn't handle transmission
problems itself; they must be corrected in the application or system libraries. Connectionless protocols
are simpler and have less overhead than connection-oriented protocols. TCP/IP is often said to be a
stack of protocols, because protocols are built in a hierarchy of layers. Low-level protocols are used by
higher-level protocols on adjacent layers of the protocol stack:

TCP

TCP is a connection-oriented transport agent used by applications to establish a network
connection. TCP transports information across networks by handshaking and retransmitting
information as needed in response to errors on the network. TCP guarantees packet arrival and
provides for the correct ordering of received packets. TCP is used by many network services,
including FTP, Telnet, and SMTP. By using TCP, these applications don't need to establish their
own error-checking mechanisms, thus making their design simpler and easier to manage.

IP

IP[2] can be thought of as the fundamental building block of the Internet. IP, which is
connectionless, defines datagrams (the basic unit of transmission), establishes the addressing

scheme (the IP address), and provides for the routing of datagrams between networks.[3] IP is
said to provide a datagram delivery service. Other higher-level protocols use IP as an underlying
carrier.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-1.htm (3 of 11) [3/9/2003 11:15:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

[2] IP is not specifically mentioned in this LPI Objective, but its fundamental importance
warrants its mention here.

[3] This is an oversimplification of IP, of course, but you get the idea.

UDP

UDP is a connectionless transport agent. It provides application programs direct access to IP,
allowing them to exchange information with a minimum of protocol overhead. On the other
hand, because UDP offers no assurance that packets arrive at destinations as intended, software
must manage transmission errors and other problems such as missing and incorrectly ordered
packets. UDP is used by applications such as DNS and NFS.

ICMP

ICMP is a connectionless transport agent that is used to exchange control information among
networked systems. It uses IP datagrams for the following control, error-reporting, and
informational functions:

Flow control

Sometimes inbound traffic becomes too heavy for a receiving system to process. In such cases, the receiving system can
send a message via ICMP to the source instructing it to temporarily stop sending datagrams.

Detecting unreachable destinations

Various parts of network infrastructure are capable of detecting that a network destination is unreachable. In this case,
ICMP messages are sent to the requesting system.

Redirecting routes

ICMP is used among network components to instruct a sender to use a different gateway.
Checking remote hosts

Hosts can transmit echo messages via ICMP to verify that a remote system's Internet Protocol is functioning. If so, the
original message is returned. This is implemented in the ping command.

PPP

PPP is used for TCP/IP dialup network access via modem. The configuration and use of PPP is
described later in Objective 4.

On the Exam

You will need a general understanding of the control messages sent via ICMP. In particular,
note that ICMP does not transmit data and that it is used by ping.

19.1.3 TCP/IP Services

When an inbound network request is made, such as that from a web browser or FTP client, it is sent to
the IP address of the server. In addition, the request carries inside it a port number (or just port), which
is a 16-bit value placed near the beginning of a network packet. The port number defines the type of
server software that should respond to the request. For example, by default, web browsers send

requests encoded for port 80.[4] Web servers "listen" to port 80 and respond to incoming requests. The

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-1.htm (4 of 11) [3/9/2003 11:15:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

encoded port can be considered part of the address of a request. While the IP address specifies a

particular host,[5] the port specifies a specific service available on that host. Many port numbers are
predefined, and the list is expanded as needed to accommodate new technologies. The official list of
port number assignments is managed by the Internet Assigned Numbers Authority (IANA). The ports
known by your system are listed in /etc/services.

[4] Port numbers are usually referred to in decimal notation.

[5] Well, actually a particular interface.

Port numbers 1 through 1023 are often referred to as privileged ports because the services that use
them often run with superuser authority. Many of these, such as ports used for FTP (21), Telnet (23),
and HTTP (80), are often referred to as well-known ports because they are standards. Port numbers
from 1024 through 65535 (the maximum) are unprivileged ports and can be used by applications run by
ordinary system users.

During the initial contact, the client includes a local, randomly selected, unprivileged port on the client
machine for the server to use when responding to the request. Client-to-server communications use the
well-known port and the server-to-client communications use the randomly selected port. This Objective
requires you to be familiar with the privileged port numbers detailed in Table 19-2.

Table 19-2. Common Privileged Port Numbers

Port Number Assigned Use Description

20 FTP data

When an FTP session is opened, the binary or ASCII data flows to
the server using port 20, while control

information flows on port 21. During use, both ports are managed
by an ftp daemon, such as wu-ftpd or PROftpd.

21 FTP control

23 Telnet server
Inbound Telnet requests are sent to server port 23 and processed
by telnetd.

25 SMTP server This port is used by mail transfer agents (MTAs) such as sendmail.

53 DNS server Used by the Domain Name System server, named.

67 BOOTP/DHCP server A BOOTP, or the more commonly used, DHCP server.

68 BOOTP/DHCP client The client side for BOOTP/DHCP.

80 HTTP server
Web servers, such as Apache (httpd), usually listen in on this
port.

110 POP3
The Post Office Protocol (POP) is used by mail client programs to
transfer mail from a server.

119 NNTP Server This port is used by news servers for Usenet news.

139 NetBIOS Reserved for Microsoft's LAN network manager.

143 IMAP An alternate to POP3, IMAP is another type of mail server.

161 SNMP
Agents running on monitored systems use this port for access to
the Simple Network Management Protocol.

This list is a tiny fraction of the many well-known ports, but it may be necessary for you to know them

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-1.htm (5 of 11) [3/9/2003 11:15:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

both by name and by number.

On the Exam

You should commit the list of ports in Table 19-2 to memory so you can recognize a type of
network connection solely by its port number. Your exam is likely to have at least one
question on how a specific port is used.

19.1.4 TCP/IP Utilities

The following popular applications, while not strictly a part of TCP/IP, are usually provided along with a
TCP/IP implementation.

dig

Syntax

dig hostname

Description

dig obtains information from DNS servers. Note that additional command-line arguments and options
are available for dig but are beyond the scope of Exam 102.

Example

$ dig redhat.com

; <<>> DiG 8.2 <<>> redhat.com any
;; res options: init recurs defnam dnsrch
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6
;; flags: qr rd ra; QUERY: 1, ANSWER: 6, AUTHORITY: 4,
;; ADDITIONAL: 5 QUERY SECTION:
;; redhat.com, type = ANY, class = IN

;; ANSWER SECTION:
redhat.com. 22h36m45s IN NS ns.redhat.com.
redhat.com. 22h36m45s IN NS ns2.redhat.com.
redhat.com. 22h36m45s IN NS ns3.redhat.com.
redhat.com. 22h36m45s IN NS speedy.redhat.com.
redhat.com. 23h48m10s IN MX 10 mail.redhat.com.
redhat.com. 23h48m10s IN A 207.175.42.154

;; AUTHORITY SECTION:
redhat.com. 22h36m45s IN NS ns.redhat.com.
redhat.com. 22h36m45s IN NS ns2.redhat.com.
redhat.com. 22h36m45s IN NS ns3.redhat.com.
redhat.com. 22h36m45s IN NS speedy.redhat.com.

;; ADDITIONAL SECTION:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-1.htm (6 of 11) [3/9/2003 11:15:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

ns.redhat.com. 1d23h48m10s IN A 207.175.42.153
ns2.redhat.com. 1d23h48m10s IN A 208.178.165.229
ns3.redhat.com. 1d23h48m10s IN A 206.132.41.213
speedy.redhat.com. 23h48m10s IN A 199.183.24.251
mail.redhat.com. 23h48m10s IN A 199.183.24.239

;; Total query time: 81 msec
;; FROM: smp to SERVER: default -- 209.195.201.3
;; WHEN: Wed Apr 5 03:15:03 2000
;; MSG SIZE sent: 28 rcvd: 275

ftp

Syntax

ftp [options] host
...interactive commands...

Description

Establish an interactive File Transfer Protocol (FTP) connection with host in order to transfer binary or
text files. FTP creates an interactive dialog and allows for two-way file transfer. The dialog includes
username/password authentication, user commands, and server responses.

Frequently used options

-i

Turns off interactive prompting during multiple file transfers (also see the prompt command).

-v

Sets verbose mode, displays server responses and transfer statistics.

Frequently used commands

ascii, binary

Establish the transfer mode for files. ASCII mode is provided to correctly transfer text among
computer architectures where character encoding differs.

get file

Receive a single file from the server.

mget files

Receive multiple files from the server.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-1.htm (7 of 11) [3/9/2003 11:15:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

ls [files]

Obtain a directory listing from the server, optionally listing files.

put file

Send a single file to the server

mput files

Send multiple files to the server.

prompt

Toggle on and off interactive prompting during mget and mput (also see the -i option).

pwd

Print the working remote directory.

quit, exit

Cleanly terminate the FTP session.

Example 1

Get a file from machine smp:

$ ftp -v smp
Connected to smp.
220 smp FTP server (Version wu-2.4.2-VR17(1)
Mon Apr 19 09:21:53 EDT 1999) ready.
Name (smp:root): jdean
331 Password required for jdean.
Password:<password here>
230 User jdean logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls myfile
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
-rw-r--r-- 1 jdean jdean 29 Jan 24 01:28 myfile
226 Transfer complete.
ftp> binary
200 Type set to I.
ftp> get myfile
local: myfile remote: myfile
200 PORT command successful.
150 Opening BINARY mode data connection for myfile
(29 bytes).
226 Transfer complete.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-1.htm (8 of 11) [3/9/2003 11:15:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

29 bytes received in 0.000176 secs (1.6e+02 Kbytes/sec)
ftp> quit
221-You have transferred 29 bytes in 1 files.
221-Total traffic for this session was 773 bytes in 3 transfers.
221-Thank you for using the FTP service on smp.
221 Goodbye.

Example 2

Many FTP servers are set up to receive requests from nonauthenticated users. Such public access is said
to be anonymous. Anonymous FTP is established just like any FTP connection, except that anonymous

is used as the username. An email address is commonly used as a password to let the system owner
know who is transferring files:

ftp -v smp
Connected to smp.
220 smp FTP server (Version wu-2.4.2-VR17(1)
Mon Apr 19 09:21:53 EDT 1999) ready.
Name (smp:root): anonymous
331 Guest login ok, send your complete e-mail address as password.
Password: me@mydomain.com
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> <commands follow...>

ping

Syntax

ping hostname

Description

The ping command is used to send an ICMP echo request to hostname and report on how long it takes
to receive a corresponding ICMP echo reply. Much like sonar systems send a pulse (or "ping") to a
target and measure transit time, ping sends a network packet to test the availability of a network node.
This technique is often used as a basic debugging technique when network problems arise.

19.1.4.1 Example

Ping a remote host and terminate using Ctrl-C after five packets are transmitted:

$ ping lpi.org
PING lpi.org (209.167.177.93) from 192.168.1.30 :
 56(84) bytes of data.
64 bytes from new.lpi.org (209.167.177.93):
 icmp_seq=0 ttl=240 time=51.959 msec
64 bytes from new.lpi.org (209.167.177.93):
 icmp_seq=1 ttl=240 time=60.967 msec

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-1.htm (9 of 11) [3/9/2003 11:15:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

64 bytes from new.lpi.org (209.167.177.93):
 icmp_seq=2 ttl=240 time=47.173 msec
64 bytes from new.lpi.org (209.167.177.93):
 icmp_seq=3 ttl=240 time=46.887 msec
64 bytes from new.lpi.org (209.167.177.93):
 icmp_seq=4 ttl=240 time=46.836 msec

--- lpi.org ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/mdev = 46.836/50.764/60.967/5.460 ms

telnet

Syntax

telnet [host] [port]

Description

Establish a connection to host (either a system name or IP address) using port. If a specific port is
omitted, the default port of 23 is assumed. If host is omitted, telnet goes into an interactive mode
similar to ftp.

traceroute

Syntax

traceroute hostname

Description

Attempt to display the route over which packets must travel to reach a destination hostname. It is
included here because it is mentioned in this Objective, but Objective 3 also requires traceroute. See
the synopsis in Objective 3 for full information.

whois

Syntax

whois target[@server]
fwhois target[@server]

Description

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-1.htm (10 of 11) [3/9/2003 11:15:52]

InformIT Online Books > LPI Linux Certification in a Nutshell

Query the whois database for target. Such a database contains information on domain names,
assigned IP addresses, and people associated with them. In the early days of the Internet, when
domain registration was handled solely by the Internet Network Information Center (InterNIC), server
was understood to be that of the InterNIC. Additional registrars now exist to process domain
registrations, some of which have their own whois databases for public access.

The version of whois provided with Linux is a link to fwhois. target is a domain name or user handle.
server is a valid whois server, which defaults to rs.internic.net. The information returned includes
contact information, domain names, IP addresses, and DNS servers. Note that many web sites are
available for whois searches as well, particularly for checking on domain name availability.

Example

$ fwhois linuxdoc.org@whois.networksolutions.com
Registrant:
Linux Documentation Project (LINUXDOC-DOM)
 4428 NE 74th Ave.
 Portland, OR 97218
 US
 Domain Name: LINUXDOC.ORG
 Administrative Contact, Technical Contact, Zone Contact:

 Account, Hostmaster (AH243-ORG)
 hostmaster@LINUXPORTS.COM
 Command Prompt Software
 4428 NE 74th Ave.
 Portland, OR 97218
 US
 (503)493-1611
 Billing Contact:

 Account, Hostmaster (AH243-ORG)
 hostmaster@LINUXPORTS.COM
 Command Prompt Software
 4428 NE 74th Ave.
 Portland, OR 97218
 US
 (503)493-1611
 Record last updated on 15-Feb-2000
 Record created on 20-Feb-1999
 Database last updated on 5-Apr-2000 12:51:28 EDT
 Domain servers in listed order:
 NS1.OPENDOCS.ORG 209.102.107.110
 NS1.INETARENA.COM 206.129.216.1
 NS.UNC.EDU 152.2.21.1

On the Exam

You must have a working knowledge of when and how to use the dig, ftp, ping, telnet,
traceroute, and whois commands. Practice using any that you are unfamiliar with by
experimenting on a working networked system.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-1.htm (11 of 11) [3/9/2003 11:15:52]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 15. Kernel (Topic 1.5)

15.1 Objective 1: Manage Kernel Modules at Runtime

With Linux, code for system devices can be compiled into the kernel. Because the kernel already has built-in support
for most devices, it is said to be monolithic, as the kernel manages all system hardware by itself. Monolithic kernels
aren't very flexible because a new kernel build is necessary for new peripheral devices to be added to the system.
Monolithic kernels also have the potential to be "bloated" by drivers for hardware that isn't physically installed.
Instead, most users run modular kernels, in which device drivers are inserted into the running kernel as needed.
Modular configurations can adapt to changes in the hardware and provide a convenient way of upgrading driver
software while a system is running.

15.1.1 Module Files

Linux kernel modules are object files (.o) produced by the C compiler but not linked into a completed executable (in
this case, the kernel executable file). Most modules are distributed with the kernel and compiled along with it.
Because they are so closely related to the kernel, separate sets of modules are installed when multiple kernels are
installed. This reduces the likelihood that a kernel module will be inserted into the wrong kernel version.

Modules are stored in a directory hierarchy headed by /lib/modules/kernel-version, where kernel-version is
the string reported by uname -r, such as 2.2.5-15smp. In this example, the modules directory would be

/lib/modules/2.2.5-15smp. Multiple module hierarchies may be available under /lib/modules if multiple kernels are
installed.

Subdirectories that contain modules of a particular type exist beneath the /lib/modules/kernel-version directory.
For example, for kernel 2.2.5-15smp, network interface modules are stored in subdirectory /lib/modules/2.2.5-
15smp/net. This grouping is convenient for administrators but also facilitates important functionality to the
modprobe command. Typical module subdirectories are:

block

Modules for a few block-specific devices such as RAID controllers or IDE tape drives.

cdrom

Device driver modules for nonstandard CD-ROM devices.

fs

Contains drivers for filesystems such as MS-DOS (the msdos.o module).

ipv4

Includes modular kernel features having to do with IP processing, such as IP masquerading.

misc

Anything that doesn't fit into one of the other subdirectories ends up here. Note that no modules are stored
at the top of this tree.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/15-1.htm (1 of 10) [3/9/2003 11:15:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

net

Network interface driver modules.

scsi

Contains driver modules for the SCSI controller.

video

Special driver modules for video adapters.

Module directories are also referred to as tags in the context of module manipulation commands.

15.1.2 Manipulating Modules

A module is dynamically linked into the running kernel when it is loaded. Much of Linux kernel module handling is
done automatically. However, there may be times when it is necessary for you to manipulate the modules yourself,
and you may come across the manipulation commands in scripts. For example, if you're having difficulty with a
particular driver, you may need to get the source code for a newer version of the driver, compile it, and insert the
new module in the running kernel. The commands listed in this section can be used to list, insert, remove, and
query modules.

lsmod

Syntax

lsmod

Description

For each kernel module loaded, display its name, size, use count, and a list of other referring modules. This
command yields the same information as is available in /proc/modules.

Example

Here, lsmod shows that quite a few kernel modules are loaded, including filesystem (vfat, fat), networking (3c59x),
and sound (soundcore, mpu401, etc.) modules, among others:

lsmod
Module Size Used by
vmnet 9688 2
vmppuser 5020 0 (unused)
parport_pc 5044 0 [vmppuser]
parport 7712 0 [vmppuser parport_pc]
vmmon 14100 1
nls_iso8859-1 2020 1 (autoclean)
nls_cp437 3548 1 (autoclean)
ide-floppy 8396 1 (autoclean)
vfat 11612 1 (autoclean)
fat 25856 1 (autoclean) [vfat]

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/15-1.htm (2 of 10) [3/9/2003 11:15:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

nfsd 151192 8 (autoclean)
lockd 31336 1 (autoclean) [nfsd]
sunrpc 53572 1 (autoclean) [nfsd lockd]
3c59x 18984 1 (autoclean)
opl3 11208 0 (unused)
opl3sa2 3720 0
ad1848 15984 0 [opl3sa2]
mpu401 18576 0 [opl3sa2]
sound 59064 0 [opl3 opl3sa2 ad1848 mpu401]
soundlow 304 0 [sound]
soundcore 2788 7 [sound]
aic7xxx 107024 8

insmod

Syntax

insmod [options] module

Description

Insert a module into the running kernel. The module is located automatically and inserted. You must be logged in as
the superuser to insert modules.

Frequently used options

-s

Display results on syslog instead of the terminal.

-v

Set verbose mode.

Example

The msdos filesystem module is installed into the running kernel. In this example, the kernel was compiled with
modular support for the msdos filesystem type, a typical configuration for a Linux distribution for i386 hardware. To
verify that you have this module, check for the existence of /lib/modules/kernel-version/fs/msdos.o :

insmod msdos
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol fat_add_cluster_Rsmp_eb84f594
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol fat_cache_inval_inode_Rsmp_6da1654e
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol fat_scan_Rsmp_d61c58c7
 (... additional errors omitted ...)
/lib/modules/2.2.5-15smp/fs/msdos.o: unresolved symbol fat_date_unix2dos_Rsmp_83fb36a1
echo $?
1

This insmod msdos command yields a series of unresolved symbol messages and an exit status of 1. This is the

same sort of message that might be seen when attempting to link a program that referenced variables or functions
unavailable to the linker. In the context of a module insertion, such messages indicate that the functions are not
available in the kernel. From the names of the missing symbols, you can see that the fat module is required to

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/15-1.htm (3 of 10) [3/9/2003 11:15:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

support the msdos module, so it is inserted first:

insmod fat

Now the msdos module can be loaded:

insmod msdos

Use the modprobe command to automatically determine these dependencies and install prerequisite modules first.

rmmod

Syntax

rmmod [options] modules

Description

Unless a module is in use or referred to by another module, the rmmod command is used to remove modules from
the running kernel. You must be logged in as the superuser to remove modules.

Frequently used options

-a

Remove all unused modules.

-s

Display results on syslog instead of the terminal.

Example

Starting with both the fat and msdos modules loaded, remove the fat module (which is used by the msdos module):

lsmod
Module Size Used by
msdos 8348 0 (unused)
fat 25856 0 [msdos]
rmmod fat
rmmod: fat is in use

In this example, the lsmod command fails because the msdos module is dependent on the fat module. So, in order
to unload the fat module, the msdos module must be unloaded first:

rmmod msdos
rmmod fat

The modprobe -r command can be used to automatically determine these dependencies and remove modules and
their prerequisites.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/15-1.htm (4 of 10) [3/9/2003 11:15:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

modinfo

Syntax

modinfo [options] module_object_file

Description

Display information about a module from its module_object_ file. Some modules contain no information at all, some
have a short one-line description, and others have a fairly descriptive message.

Options

-a

Display the module's author.

-d

Display the module's description.

-p

Display the typed parameters that a module may support.

Examples

In these examples, modinfo is run using modules compiled for a multiprocessing (smp) kernel Version 2.2.5. Your
kernel version, and thus the directory hierarchy containing modules, will be different.

modinfo -d /lib/modules/2.2.5-15smp/misc/zftape.o
zftape for ftape v3.04d 25/11/97 - VFS interface for the
 Linux floppy tape driver. Support for QIC-113
 compatible volume table and builtin compression
 (lzrw3 algorithm)

modinfo -a /lib/modules/2.2.5-15smp/misc/zftape.o
(c) 1996, 1997 Claus-Justus Heine
 (claus@momo.math.rwth-aachen.de)

modinfo -p /lib/modules/2.2.5-15smp/misc/ftape.o
ft_fdc_base int, description "Base address of FDC
 controller."
Ft_fdc_irq int, description "IRQ (interrupt channel)
 to use."
ft_fdc_dma int, description "DMA channel to use."
ft_fdc_threshold int, description "Threshold of the FDC
 Fifo."
Ft_fdc_rate_limit int, description "Maximal data rate
 for FDC."
ft_probe_fc10 int, description "If non-zero, probe for a
 Colorado FC-10/FC-20 controller."
ft_mach2 int, description "If non-zero, probe for a

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/15-1.htm (5 of 10) [3/9/2003 11:15:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

 Mountain MACH-2 controller."
ft_tracing int, description "Amount of debugging output,
 0 <= tracing <= 8, default 3."

modprobe

Syntax

modprobe [options] module [symbol=value ...]

Description

Like insmod, modprobe is used to insert modules.[1] However, modprobe has the ability to load single modules,
modules and their prerequisites, or all modules stored in a specific directory. The modprobe command can also
remove modules when combined with the -r option.

[1] In fact, modprobe is a wrapper around insmod and provides additional
functionality.

A module is inserted with optional symbol=value parameters (see more on parameters in the discussion on the
module configuration file, later in this section). If the module is dependent upon other modules, they will be loaded
first. The modprobe command determines prerequisite relationships between modules by reading modules.dep at
the top of the module directory hierarchy (i.e., /lib/modules/2.2.5-15smp/modules.dep).

You must be logged in as the superuser to insert modules.

Frequently used options

-a

Load all modules. When used with the -t tag, "all" is restricted to modules in the tag directory. This action
probes hardware by successive module-insertion attempts for a single type of hardware, such as a network
adapter (in which case the tag would be net, representing /lib/modules/kernel-version/net). This may

be necessary, for example, to probe for more than one kind of network interface.

-c

Display a complete module configuration, including defaults and directives found in /etc/modules.conf (or
/etc/conf.modules, depending on your distribution). The -c option is not used with any other options.

-l

List modules. When used with the -t tag, list only modules in directory tag. For example, if tag is net, then

modules in /lib/modules/kernel-version/net are displayed.

-r

Remove module, similar to rmmod. Multiple modules may be specified.

-s

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/15-1.htm (6 of 10) [3/9/2003 11:15:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

Display results on syslog instead of the terminal.

-t tag

Attempt to load multiple modules found in the directory tag until a module succeeds or all modules in tag are
exhausted. This action "probes" hardware by successive module-insertion attempts for a single type of
hardware, such as a network adapter (in which case tag would be net, representing /lib/modules/kernel-

version/net).

-v

Set verbose mode.

Example 1

Install the msdos filesystem module into the running kernel:

modprobe msdos

Module msdos and its dependency, fat, will be loaded. modprobe determines that fat is needed by msdos when it
looks through modules.dep. You can see the dependency listing using grep:

grep /msdos.o: /lib/modules/2.2.5-15smp/modules.dep
/lib/modules/2.2.5-15smp/fs/msdos.o:
 /lib/modules/2.2.5-15smp/fs/fat.o

Example 2

Remove fat and msdos modules from the running kernel, assuming msdos is not in use:

modprobe -r fat msdos

Example 3

Attempt to load available network modules until one succeeds:

modprobe -t net

Example 4

Attempt to load all available network modules:

modprobe -at net

Example 5

List all modules available for use:

modprobe -l
/lib/modules/2.2.5-15smp/fs/vfat.o
/lib/modules/2.2.5-15smp/fs/umsdos.o
/lib/modules/2.2.5-15smp/fs/ufs.o

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/15-1.htm (7 of 10) [3/9/2003 11:15:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

(... listing continues ...)

Example 6

List all modules in the net directory for 3Com network interfaces:

modprobe -lt net | grep 3c
/lib/modules/2.2.5-15smp/net/3c59x.o
/lib/modules/2.2.5-15smp/net/3c515.o
/lib/modules/2.2.5-15smp/net/3c509.o
/lib/modules/2.2.5-15smp/net/3c507.o
/lib/modules/2.2.5-15smp/net/3c505.o
/lib/modules/2.2.5-15smp/net/3c503.o
/lib/modules/2.2.5-15smp/net/3c501.o

On the Exam

Familiarize yourself with modules on a nonproduction Linux system, and explore the /lib/modules
hierarchy. Review the modules.dep file. Be aware of what a module is, how and why it is inserted, what
it means to "probe" with multiple modules, and how to determine if a module is dependent on other
modules. Pay special attention to modprobe.

15.1.3 Configuring Modules

You may sometimes need to control elements of a module such as hardware interrupt assignments or Direct Memory
Access (DMA) channel selections. Other situations may dictate special procedures to prepare for, or clean up after, a
module insertion or removal. This type of special control of modules is implemented in the configuration file
/etc/conf.modules (or in /etc/modules.conf, depending on your distribution), which controls the behavior of
modprobe. The /etc/conf.modules file can contain the following information:

Comments

Blank lines and lines beginning with # are ignored.

keep

The keep parameter, when found before any path directives, causes the default paths to be retained and

added to any paths specified.

depfile=full_path

This directive overrides the default location for the modules dependency file, modules.dep (described in the
next section). For example:

depfile=/lib/modules/2.2.14/modules.dep

path=path_directory

This directive specifies a directory to search for modules.

options module opt1=val1 opt2=val2 ...

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/15-1.htm (8 of 10) [3/9/2003 11:15:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

Options for modules can be specified using the options configuration line in conf.modules or on the

modprobe command line. The command line overrides configurations in the file. module is the name of a
single module without the .so extension. Options are specified as name=value pairs, where the name is
understood by the module and reported using modinfo -p. For example:

options opl3 io=0x388

alias

Aliases can be used to associate a generic name with a specific module. For example:

alias scsi_hostadapter aic7xxx
alias eth0 3c59x
alias parport_lowlevel parport_pc

pre-install module command

This directive causes some shell command to be executed prior to insertion of module. For example, PCMCIA
services need to be started prior to installing the pcmcia_core module:

pre-install pcmcia_core /etc/rc.d/init.d/pcmcia start

install module command

This directive allows a specific shell command to override the default module-insertion command.

post-install module

This directive causes some shell command to be executed after insertion of module.

pre-remove module

This directive causes some shell command to be executed prior to removal of module.

remove module

This directive allows a specific shell command to override the default module-removal command.

post-remove module

This directive causes some shell command to be executed after removal of module.

The following is an example the /etc/conf.modules file:

alias scsi_hostadapter aic7xxx
alias eth0 3c59x
alias parport_lowlevel parport_pc
pre-install pcmcia_core /etc/rc.d/init.d/pcmcia start
alias sound opl3sa2
pre-install sound insmod sound dmabuf=1
alias midi opl3
options opl3 io=0x388

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/15-1.htm (9 of 10) [3/9/2003 11:15:54]

InformIT Online Books > LPI Linux Certification in a Nutshell

options opl3sa2 mss_io=0x530 irq=5 dma=0 dma2=1
 mpu_io=0x388 io=0x370

On the Exam

Remember that the files conf.modules and modules.conf are the same file, depending on distribution.
Also, while it is important for you to understand the configuration lines /etc/conf.modules, detailed
module configuration is beyond the scope of the LPIC Level 1 exams.

15.1.4 Module Dependency File

modprobe can determine module dependencies and install prerequisite modules automatically. To do this,
modprobe scans the first column of /lib/modules/kernel-version/modules.dep to find the module it is to install.

Lines in modules.dep are in the following form:

module_name.o: dependency1 dependency2 ...

A typical dependency looks like this:

/lib/modules/2.2.5-15smp/fs/msdos.o:
 /lib/modules/2.2.5-15smp/fs/fat.o

Here, the msdos module is dependent upon fat.

All of the modules available on the system are listed in the modules.dep file and are referred to with their full path
and filenames, including their .o extension. Those that are not dependent on other modules are listed, but without
dependencies. Dependencies that are listed are inserted into the kernel by modprobe first, and when all of them
are successfully inserted, the subject module itself can be loaded.

The modules.dep file must be kept current to ensure the correct operation of modprobe. If module dependencies
were to change without a corresponding modification to modules.dep, then modprobe may fail, because a
dependency could be missed. As a result, modules.dep is created each time the system is booted. On most
distributions, the depmod -a command is called during rc.sysinit:

echo "Finding module dependencies"
/sbin/depmod -a

The depmod -a command recreates and overwrites modules.dep each time the system is booted. This procedure is
also necessary after any change in module dependencies. (The depmod command is actually a link to the same
executable as modprobe. The functionality of the command differs depending on which name is used to call it.) The
depmod command is not specifically called out in the LPIC Level 1 Objectives, but it is important to understand how
the command works since it generates modules.dep.

On the Exam

Be sure you know what is in modules.dep, as well as what the file is used for, how it is created, and
when it is created. Be prepared to cite the consequences of a missing or obsolete modules.dep file.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/15-1.htm (10 of 10) [3/9/2003 11:15:54]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 15. Kernel (Topic 1.5)

15.2 Objective 2: Reconfigure, Build, and Install a Custom Kernel and Modules

Because Linux is an open source operating system, you are free to create a customized Linux kernel
that suits your specific needs and hardware. For example, you may wish to create a kernel for your
system if your distribution installed a generic kernel that was compiled using the 80386 instruction set.
Such a kernel will run on any compatible processor but may not utilize some of the capabilities of newer
processors. Running a kernel optimized for your particular CPU can enhance its performance.

You can also install new kernels to add features, fix bugs, or experiment with kernels still under
development. While the compilation of such kernels isn't much of a leap beyond recompiling your
existing version, it's beyond the scope of the LPIC Level 1 exams.

15.2.1 Kernel Background

If you are new to the idea of building a custom kernel, don't feel intimidated. Linux developers have
created a simple and reliable process that you can follow, and everything you need is available in your
Linux distribution.

15.2.1.1 Kernel versions

Nearly all software projects, even small ones, use a numerical versioning scheme to describe each
successive release. Kernel versions are numbered using the following convention:

major.minor.patchlevel

Major release

Increments in the major release indicate major developmental milestones in the kernel. The
present release is 2.x.x (don't let the low major release number fool you -- there have been
plenty of developmental milestones in the Linux kernel's history).

Minor release

The minor release indicates significant changes and additions, which taken together will
culminate in a new major release. The Linux kernel minor release numbers fall into one of the
following categories:

Even-numbered releases

Kernels with even-numbered kernel versions (2.0, 2.2, 2.4, and so on) are considered stable.
Odd-numbered releases

Kernels with odd-numbered minor release versions (2.1, 2.3, and so on) are in development and are primarily used by
kernel developers. When goals for the development of a minor release are met and testing shows that the kernel is
stable, a new even-numbered minor release is created. This is how development kernels are released as production
kernels.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/15-2.htm (1 of 9) [3/9/2003 11:15:56]

InformIT Online Books > LPI Linux Certification in a Nutshell

Patch level

As bugs are found and corrected or as planned features are added, the kernel patch level is
incremented (2.2.15, 2.3.38, and so on). Generally speaking, it is safest to run the latest patch
level of the kernel to be assured of having the most current bug fixes. In reality, it is more
important to track kernel development and upgrade your kernel only if your existing version is
found to have a serious problem or if you are already experiencing difficulty.

15.2.1.2 Required tools and software

To compile a custom kernel, you need development tools including a C compiler, assembler, linker, and
the make utility. If you selected a kernel development option when you installed Linux, you should
already have these tools on your system. The C compiler is the program that translates C source code
into the binary form used by your system. The standard compiler on most Linux systems is the GNU C
Compiler, gcc. The assembler and linker are needed for some portions of the kernel compilation.

The compilation process is controlled by make, a utility that executes commands such as gcc as
directed by a list of dependency rules. These rules are stored in the Makefile. A brief introduction to
make is provided in Section 14.3.

Of course, you also need the kernel source code. Your Linux distribution will come with one or more
packages containing everything you need. For example, on a Red Hat system, use the following two
RPM packages (listed here without their version numbers):

kernel-source

This package contains the C language source code for the kernel and modules.

kernel-headers

This package contains C language header files for the kernel. The header files define structures
and constants that are needed for building most C programs, as well as the kernel itself.

On most systems, the kernel's source code can be found in /usr/src/linux, which should be a symbolic
link to the specific version of the kernel you're using. For example, here is the /usr/src directory for a
system with several kernel versions:

ls -l /usr/src
lrwxrwxrwx 1 root root 12 Feb 16 04:19
 linux -> linux-2.3.45
drwxr-xr-x 15 root root 1024 Jan 29 01:13 linux-2.2.14
drwxr-xr-x 17 root root 1024 Feb 16 03:00 linux-2.2.5
drwxr-xr-x 14 root root 1024 Feb 16 04:35 linux-2.3.45

In this example, symbolic link /usr/src/linux points to the directory hierarchy for development kernel
2.3.45. The /usr/src/linux link is important when you work with multiple kernels, as it is assumed that
the link will be manually removed before installing new kernel source trees. For the purposes of Exam
102, you need to be concerned only with the kernel source installed by your distribution.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/15-2.htm (2 of 9) [3/9/2003 11:15:56]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

You will need to know where the kernel source code is stored (e.g., /usr/src/linux). Explore
the kernel source tree to familiarize yourself with its contents. Pay particular attention to
.config and the Makefile.

15.2.2 Compiling a Custom Kernel

This section provides an overview of kernel compilation and installation by way of example. This
example uses kernel Version 2.2.5, and our objective is to create a single-processor 2.2.5 kernel for a

Pentium system with IDE disks[2] to replace a generic kernel that came with the distribution.

[2] A system that boots from a SCSI disk and has the SCSI driver compiled
as a module requires the use of an initial RAM disk, which is not covered
here.

Assume that the development environment -- including compiler, make, kernel source code, and kernel
headers -- is installed. The root account will be used to create and install the kernel, although any user
can compile a kernel given the appropriate filesystem permissions. Before building a customized kernel,
you should read /usr/doc/HOWTO/Kernel-HOWTO and /usr/src/linux/README.

15.2.2.1 Creating a kernel configuration

The first step in creating a kernel is configuration. There are more than 500 options for the kernel, such
as filesystem, SCSI, and networking support. Many of the options list kernel features that can be either
compiled directly into the kernel or compiled as modules. During configuration, you indicate for each
option whether you want that feature:

● Compiled into the kernel ("yes" response)

● Compiled as a module (module response)

● Don't want the feature at all ("no" response)

Some selections imply a group of other selections. For example, when you indicate that you wish to
include SCSI support, additional options become available for specific SCSI drivers and features. The
results from all of these choices are stored in the kernel configuration file /usr/src/linux/.config, which is
a plain text file that lists the options as shell variables set to one of y, m, or n in accordance with your
response for each item.

To begin, set the current working directory to the top of the source tree:

cd /usr/src/linux

There are several ways to set up .config. Although you can do so, you should not edit the file manually.
Instead, you may select from three interactive approaches. An additional option is available to construct
a default configuration. Each is started using make.

make config

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/15-2.htm (3 of 9) [3/9/2003 11:15:56]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

make config

Description

Running make config is the most rudimentary of the automated kernel-configuration methods and
does not depend on any form of display capability on your terminal. In response to make config, the
system presents you with a question in your console or window for each kernel option. You respond to
the questions with y, m, or n for yes, module, or no, respectively. This method can admittedly get a bit
tedious and has the liability that you must answer all the questions before being asked if you wish to
save your .config file and exit. However, it is helpful if you do not have sufficient capability to use one of
the menu-based methods (described next). A make config session looks like this:

make config
rm -f include/asm
(cd include ; ln -sf asm-i386 asm)
/bin/sh scripts/Configure arch/i386/config.in
#
Using defaults found in arch/i386/defconfig
#
*
* Code maturity level options
*
Prompt for development and/or incomplete code/drivers
(CONFIG_EXPERIMENTAL) [Y/n/?]Y

Each option is offered in this manner.

make menuconfig

Syntax

make menuconfig

Description

This configuration method is more intuitive and can be used as an alternative to make config. It
creates a text-mode-windowed environment where you may use up/down/left/right and other keys to
configure the kernel. The menu depends on the ability of your terminal or terminal window to use
curses, a standard library of terminal cursor manipulation instructions. If your terminal does not support
curses (though most do), you must select another method. The make menuconfig window is
illustrated in Figure 15-1 in an xterm.

Figure 15-1. The make menuconfig menu display

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/15-2.htm (4 of 9) [3/9/2003 11:15:56]

InformIT Online Books > LPI Linux Certification in a Nutshell

make xconfig

Syntax

make xconfig

Description

If you are running the X Window System, the make xconfig configuration method presents a GUI
menu with radio buttons to make the selections. It is the most appealing visually but requires a
graphical console or X display. Figure 15-2 shows the top-level make xconfig window.

Figure 15-2. The make xconfig menu display

The options presented in each case are the same, as is the outcome.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/15-2.htm (5 of 9) [3/9/2003 11:15:56]

InformIT Online Books > LPI Linux Certification in a Nutshell

make oldconfig

Syntax

make oldconfig

Description

make oldconfig can create a default .config file. This method sets up a default .config file without
interaction from the user. This is convenient if you need a starting point and your distribution did not
install a default .config file. This method will also build a new .config file from one customized for a
previous kernel release, but this is beyond the scope of Exam 102.

In the absence of user responses, menuconfig and xconfig will create a
default .config file, equivalent to the one created by oldconfig.

Example

To create the .config file for this example, the target processor is set as Pentium. Using make xconfig,
the selection looks like the window shown in Figure 15-3.

Figure 15-3. The make xconfig processor-selection window

By setting the Processor family parameter to Pentium/K6/TSC and saving the configuration, the
following revised configuration lines are written in .config:

Processor type and features
#
CONFIG_M386 is not set
CONFIG_M486 is not set
CONFIG_M586 is not set
CONFIG_M586TSC=y

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/15-2.htm (6 of 9) [3/9/2003 11:15:56]

InformIT Online Books > LPI Linux Certification in a Nutshell

CONFIG_M686 is not set
CONFIG_X86_WP_WORKS_OK=y
CONFIG_X86_INVLPG=y
CONFIG_X86_BSWAP=y
CONFIG_X86_POPAD_OK=y
CONFIG_X86_TSC=y
CONFIG_MATH_EMULATION=y
CONFIG_MTRR=y
CONFIG_SMP is not set

The complete .config file will contain approximately 800 lines. You should look through the other kernel
options with one of the windowed selectors first to familiarize yourself with what is available before
making your selections.

Now that .config is created, one small change is made to Makefile to differentiate our new custom kernel
from the generic one. Examining /usr/src/linux/Makefile, the first four lines look like this:

VERSION = 2
PATCHLEVEL = 2
SUBLEVEL = 5
EXTRAVERSION = -15

You can see that the kernel version is 2.2.5 and that an additional version number is available. In this
case, the generic kernel had the extra version suffix of -15, yielding a complete kernel version number

2.2.5-15. This EXTRAVERSION parameter can be used to indicate just about anything. In this example it

denotes the 15th build of kernel 2.2.5, but -pentium is added to the end for our custom version. Edit

Makefile and change EXTRAVERSION as follows:

EXTRAVERSION = -15-pentium

This change completes the configuration for this example.

15.2.2.2 Compiling the kernel

Once the .config and Makefile files are customized, the new kernel can be compiled by running the
following commands:

1. make dep

In this step, source files (.c) are examined for dependencies on header files. A file called
.depend is created in each directory containing source files to hold the resulting list, with a line
for each compiled object file (.o). The .depend files are automatically included in subsequent
make operations to be sure that changes in header files are compiled into new objects. Since
kernel code isn't being developed here, no header file changes are needed. Nevertheless, make
dep is an essential first step in the compilation process.

2. make clean

The "clean" operation removes old output files that may exist from previous kernel builds. These
include core files, system map files, and others. They must be removed in order to compile a
new, clean kernel.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/15-2.htm (7 of 9) [3/9/2003 11:15:56]

InformIT Online Books > LPI Linux Certification in a Nutshell

3. make bzImage

The bzImage file is our ultimate goal, a bootable kernel image file, compressed using the bzip2

utility.[3] It is created in this step along with some additional support files needed for boot
time.

[3] bzip2 is a compression utility similar to the more familiar gzip. bzip2 uses a
different compression algorithm that generally produces better compression
results. See the bzip2 manpage for more information.

4. make modules

Device drivers and other items that were configured as modules are compiled in this step.

5. make modules_install

All of the modules compiled during make modules are installed under /lib/modules/kernel-
version in this step. A directory are created there for each kernel version, including various
extraversions.

The bzImage and modules portions of the kernel-compilation process will take the most time. Overall,
the time required to build a kernel depends on your system's capabilities.

After completing this series of make processes, compilation is complete. The new kernel image is now
located in /usr/src/linux/arch/i386/boot/bzImage.

15.2.2.3 Installing the new kernel and configuring LILO

Now that the new kernel has been compiled, the system can be configured to boot it:

1. The first step is to put a copy of our new bzImage on the root partition so it can be booted by
LILO. The copy is named just as it was named during compilation, including the extraversion:

cp -p /usr/src/linux/arch/i386/boot/bzImage
 /boot/vmlinuz-2.2.5-15-pentium

2. Now, a listing of kernels should show at least your default kernel and your new one, vmlinuz-
2.2.5-15-pentium:

ls -1 /boot/vmlinuz*
/boot/vmlinuz
/boot/vmlinuz-2.2.14
/boot/vmlinuz-2.2.5-15
/boot/vmlinuz-2.2.5-15-pentium
/boot/vmlinuz-2.2.5-15smp
/boot/vmlinuz-2.3.45

3. Next, add a new image section to the bottom of /etc/lilo.conf :

image=/boot/vmlinuz-2.2.5-15-pentium
 label=linux-pentium

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/15-2.htm (8 of 9) [3/9/2003 11:15:56]

InformIT Online Books > LPI Linux Certification in a Nutshell

 root=/dev/sda1
 read-only

4. Finally, lilo (the map installer) is run again to incorporate the new kernel:

lilo
Added linux-smp *
Added linux-up
Added latest
Added linux-pentium

It's not uncommon to forget the execution of lilo. If you do forget, lilo won't know about the new
kernel you've installed despite the fact that it's listed in the lilo.conf file. This is because lilo.conf is not
consulted at boot time.

If everything has gone according to plan, it's time to reboot and attempt to load the new kernel.

As you review the README file that comes with the kernel source, you may
see suggestions for overwriting your existing kernel, perhaps with a generic
name such as vmlinuz, and reusing your existing LILO configuration
unaltered (i.e., without changing lilo.conf). Unless you're absolutely sure
about what you are doing, overwriting a known-good kernel is a bad idea.
Instead, keep the working kernel around as a fallback position in case there's
a problem with your new one.

15.2.2.4 Examine the new modules

Now that the new kernel is installed, you should take a look at /lib/modules, which now has a new
directory for the new kernel:

ls -1 /lib/modules
2.2.14
2.2.5-15
2.2.5-15-pentium
2.2.5-15smp
2.3.45

On the Exam

Remember the series of make steps required to build the kernel: config (or menuconfig
or xconfig), dep, clean, bzImage, modules, and modules-install. Be aware of where
the kernel source code is installed. Also, note that you need to copy the kernel image file
(bzImage) to the root filesystem and that you must rerun lilo before you can boot it. By all
means, practice compiling and installing a kernel at least once before taking Exam 102.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/15-2.htm (9 of 9) [3/9/2003 11:15:56]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 16. Text-Editing, Processing, and
Printing (Topic 1.7)

16.1 Objective 1: Perform Basic File Editing Operations Using vi

When working on multiple systems, the availability of a text editor may be of prime importance. Since
an editor is an essential configuration tool for Linux, learning at least the basics of the resident editor is
a requirement. For Linux and nearly all other Unix systems, the universally available editor is vi. This

Objective covers vi basics.[1]

[1] Some Linux systems come with a newer version of vi, called vim, which
is an open source vi clone, with improvements. Additional information on
vim can be found online at http://www.vim.org/.

16.1.1 Invoking vi

The vi editor has two modes of operation: command or insert. In command mode, vi allows you to
navigate around your file and enter commands. To enter new text, put vi into insert mode. In command
mode, the keyboard keys are interpreted as vi commands instead of text. The convenience of being
able to manipulate the editor without moving your hands from the keyboard is considered one of vi's
strengths.

To start vi, simply provide one or more text files on the command line:

$ vi file1.txt file2.txt

You are presented with a main window showing the contents of file1.txt, or if the specified files don't
already exist, a blank screen with tilde (~) characters running the length of the left column (they

indicate areas of the screen containing no text, not even blank lines).

Commands are brief, case-sensitive combinations of one or more letters. For example, to switch from
command to insert mode, press the i key. To terminate insert mode, press the Escape key (Esc), which
puts you back in command mode.

16.1.2 Terminating vi

Once you've started vi, the first thing you need to know is how to stop it. When in command mode, you
can use any of the key sequences shown in Table 16-1. If you're in insert mode, you must first switch
back to command mode in order to exit, by pressing the Esc.

Table 16-1. Common Commands for Exiting vi

Key Command Description

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-1.htm (1 of 5) [3/9/2003 11:15:57]

http://www.vim.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

:n Next file; when multiple files are specified for editing, this command loads the next
file.

:q
Quit without saving changes.

:q!
Quit without saving changes and without confirmation.

:wq
Write the file contents (if changed) and quit.

:x
Write the file contents (if changed) and quit (the ex equivalent of ZZ).

ZZ
Write the file contents (if changed) and quit.

16.1.3 Basic Navigation Commands

While in command mode, you can move around your file by character, word, sentence, paragraph, and
major section. You can position the cursor at various places in lines or relative to the screen. Table 16-2
lists some of the most frequently used navigation commands.

Table 16-2. Commands for Moving Around in vi

Key Command Description

Ctrl-b Move up one screen.

Ctrl-f Move down one screen.

0 (zero)
Move to the beginning of the current line.

^
Move to the first non-whitespace character on the current line.

$
Move to the end of the current line.

b
Move backward one word.

G
Move to the end of the file.

h
Move left one character.

H
Move to the top of the screen.

j
Move down one line.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-1.htm (2 of 5) [3/9/2003 11:15:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

k
Move up one line.

l
Move right one character.

L
Move to the bottom of the screen.

w
Move forward one word.

16.1.4 Basic Editing Commands

To edit in vi, you use one of its text-editing commands, including those that enter insert mode, copy
and paste, and search for text. Here are some of the frequently used editing commands, grouped by
category:

Inserting

To insert new text, first navigate to the location where the text belongs, then enter insert mode
and begin typing:

i

Enter insert mode to place text before the cursor.
a

Enter insert mode to append, or place text after the cursor.

Editing

Here are a few handy editing commands:

C

Delete to end-of-line and enter insert mode.
R

Enter replace mode (a variant of insert mode) and overwrite existing characters.

Deleting

Delete a text block defined by a movement command relative to the location where the
command started:

dl

Delete the next character.
dw

Delete the current word.
dG

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-1.htm (3 of 5) [3/9/2003 11:15:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

Delete to end-of-file.
dd

Delete the entire current line.
D

Delete to end-of-line (same as d$).

Copy and paste

The yank[2] command is used to copy a text block defined by a movement command relative
to the location where the command started:

[2] Emacs users should be careful not to confuse the vi definition of yank (copy) with
that of Emacs (paste).

yl

Yank forward one character.
yw

Yank forward one word.
yG

Yank to end-of-file.
yy

Yank the entire current line.

Paste operations insert text that was previously cut:

P

Paste text one line above the cursor.
p

Paste text one line below the cursor.

Find

The following commands can be used to search for text:

/pattern

Search forward for pattern.
?pattern

Search backward for pattern.

n

Repeat the last search.

N

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-1.htm (4 of 5) [3/9/2003 11:15:57]

InformIT Online Books > LPI Linux Certification in a Nutshell

Repeat the last search in the opposite direction.

On the Exam

You'll need to be familiar with vi's command and insert modes, how to switch between
them, and how to perform basic navigation and editing tasks.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-1.htm (5 of 5) [3/9/2003 11:15:57]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 16. Text-Editing, Processing, and
Printing (Topic 1.7)

16.2 Objective 2: Manage Printers and Print Queues

Printing documents is a slow and error-prone process. Printers accept data in small amounts; they run
out of paper, jam, and go offline for other reasons. Printers also must accept requests from multiple
system users. As a result, by design, the end user is isolated from printing functions on most computer
systems. This isolation comes in the form of a print queue, which holds print requests until the printer is
ready for them. It also manages the order in which print jobs are processed.

Many Unix and Linux systems use printing utilities developed for Berkeley Unix, commonly known as
lpd. This objective describes printer management using lpd. The companion commands lpr, lpq, and

lprm areSUID programs, which run with privileges of the superuser.[3] This is necessary to allow their
use by all users, because they manipulate files in the protected print spooling directories. lpr is covered
in Section 16.3. lpd, filters, spool directories, and /etc/printcap is covered in Section 16.4.

[3] SUID means "set user ID" root; see Section 4.5.

16.2.1 Linux Printing Overview

On Linux, the default printing system is derived from a standard developed for Unix systems. It consists
of the following elements:

lpd

The lpd daemon is started at boot time and runs constantly, listening for print requests directed
at multiple printers. When a job is submitted to a print queue, lpd forks a copy of itself to
handle jobs on that queue. The copy exits when the queue is emptied. Thus, during idle periods,
one lpd process will be running on your system. When printing is active, one additional lpd
process will be running for each active queue.

/etc/printcap

The printcap file (short for "printer capabilities") contains printer names, parameters, and rules;
it is used by lpd when spooling print jobs. See Objective 4 for additional information on the
/etc/printcap file.

lpr

The lpr (short for "line print") program submits both files and information piped to its standard
input to print queues.

lpq

The lpq program queries and displays the status and contents of print queues.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-2.htm (1 of 8) [3/9/2003 11:15:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

lprm

lprm removes print jobs from print queues.

lpc

The superuser administers print queues with lpc (line printer control).

Filters

When a printer lacks the ability to directly render a print job, software filters are used to
transform the origin data into something the printer can handle. A common example is the
conversion from PostScript to PCL for laser printers without native PostScript capability.

Spool directories

The lpd daemon uses /var/spool/lpd for the spooling of data awaiting printing. This directory
contains a subdirectory for each printer configured on the system (both local and remote). For
example, the default locally attached printer on most Linux systems is simply called lp (for "line
printer"), and all of its control files and queued jobs are stored in directory /var/spool/lpd/lp.

Print jobs

Each submitted print request is spooled to a queue and assigned a unique number. The
numbered print jobs can be examined and manipulated as needed.

16.2.2 Managing Print Queues

As a system administrator, you'll be asked to manage and manipulate printer queues more often than
you'd like. On Linux, the lpq, lprm, and lpc commands are your tools.

lpq

Syntax

lpq [options] [users] [job#s]

Description

Query a print queue. If numeric job#s are included, only those jobs are listed. If users are listed, only
jobs submitted by those users are listed.

Options

-l

Long output format. This option results in a multiline display for each print job.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-2.htm (2 of 8) [3/9/2003 11:15:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

-Pname

This specifies the print queue name. In the absence of -P, the default printer is queried.

Example 1

Examine active jobs:

$ lpq
lp is ready and printing
Rank Owner Job Files Total Size
active root 193 filter 9443 bytes
1st root 194 resume.txt 11024 bytes
2nd root 196 (standard input) 18998 bytes

Here, filter is currently being printed. resume.txt is up next, followed by the 18,998 bytes of data that
was piped into lpr's standard input.

Example 2

Examine queue lp, which turns out to be empty:

$ lpq -Plp
no entries

Example 3

Examine those same jobs using the long format:

$ lpq -l
lp is ready and printing

root: active [job 193AsJRzIt]
 filter 9443 bytes

root: 1st [job 194AMj9lo9]
 resume.txt 11024 bytes

root: 2nd [job 196A6rUGu5]
 (standard input) 18998 bytes

Example 4

Examine jobs owned by bsmith:

$ lpq bsmith
Rank Owner Job Files Total Size
7th bsmith 202 .bash_history 1263 bytes
9th bsmith 204 .bash_profile 5676 bytes

Using the job numbers reported by lpq, any user may remove her own print jobs from the queue, or

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-2.htm (3 of 8) [3/9/2003 11:15:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

the superuser may remove any job.

lprm

Syntax

lprm [-Pname] [users] [job#s]
lprm -

Description

Remove jobs from a print queue. In the first form, remove jobs from queue name or from the default
queue if -P is omitted. If users or job#s are specified, only those jobs will be removed. In the second
form, all of a normal user's jobs will be omitted; for the superuser, the queue will be emptied.

Example 1

As a normal user, remove all of your print jobs:

$ lprm -

Example 2

As the superuser, remove all jobs from queue ps:

lprm -Pps -

You may occasionally be surprised to see a no entries response from lpq, despite observing that the

printer is dutifully printing a document. In such cases, the spool has probably been emptied into the
printer's buffer memory, and the result is that the job is no longer under the control of the printing
system. To kill such jobs, you need to use the printer's controls (or its power switch!) to stop and delete
the job from memory.

16.2.2.1 Managing print queues with lpc

Printer control on Linux includes the oversight of three distinct and independently controlled activities
managed by the lpd daemon:

Job queuing

Turn new print jobs on and off.

Printing

Turn on and off the transfer of data to your printer.

lpd child processes

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-2.htm (4 of 8) [3/9/2003 11:15:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

Force the per-queue lpd subprocesses to exit and restart.

lpc can be used in either interactive or command-line form. If lpc is entered without any options, it
enters interactive mode and displays its own prompt where lpc commands may then be entered. For
example:

lpc
lpc> help
Commands may be abbreviated. Commands are:

abort enable disable help restart status topq ?
clean exit down quit start stop up
lpc>

If valid commands are included on the command line, lpc responds identically but returns control to the
terminal:

lpc help
Commands may be abbreviated. Commands are:

abort enable disable help restart status topq ?
clean exit down quit start stop up
#

For the discussion that follows, lpc commands are shown as entered on the command line, but results
in interactive mode are identical.

lpc

Syntax

lpc
lpc [command]

Description

In the first form, enter interactive mode and accept lpc commands. In the second form, submit
command for processing directly from the command line. lpc has no command-line options. Instead, it
has commands (see Table 16-3), which are separated here into two groups -- those that affect print

queues and those that don't. Most of the commands require a single argument: either the word all

(meaning all printers) or a specific printer name.[4]

[4] For this reason, all would be a bad choice for a print queue name!

Table 16-3. Commands for lpc

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-2.htm (5 of 8) [3/9/2003 11:15:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

Command Description

abort {all|printer} This command works like stop but terminates printing

immediately, even in the middle of a job. The job is retained for
reprint when the printer is again started.

disable {all|printer}
enable {all|printer}

These two commands control the queuing of new print jobs. With
a queue disabled but printing started, printing continues but new
jobs are rejected.

down {all|printer} [message] disable, stop, and store the free-form message for display by

lpr, informing the user why the printer is unavailable.

exit or quit Terminate lpc's interactive mode.

help
Display help information on commands, as shown earlier.

restart {all|printer} This command kills and restarts a child lpd, or starts one when
none was previously running.

start {all|printer}
stop {all|printer}

These two commands control printing and the child lpd
processes. When a stop command is issued, the current print job

is allowed to complete. Then the child daemon is stopped and
further printing is disabled. start enables sprinting and starts

the child lpd if jobs are pending. The print queues remain active.
status [all|printer] Display queue status. The all|printer argument is optional for

this command.

topq name jobs
Place jobs at the top of queue name, behind any active jobs.

up {all|printer}
enable and start.

Example 1

Use the status command to display current printing activity:

lpc status
lp:
 queuing is enabled
 printing is enabled
 2 entries in spool area
 lp is ready and printing

Example 2

Suppose user jdean has submitted two important print jobs, 206 and 207, and that he needs job 207 to
be moved to the top of the queue, followed immediately by 206 (see the emphasized lines in the lpq
output). First, examine the existing jobs:

lpq
Rank Owner Job Files Total Size
active root 203 filter 9443 bytes
1st root 204 status 25 bytes

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-2.htm (6 of 8) [3/9/2003 11:15:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

2nd root 205 (standard input) 6827 bytes
3rd jdean 206 (standard input) 403 bytes
4th jdean 207 cert1.txt 4865 bytes

Now modify the position of print jobs 206 and 207:

lpc topq lp 207 206
lp:
 moved cfA206AlIwYoh
 moved cfA207Ad6utse

Finally, verify the results:

lpq
Rank Owner Job Files Total Size
1st jdean 207 cert1.txt 4865 bytes
2nd jdean 206 (standard input) 403 bytes
3rd root 203 filter 9443 bytes
4th root 204 status 25 bytes
5th root 205 (standard input) 6827 bytes

With this reconfiguration, printing continues with jobs 207 and 206 first, and then reverts to jobs 203
through 205.

Example 3

Disable and enable print queue lp, to allow current printing to complete while rejecting new jobs:

lpc disable lp
lp:
 queuing disabled
lpc enable lp
lp:
 queuing enabled

Example 4

Stop and restart printing on the printer attached to queue lp, but allow new jobs to be queued for
future printing:

lpc stop lp
lp:
 printing disabled
lpc start lp
lp:
 printing enabled
 daemon started

If no jobs are pending, a child lpd will not start immediately in response to start, though the daemon

started message is still displayed. Note also that when a child lpd process is stopped, its

subprocesses (such as filters) are also stopped.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-2.htm (7 of 8) [3/9/2003 11:15:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example 5

Abandon all printing activity on the print queue lp. Note that a printer with data in its print buffer may
continue to print even after an abort:

lpc abort lp
lp:
printing disabled
daemon (pid 2012) killed

On the Exam

You'll need to know the function of each of the lpq, lprm, and lpc commands as well as
their options. Note that lpq and lprm (along with lpr, described later) share the -P option
to specify a printer. Pay special attention to lpc's syntax, including the all or printer

arguments (without one of these, lpc won't do anything). Remember that lpc commands
disable/enable handle queues, stop/start handle printing and child lpds, and down/up

handle all three. Also remember that lpc commands can be entered on the command line or
interactively.

16.2.2.2 Queuing and printing control details

Though it is beyond the scope of the LPIC Level 1 exams, it's interesting to note that lpd uses a crude
but tricky way to log the status of queuing and printing. In the spool directory for each print queue, a
lock file is written that contains the PID of the child lpd process handling the queue. Normally, this file
has permissions 644:

cd /var/spool/lpd/lp
ls -l lock
-rw-r--r-- 1 root root 5 Mar 18 19:50 lock

When printing is stopped, the user's execute permission bit is set on this file:

lpc stop lp
ls -l lock
-rwxr--r-- 1 root root 5 Mar 18 19:50 lock

When queuing is disabled, the group's execute bit is also set:

lpc disable lp
lp:
 queuing disabled
ls -l lock
-rwxr-xr-- 1 root root 5 Mar 18 19:50 lock

These bits act as flags to indicate the status of printing and queuing.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-2.htm (8 of 8) [3/9/2003 11:15:59]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 16. Text-Editing, Processing, and
Printing (Topic 1.7)

16.3 Objective 3: Print Files

The lpr command ("line print") is used to send jobs to the lpd daemon for printing.

lpr

Syntax

lpr [options] [files]

Description

Send files or standard input to a print queue. A copy of the input source is placed in the spool directory
under /var/spool/lpr until the print job is complete.

Frequently used options

-#count

Send count copies of the print job to the printer.

-Pname

Specify the print queue name. In the absence of -P, the default printer is queried.

-s

Instead of copying a file to the print spooling area, make a symbolic link to the file instead,
thereby eliminating transfer time and storage requirements in /var/spool/lpr for very large files.

Example 1

Print the file /etc/lilo.conf on the default print queue:

lpr /etc/lilo.conf

Example 2

Print a manpage by piping to lpr's standard input:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-3.htm (1 of 2) [3/9/2003 11:15:59]

InformIT Online Books > LPI Linux Certification in a Nutshell

man -t 5 printcap | lpr

Example 3

Disable a print queue:

lpc disable lp

Then attempt to print three copies of a file to the disabled queue as superuser:

lpr -#3 /etc/lilo.conf

Success, despite the disabled printer queue. Now try as a regular user:

$ lpr -#3 ~/resume.txt
lpr: Printer queue is disabled

As expected, normal users can't print to the disabled queue.

Objective 3 suggests that examinees should be familiar with the conversion
of plain text (ASCII) files to PostScript format. One popular way to
accomplish this is using the a2ps software package available from
http://www.gnu.org/directory/a2ps.html. While not specifically required for
Exam 102, a2ps can be helpful for creating formatted hardcopy of text and
other files.

On the Exam

You must be familiar with lpr and its use with both files and standard input. Also remember
that lpr doesn't send data to the printer, but to lpd, which handles sending it to the printer.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-3.htm (2 of 2) [3/9/2003 11:15:59]

http://www.gnu.org/directory/a2ps.html
http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 16. Text-Editing, Processing, and
Printing (Topic 1.7)

16.4 Objective 4: Install and Configure Local and Remote Printers

If you've been able to run the commands listed in Objectives 2 and 3, you already have the printing
system installed on your system. However, if you don't have the package, you can get the source code
from MetaLab (ftp://ibiblio.org/pub/linux/system/printing), along with the other software mentioned
later in this Objective. You should be able to build the software simply using make followed by make
install.

The printing system implemented by the lpd suite is primitive by today's standards. It provides for
queuing, administrative control, and some handling of special file formats but doesn't directly address
the recent trend away from character-oriented printers to more programmable machines. Fortunately,
the software is modular, making its foundation easy to build upon, making it sufficient for most printing
situations.

16.4.1 /etc/printcap

The printing process on Linux systems is governed by the "printer capability" file /etc/printcap . This
text file defines all of the system's available print queues and their characteristics. The file is parsed by
lpd, which ignores blank lines and comments beginning with a pound sign (#). Each printer definition in

the file comprises one logical line, which is often broken up among multiple physical lines in the file
using the \ line-continuation character. The definition itself is made up of fields delimited by colons. The

first field, which begins in the first column of the file, holds the system name for the printer, such as lp.
This field may contain aliases for the printer name separated by vertical bars. The rest of the fields in
the definition hold mnemonics providing control flags and printer parameters. A basic printcap file
defining a single printer is shown in Example 16-1.

Example 16-1. A Basic /etc/printcap File

A basic /etc/printcap
#
lp|ljet:\
 :sd=/var/spool/lpd/lp:\
 :mx#0:\
 :sh:\
 :lp=/dev/lp0:\
 :if=/var/spool/lpd/lp/filter:
 :lf=/var/spool/lpd/lp/log:

In this example, printer lp is defined with the alias ljet. Either name could be used to print with this

printer, using lpr -Plp or lpr -Pljet. lp is the default printer unless the user overrides it by placing a

different name in the PRINTER environment variable. Note that the name of the printer has a trailing

colon, followed by the line-continuation character. The subsequent lines contain printer attributes inside
colon pairs. Some of the frequently used attributes are:

if=input_ filter

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-4.htm (1 of 6) [3/9/2003 11:16:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

Input filter (see Section 16.2.2 for additional information).

lp=printer_device

Local printer device, such as /dev/lp0.

lf=log_ file

Error message log file.

mx=max_size

Maximum size of a print job in blocks. A maximum size of #0 indicates no limit.

sd=spool_directory

Spool directory under /var/spool/lpd.

sh

Suppress header pages for a single printer definition.

Both locally attached and remote printers will have queues defined in /etc/printcap.

On the Exam

Familiarize yourself with the /etc/printcap file and the attribute variables. Remember that a
single printer definition can have multiple names and that multiple printer definitions can
refer to the same hardware.

16.4.2 Filters

The printing process involves the rendering of various data formats by a single hardware device.
Considering the wide range of possible formats (plain text, HTML, PostScript, troff, TeX, and graphics
files such as JPEG and TIFF, just to name a few), affordable printers can't be expected to natively
handle them all. Instead, Linux systems use a two-step transformation process:

1. Raw input data is translated by a filter program into a standard Page Description Language
(PDL), which is a form of PostScript for Linux. PostScript data is not printed itself but is
interpreted as a program to be executed by a PostScript interpreter. PostScript can handle
images, fonts, and complex page layout.

2. The PostScript program is sent to the Ghostscript utility (gs) from Aladdin Enterprises.[5]
Ghostscript is a PostScript interpreter that contains a number of specific printer drivers. As a
result, it can translate PostScript into a printer-specific format and send it to the printer.

[5] A GPL'd version of gs is offered for free by Aladdin, which makes it

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-4.htm (2 of 6) [3/9/2003 11:16:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

appropriate for inclusion in Linux distributions.

This translation process and its intermediate data formats are depicted in Figure 16-1.

Figure 16-1. Print data translation steps

Each print queue found in /etc/printcap can use a different input filter, as directed by the if=filter

specification.

This data translation process sometimes isn't necessary. For example, plain text can be printed directly
by most printers, making the translation to PostScript and subsequent Ghostscript invocation
unnecessary for basic output. Many printers, particularly laser printers, have a built-in PostScript
interpreter, making Ghostscript unnecessary. These situations are detected and controlled by the filter
program.

A filter can be very simple. For example, you may have implemented a filter yourself by using a utility
like pr to add a margin to a plain text print job before piping it into lpr. In practice, filters are
conceptually similar, but are more complex and capable than this and usually handle multiple input

formats. They do this by looking at the magic number at the beginning of the data file to be printed.[6]
As a result, the filters are referred to as magic filters. Two such filters are APSfilter and magicfilter.
Your familiarity with both filters is required for Exam 102.

[6] See the file command's manpage for more information on magic and
magic numbers.

16.4.2.1 APSfilter

This popular filter program accepts files in the PostScript, TeX DVI, ASCII, PCL, GIF, TIFF, Sun Raster
files, FIG, PNM (pbmplus), HTML, and PDF formats. As mentioned earlier, APSfilter and the other
software discussed here can be found at MetaLab. After downloading APSfilter, the compressed tarball
should be unpacked in /usr/lib. Then, simply invoke cd apsfilter and run the installer, . /SETUP. This
interactive program presents a menu-based installation, where you direct such things as the Ghostscript
printer driver selection, the choice of printer interface (such as /dev/lp0), the default print resolution,
the use of color, and the output paper format. It then creates new printer entries in /etc/printcap, as
well as creates new printer spool directories, and sets file permissions and ownership. It also compiles a
few utilities necessary for the proper use of the filter. Once APSfilter is installed, your /etc/printcap will

look something like that shown in Example 16-2.[7]

[7] SETUP makes a backup copy of /etc/printcap called /etc/printcap.orig
before creating its new printcap file.

Example 16-2. The APSfilter /etc/printcap Description

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-4.htm (3 of 6) [3/9/2003 11:16:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

apsfilter setup Tue Mar 21 02:38:48 EST 2000
#
ascii|lp1|ljet3d-letter-ascii-mono|ljet3d ascii mono:\
 :lp=/dev/lp0:\
 :sd=/var/spool/lpd/ljet3d-letter-ascii-mono:\
 :lf=/var/spool/lpd/ljet3d-letter-ascii-mono/log:\
 :af=/var/spool/lpd/ljet3d-letter-ascii-mono/acct:\
 :if=/usr/lib/apsfilter/filter/\
aps-ljet3d-letter-ascii-mono:\
 :mx#0:\
 :sh:
#
lp|lp2|ljet3d-letter-auto-mono|ljet3d auto mono:\
 :lp=/dev/lp0:\
 :sd=/var/spool/lpd/ljet3d-letter-auto-mono:\
 :lf=/var/spool/lpd/ljet3d-letter-auto-mono/log:\
 :af=/var/spool/lpd/ljet3d-letter-auto-mono/acct:\
 :if=/usr/lib/apsfilter/filter/\
aps-ljet3d-letter-auto-mono:\
 :mx#0:\
 :sh:
#
raw|lp3|ljet3d-letter-raw|ljet3d auto raw:\
 :lp=/dev/lp0:\
 :sd=/var/spool/lpd/ljet3d-raw:\
 :lf=/var/spool/lpd/ljet3d-raw/log:\
 :af=/var/spool/lpd/ljet3d-raw/acct:\
 :if=/usr/lib/apsfilter/filter/\
aps-ljet3d-letter-raw:\
 :mx#0:\
 :sh:

As you can see, the installation creates three printer definitions, each with multiple aliases and each
using the same output device. This allows some degree of control over the filter, because the selection
of the queue implies specific print parameters. The first definition (ascii) is intended to allow the user

to force the printing of plain text even if the data is a PostScript program. The second entry (lp, the
default) is the standard magic APSfilter, which tries to identify the data type itself. The last definition
allows users to force APSfilter to send raw data directly to the printer with no intervention. This can be
useful, for example, if you wish to print a PostScript file's programming instructions. APSfilter also
configures logging and accounting for each printer queue. Finally, the setup routine optionally prints a
graphical test page to verify your installation.

After APSfilter is installed, you must restart lpd to enable the new print queues:

lpc restart all

or:

/etc/rc.d/init.d/lpd stop
/etc/rc.d/init.d/lpd start

APSfilter allows for some controls in /etc/apsfilterrc (and the user file ~/.apsfilterrc). Examples of
these controls are configuration for Ghostscript features, special control sequences for printers, and
configuration for the use of a particular filter method. While this file is beyond the scope of LPIC Level 1
Objectives, you should be familiar with it and its purpose.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-4.htm (4 of 6) [3/9/2003 11:16:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

You should install APSfilter to become familiar with the software and its setup.

16.4.2.2 Magicfilter

Another filter you may wish to try is magicfilter, which can also be obtained from MetaLab. Unlike
APSfilter, which is implemented as scripts, magicfilter is compiled from C and comes with a

traditional configure, make, make install procedure.[8] Building and installing magicfilter is
straightforward and shouldn't cause any difficulty. However, the installation does not automatically
create print queues in /etc/printcap, although you can easily define one by setting the input filter to
/usr/local/bin/magicfilter, as shown in Example 16-3.

[8] See Section 14.3 for additional information on how to install software.

Example 16-3. The magicfilter Print Queue

lp|lpmagic:\
 :sd=/var/spool/lpd/lp:\
 :mx#0:\
 :sh:\
 :lp=/dev/lp0:\
 :if=/usr/local/bin/magicfilter:

16.4.2.3 Multiple filters

When a filter is installed, it is placed in a directory where it can be called from as needed. The printer
definitions in /etc/printcap put the filter into service. Because you can create as many printer definitions
as you like, it is possible to have multiple filters in place at the same time.

On the Exam

You should have a working knowledge of the printing process, the role of filters, the role of
Ghostscript, and where PostScript data is used. Also remember that PostScript is rendered
directly on some printers, eliminating the need for Ghostscript.

16.4.3 Remote lpd and Samba Printers

Configuring your system to use a remote Linux printer (or other lpd device, such as a network-attached
printer) can be as simple as adding a local printer. Two additional configuration variables are added to
the printer definition in /etc/printcap to specify the remote host and the queue name on that host. For
example:

rlp:\
 :sd=/var/spool/lpd/rlp:\
 :rm=lphost:\
 :rp=rlp:\
 :mx#0:\
 :sh:\
 :if=/usr/local/bin/magicfilter:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-4.htm (5 of 6) [3/9/2003 11:16:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

Here, this local print queue will send jobs to printer rlp residing on lphost. Since remote printers still

have local queues, you must create the spool directory, in this example, /var/spool/lpd/rlp.

Configuring a remote printer that's on a Windows network is also straightforward. (The Windows printer
must be properly shared and you must have Samba installed and running.) First, a local spool directory
is created as usual -- for example, /var/spool/lpd/winpr. Next, an /etc/printcap entry is added that looks
something like this:

winpr:\
 :sd=/var/spool/lpd/winpr:\
 :mx#0:\
 :sh:\
 :if=/usr/bin/smbprint:

The input filter for this printer is smbprint, a utility from the Samba software suite. Finally, a .config

file is created in the spool directory, which contains:

● The NetBIOS name of the Windows machine with the printer

● The service name that represents the printer

● The password used to access that service

The service name and password are set in the Sharing dialog box on the Windows machine. The .config
file might look similar to the following:

server=WINBOX
service=WINPR
password=""

After restarting lpd, you should be able to print text documents to the Windows printer.

On the Exam

Remember the rm and rp printer configuration variables for remote lpd printers. For Samba
printing on Windows clients, remember to use the smbprint input filter and to create the
.config file in the local spool directory.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/16-4.htm (6 of 6) [3/9/2003 11:16:01]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 17. Shells, Scripting, Programming, and
Compiling (Topic 1.9)

17.1 Objective 1: Customize and Use the Shell Environment

This Objective could be considered a brief "getting started with shells" overview because it details many
of the basic concepts necessary to utilize the shell environment on Linux. These concepts are
fundamental and very important for system administrators working on Linux and Unix systems. If you're
new to shells and shell scripting, take heart. You can think of it as a combination of computer
interaction (conversation) and computer programming (automation). It is nothing more than that, but
the result is far more than this simplicity implies. If you're an old hand with shell programming, you
may want to skip ahead to brush up on some of the particulars necessary for Exam 102.

17.1.1 An Overview of Shells

A shell is a fundamental and important part of your Linux computing environment. Shells are user
programs not unlike other text-based programs and utilities. They offer a rich customizable interface to
your system. Some of the main items provided by your shell are:

An interactive textual user interface to the operating system

In this the role, the shell is a command interpreter and display portal to the system. It offers
you a communications channel to the kernel and is often thought of as the "shell around the
kernel." That's where the name shell originates and is a good metaphor for conceptualizing how
shells fit into the overall Linux picture.

An operating environment

Shells set up an environment for the execution of other programs, which affect the way some of
them behave. This environment consists of any number of environment variables, each of which
describes one particular environment property by defining a name=value pair. Other features
such as aliases enhance your operating environment by offering shorthand notations for
commonly used commands.

A facility for launching and managing commands and programs

Shells are used not only by users but also by the system to launch programs and support those
programs with an operating environment.

A programming language

Shells offer their own programming languages. At its simplest, this feature allows user
commands to be assembled into useful sequences. At the other end of the spectrum, complete
programs can be written in shell languages, with loop control, variables, and all of the
capabilities of Linux's rich set of operating system commands.

On a Linux system, you have a choice of at least five different shells. There are two basic families:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-1.htm (1 of 11) [3/9/2003 11:16:03]

InformIT Online Books > LPI Linux Certification in a Nutshell

Bourne-derived shells

Many shells are related to the Bourne shell, sh, named for creator Steve Bourne. sh is the
oldest of the currently available shells and lacks several features considered necessary for
modern interactive use. However, it is well understood, is used regularly for programming, and
can be found on nearly every Unix or Unix-like system. One of the descendants of sh is bash,
which is described in the next section.

C-shells

For interactive use, many people like to use the C-shell, csh, or its descendant, tcsh. These
shells have some elements in their associated programming language syntax that are similar to
the C language. Despite this, many feel that programming in the C-shell is less than satisfactory
due to some missing features. Additional shells include zsh and ksh.

All of the shells share some common concepts:

● They are all distinct from the kernel and run as user programs.

● Each shell can be customized by tuning the shell's operating environment.

● Shells are run for both interactive use by end users and noninteractive use by the system.

● A shell can be run from within another shell, enabling you to try a shell other than your default
shell. To do this, you simply start the other shell from the command line of your current shell. In
fact, this happens constantly on your system as scripts are executed and programs are
launched. The new shell does not replace the shell that launched it. Instead, the new shell is a
process running with the original shell as a parent process. When you terminate the child shell,
you go back to the original one.

● Shells use a series of configuration files to establish their operating environment.

● Shells pass on environment variables to child processes.

17.1.2 The bash Shell

To enhance the Bourne shell while retaining its programming constructs, a few descendants have been
written over the years. Among those descendants is bash, which stands for Bourne-again shell, from
the Free Software Foundation (the FSF is famous for tongue-in-cheek command names). While there
are a number of shells available to choose from on a Linux system, bash is very popular and powerful,
and is the default shell for new accounts. Exam 102 concentrates on its use and configuration. The next
few sections deal with general shell concepts, but the examples are specific to bash.

17.1.2.1 Shell and environment variables

Many programs running under Linux require information about you and your personal preferences to
operate sensibly. While you could instruct each program you run with important details it needs to
proceed, much of the information you'd convey would be redundant because you'd be telling every
command you enter the same ancillary information at each invocation. For example, you'd need to tell
your paging program about the size and nature of your terminal or terminal window each time you use
it. You would also need to give fully qualified directory names for the programs you run.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-1.htm (2 of 11) [3/9/2003 11:16:03]

InformIT Online Books > LPI Linux Certification in a Nutshell

Rather than force users to include so much detail to issue commands, the shell handles much of this
information for you automatically. You've already seen that the shell creates an operating environment
for you. That environment is made up of a series of variables, each of which has a value that is used by
programs and other shells. There are two types of variables used by most shells:

Environment variables

These variables can be thought of as global variables because they are passed on to all
processes started by the shell, including other shells. This means that child processes inherit the

environment. By convention, environment variables are given uppercase names.[1] Your shell
maintains many environment variables, including the following examples:

[1] bash doesn't require the case convention; it's intended for clarity to humans.

PATH

A list of directories through which the shell looks for executable programs as you enter them on the command line. All of the
directories that contain programs that you'll want to execute are stored together in the PATH environment variable. Your shell looks

through this list in sequence, from left to right, searching for each command you enter. Your PATH may differ from the PATH s of

other users on your system because you may use programs found in different locations or you may have a local directory with your
own custom programs that need to be available. The PATH variable can become quite long as more and more directories are added.

HOME

Your home directory, such as /home/bsmith.
USERNAME

Your username.
TERM

The type of terminal or terminal window you are running. This variable is likely to have a value such as xterm or xterm-color. If you
are running on a physical VT100 (or compatible) terminal, TERM is set to vt100.

Shell variables

These variables can be thought of as local because they are specific only to the current shell.
Child processes do not inherit them. Some shell variables are automatically set by the shell and
are available for use in shell scripts. By convention, shell variables are given lowercase names.

In the csh and tcsh shells, environment variables and shell variables are differentiated by their case,
and shell variables are always local while environment variables are always global. In bash, this
distinction is blurred somewhat, because variables are shell variables until they are exported to the
environment, making them environment variables that will be passed on to child shells and programs.
In addition, nearly all the shell and environment variables you'll encounter in bash will be uppercase.

To create a new bash shell variable, simply enter a name=value pair on the command line:

PI=3.14

To see that this value is now assigned to the local variable PI, use the echo command to display its
contents:

echo $PI
3.14

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-1.htm (3 of 11) [3/9/2003 11:16:03]

InformIT Online Books > LPI Linux Certification in a Nutshell

The dollar sign preceding the variable name indicates that the name will be replaced with the variable's
value. Without the dollar sign, echo would just return the text that was typed, which in this case is the
variable name PI. At this point, PI is a local variable and is not available to child shells or programs. To

make it available to other shells or programs, the variable must be exported to the environment:

export PI

17.1.2.2 Aliases

Among the features missing from shwas the ability to easily make new commands or modify existing
commands. bash has the ability to set an alias for commonly used commands or sequences of
commands. For example, if you habitually call for the older pager more but actually prefer less, an
alias can be handy to get the desired behavior, regardless of the command you use:

$ alias more='less'

This has the effect of intercepting any command entries for more, substituting less instead. The
revised command is passed along to the shell's command interpreter.

Another common use for an alias is to modify a command slightly so that its default behavior is more to
your liking. Many people, particularly when operating with superuser privileges, will use this alias:

$ alias cp='cp -i'

With this alias in effect, the use of the cp (copy) command becomes safer, because with the -i option
always enforced by the alias, cp prompts you for approval before overwriting a file of the same name.
Additional options you enter on the command line are appended to the end of the new command, such
that cp -p becomes cp -i -p and so on.

If the righthand side of the aliased command is bigger than a single word or if it contains multiple
commands (separated by semicolons, bash's command terminator), you probably need to enclose it in
single quotation marks to get your point across. This is because you need to prevent the shell in which
you're working (your current bash process) from interpreting file globbing or other characters that
might be part of your alias value. For example, suppose you wished to use a single alias to pair two
simple commands:

$ alias lsps=ls -l;ps

Your current bash process will interpret this command not as a single alias but as two separate
commands. First the alias lsps will be created for ls -l, and then a ps command will be added for
immediate execution. What you really want is:

$ alias lsps='ls -l;ps'

Now, entering the command lsps will be aliased to ls -l; ps, and will correctly generate ls output
immediately followed by ps output, as this example shows:

$ lsps
total 1253
drwx------ 5 root root 1024 May 27 17:15 dir1
drwxr-xr-x 3 root root 1024 May 27 22:41 dir2

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-1.htm (4 of 11) [3/9/2003 11:16:03]

InformIT Online Books > LPI Linux Certification in a Nutshell

-rw-r--r-- 1 root root 23344 May 27 22:44 file1
drwxr-xr-x 2 root root 12288 May 25 16:13 dir3
 PID TTY TIME CMD
 892 ttyp0 00:00:00 bash
 1388 ttyp0 00:00:00 ps

Admittedly, this isn't a very useful command, but it is built upon in the next section.

After adding aliases, it may become easy to confuse which commands are aliases or native. To list the
aliases defined for your current shell, simply enter the alias command by itself. This results in a listing
of all the aliases currently in place:

$ alias
alias cp='cp -i'
alias lsps='ls -l;ps'
alias mv='mv -i'
alias rm='rm -i'

Note that aliases are local to your shell and are not passed down to programs or to other shells. You'll
see how to ensure that your aliases are always available in the section on configuration files.

Aliases are mainly used for simple command replacement. The shell inserts your aliased text in place of
your alias name before interpreting the command. Aliases don't offer logical constructs and are limited
to a few simple variable replacements. Aliases can also get messy when the use of complicated quoting
is necessary, usually to prevent the shell from interpreting characters in your alias.

17.1.2.3 Functions

In addition to aliases, bash also offers functions . They work in much the same way as aliases, in that
some function name of your choosing is assigned to a more complex construction. However, in this case
that construction is a small program rather than a simple command substitution. Functions have a
simple syntax:

$ [function] NAME () { COMMAND-LIST; }

This declaration defines a function called NAME. The word function is optional, and the parentheses

after NAME are required if function is omitted. The body of the function is the COMMAND-LIST

between the curly brackets ({ and }). This list is a series of commands, separated by semicolons or by

new lines. The series of commands are executed whenever NAME is specified as a command. The simple

lsps alias shown earlier could be implemented as a function like this:

$ lsps () { ls -l; ps; }

Using this new function as a command yields exactly the same result the alias did. However, by
implementing this command using a function, parameters can be added to the command. Here is a new
version of the same function, this time entered on multiple lines (which eliminates the need for
semicolons within the function):

$ lsps () {
> ls -l $1
> ps -aux | grep `/bin/basename $1`
> }

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-1.htm (5 of 11) [3/9/2003 11:16:03]

InformIT Online Books > LPI Linux Certification in a Nutshell

The > characters come from bash during interactive entry, indicating that bash is awaiting additional

function commands or the } character, which terminates the function definition. This new function

allows us to enter a single argument to the function, which is inserted everywhere $1 is found in the

function. These arguments are called positional parameters because each one's number denotes its
position in the argument list. This example uses only one positional parameter; there can be many, and
the number of parameters is stored for your use in a special variable $# .

The command implemented in the previous example function now returns a directory listing and process
status for any program given as an argument. For example, if the Apache web server is running, the
command:

$ lsps /usr/sbin/httpd

yields a directory listing for /usr/sbin/httpd and also displays all currently running processes that match
httpd:

-rwxr-xr-x 1 root root 165740 Apr 7 17:17 /usr/sbin/httpd
root 3802 0.0 3.8 2384 1192 ? S 16:34 0:00 httpd
nobody 3810 0.0 4.2 2556 1292 ? S 16:34 0:00 httpd
nobody 3811 0.0 4.2 2556 1292 ? S 16:34 0:00 httpd
nobody 3812 0.0 4.2 2556 1292 ? S 16:34 0:00 httpd
nobody 3813 0.0 4.2 2556 1292 ? S 16:34 0:00 httpd
nobody 3814 0.0 4.2 2556 1292 ? S 16:34 0:00 httpd
root 3872 0.0 1.4 1152 432 ttyp0 S 16:45 0:00 grep httpd

17.1.2.4 Configuration files

It's a good assumption that every Linux user will want to define a few aliases, functions, and
environment variables to suit his needs. However, it's undesirable to manually enter them upon each
login or for each new invocation of bash. In order to set up these things automatically, bash uses a
number of configuration files to set its operating environment when it starts. Some of these files are
used only upon initial log in, while others are executed for each instance of bash you start, including
login time. Some of these configuration files are system-wide files for all users to use, while others
reside in your home directory for your use alone.

bash configuration files important to Exam 102 are listed in Table 17-1.

Table 17-1. bash Configuration Files

File Description

/etc/profile
This is the systemwide initialization file, executed during log in. It usually contains
environment variables, including an initial PATH, and startup programs.

/etc/bashrc
This is another systemwide initialization file that may be executed by a user's .bashrc
for each bash shell launched. It usually contains functions and aliases.

~/.bash_ profile If this file exists, it is executed automatically after /etc/profile during log in.

~/.bash_login If .bash_ profile doesn't exist, this file is executed automatically during log in.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-1.htm (6 of 11) [3/9/2003 11:16:03]

InformIT Online Books > LPI Linux Certification in a Nutshell

~/.profile
If neither .bash_ profile nor .bash_login exist, this file is executed automatically
during log in. Note that this is the original bourne shell configuration file.

~/.bashrc
This file is executed automatically when bash starts. This includes login, as well as
subsequent interactive and noninteractive invocations of bash.

~/.bash_logout This file is executed automatically during log out.

~/.inputrc
This file contains optional key bindings and variables that affect how bash responds
to keystrokes. By default, bash is configured to respond like the Emacs editor.

In practice, users will generally (and often unknowingly) use the systemwide /etc/profile configuration
file to start. In addition, they'll often have three personal files in their home directory: ~/.bash_ profile,
~/.bashrc, and ~/.bash_logout. The local files are optional, and bash does not mind if one or all of
them are not available in your directory.

The syntax ~/ refers to bash's "home directory." While this shortcut may

not represent much of a savings in typing, some Linux configurations may
place users' directories in various and sometimes nonobvious places in the
filesystem. Using the tilde syntax reduces the need for you to know exactly
where a user's home directory is located.

Each of these configuration files consists entirely of plain text. They are typically simple, often
containing just a few commands to be executed in sequence to prepare the shell environment for the
user. Since they are evaluated by bash as lines of program code, they are said to be sourced, or
interpreted, when bash executes them.

Like most programming languages, shell programs allow the use of comments. Most shells including
bash consider everything immediately following the hash (#) character on a single line to be a

comment.[2] Comments can span an entire line or share a line by following program code. All of your
shell scripts and configuration files should use comments liberally.

[2] An important exception is the $# variable, which has nothing to do with
comments but contains the number of positional parameters passed to a
function.

Files sourced at login time are created mainly to establish default settings. These settings include such
things as where to search for programs requested by the user (the PATH) and creation of shortcut

names for commonly used tasks (aliases and functions). After login, files sourced by each subsequent
shell invocation won't explicitly need to do these things again because they inherit the environment
established by the login shell. Regardless, it isn't unusual to see a user's .bashrc file filled with all of
their personal customizations. It also doesn't hurt anything, provided the .bashrc file is small and quick
to execute.

While it is not necessary to have detailed knowledge of every item in your shell configuration files, Exam
102 requires that you understand them and that you can edit them to modify their behavior and your
resulting operating environment. The following examples are typical of those found on Linux systems
and are annotated with comments. Example 17-1 shows a typical Linux system-wide profile. This file is
executed by every user's bash process at login time. A few environment variables and other
parameters are set in it.

Example 17-1. An Example System-wide bash profile

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-1.htm (7 of 11) [3/9/2003 11:16:03]

InformIT Online Books > LPI Linux Certification in a Nutshell

/etc/profile
System-wide environment and startup programs
Functions and aliases go in system wide /etc/bashrc

PATH was already set, this is an extension
PATH="$PATH:/usr/X11R6/bin"

Set a default prompt string
PS1="[\u@\h \W]\\$ "

Set an upper limit for "core" files
ulimit -c 1000000

Set a default umask, used to set default file permissions
if [`id -gn` = `id -un` -a `id -u` -gt 14]; then
 umask 002
else
 umask 022
fi

Set up some shell variables
USER=`id -un`
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"
HOSTNAME=`/bin/hostname`
HISTSIZE=1000
HISTFILESIZE=1000
INPUTRC=/etc/inputrc

Make all these into environment variables
export PATH PS1 HOSTNAME HISTSIZE HISTFILESIZE
 USER LOGNAME MAIL INPUTRC

Execute a series of other files
for i in /etc/profile.d/*.sh ; do
 if [-x $i]; then
 . $i
 fi
done

unset I # Clean up the variable used above

Example 17-2 shows a system-wide .bashrc file. This file is not sourced by default when bash starts.
Instead, it is optionally sourced by users' local .bashrc files.

Example 17-2. An Example System-wide .bashrc File

/etc/bashrc

alias more='less' # prefer the "less" pager
alias lsps='ls -l;ps' # a dubious command

Example 17-3 shows an example user's local .bash_ profile. Note that this file sources the system-wide
/etc/bashrc, then goes on to local customizations.

Example 17-3. An Example User .bash_ profile File

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-1.htm (8 of 11) [3/9/2003 11:16:03]

InformIT Online Books > LPI Linux Certification in a Nutshell

.bash_profile

Get the aliases and functions from the systems administrator
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs

PATH=$PATH:$HOME/bin # Add my binaries directory to the path
EDITOR=emacs # Set my preferred editor to Emacs
VISUAL=emacs # Set my preferred editor to Emacs
PAGER=less # Set my preferred pager to less

Make my variables part of the environment
export PATH EDITOR VISUAL PAGER

Example 17-4 shows an individual's .bashrc file. Like the .bash_profile earlier, this file also sources the
system-wide /etc/bashrc.

Example 17-4. An Example User's .bashrc File

.bashrc

User-specific aliases and functions

Source global definitions
if [-f /etc/bashrc]; then
 . /etc/bashrc
fi

alias rm='rm -i' # Add a safety net to rm
alias cp='cp -i' # Add a safety net to cp
alias mv='mv -i' # Add a safety net to mv

lsps() { # Define a personal function
 ls -l $1
 ps -aux | grep `/bin/basename $1`
}

Example 17-5 shows a short, simple, and not uncommon .bash_logout file. Probably the most likely
command to find in a logout file is the clear command. Including a clear in your logout file is a nice
way of being certain that whatever you were doing just before you log out won't linger on the screen for
the next user to ponder. This file is intended to execute commands for a logout from a text session,
such as a system console or terminal. In a GUI environment where logout and login are handled by a
GUI program, .bash_logout may not be of much value.

Example 17-5. A Simple .bash_logout File

.bash_logout
This file is executed when a user logs out of the system
/usr/bin/clear # clear the screen
/usr/games/fortune # print a random adage

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-1.htm (9 of 11) [3/9/2003 11:16:03]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

Make certain that you understand the difference between execution at login and execution
at shell invocation, as well as which of the startup files serve each of those purposes.

17.1.2.5 Inputrc

Among the many enhancements added to bash is the ability to perform as if your history of commands
is the buffer of an editor. That is, your command history is available to you, and you may cut, paste,
and even search among command lines entered previously. This powerful capability can significantly
reduce typing and increase accuracy. By default, bash is configured to emulate the Emacs editor, but a
vi editing interface is also available.

The portion of bash that handles this function, and in fact handles all of the line input during interactive
use, is known as readline. Readline may be customized by putting commands into an initialization file,

which by default is in your home directory and called .inputrc.[3] For example, to configure bash to
use vi-style editing keys, add this line to .inputrc:

[3] You may also set the INPUTRC variable to the name of another file if
you prefer. On your system, this variable may be set to/etc/initrc by
default, which would override any settings you put into a local .initrc. To
use your own file, you must first explicitly place unset INPUTRC in
your.bash_profile.

set editing-mode vi

The default editing facilities enabled in bash are extensive and are beyond the scope of this section and
Exam 102. However, you need to understand the concepts of adding your own custom key bindings to
the .inputrc file and how they can help automate common keystrokes unique to your daily routine for
the test.

For example, suppose you often use top to watch your system's activity (top is a useful process-
monitoring utility that is described inChapter 3):

$ top -Ssd1

If you do this often enough, you'll get tired of typing the command over and over and will eventually
want an alias for it. To create the alias, simply alias this command to top:

$ alias top='/usr/bin/top -Ssd1'

Better yet, you can use .inputrc to create a key binding that will enter it for you. Here's how the .inputrc
file would look if you were to bind your top command to the key sequence Ctrl-t:

my .inputrc file
Control-t: "top -Ssd1 \C-m"

The lefthand side of the second line indicates the key combination you wish to use (Ctrl-t). The
righthand side indicates what you wish to bind to that key sequence. In this case, bash outputs top -
Ssd1 and a carriage return, denoted here by \C-m (Ctrl-m), when Ctrl-t is pressed.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-1.htm (10 of 11) [3/9/2003 11:16:03]

InformIT Online Books > LPI Linux Certification in a Nutshell

Through modifications of your local configuration files, you can customize your environment and
automate many of your daily tasks. You may also override system-wide settings in your personal files
simply by setting variables, aliases, and functions.

On the Exam

You won't need to have detailed knowledge of this key-binding syntax, but be aware of the
.inputrc file and the kinds of things it enables bash to do.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-1.htm (11 of 11) [3/9/2003 11:16:03]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 17. Shells, Scripting, Programming, and
Compiling (Topic 1.9)

17.2 Objective 2: Customize or Write Simple Scripts

You've seen how the use of bash configuration files, aliases, functions, variables, and key bindings can
customize and make interaction with your Linux system efficient. The next step in your relationship with
the shell is to use its natural programming capability, or scripting language. The scripting language of
the original Bourne shell is found throughout a Linux system, and bash is fully compatible with it. This
section covers essential bash scripting language concepts as required for Exam 102.

In order to have a full appreciation of shell scripting on Linux, it's important to look at your Linux
system as a collection of unique and powerful tools. Each of the commands available on your Linux
system, along with those you create yourself, has some special capability. Bringing these capabilities
together to solve problems is among the basic philosophies of the Unix world.

17.2.1 Script Files

Just as the configuration files discussed in the last section are plain text files, so are the scripts for your
shell. In addition, unlike compiled languages such as C or Pascal, no compilation of a shell program is
necessary before it is executed. You can use any editor to create script files, and you'll find that many
scripts you write are portable from Linux to other Unix systems.

17.2.1.1 Creating a simple bash script

The simplest scripts are those that simply string together some basic commands and perhaps do
something useful with the output. Of course, this can be done with a simple alias or function, but
eventually you'll have a requirement that exceeds a one-line request, and a shell script is the natural
solution. Aliases and functions have already been used to create a rudimentary new command, lsps.
Now let's look at a shell script (Example 17-6) that accomplishes the same thing.

Example 17-6. The lsps Script

a basic lsps command script for bash
ls -l $1
ps -aux | grep `/bin/basename $1`

As you can see, the commands used in this simple script are identical to those used in the alias and in
the function created earlier. To make use of this new file, instruct your currently running bash shell to
source it, giving it an option for the $1 positional parameter:

$ source ./lsps /usr/sbin/httpd

If you have /usr/sbin/httpd running, you should receive output similar to that found previously for the
alias. By replacing the word source with a single dot, you can create an alternate shorthand notation to
tell bash to source a file, as follows:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (1 of 17) [3/9/2003 11:16:06]

file:///#lpicertnut-CHP-17-EX-6

InformIT Online Books > LPI Linux Certification in a Nutshell

$. ./lsps /usr/sbin/httpd

Another way to invoke a script is to start a new invocation of bash and tell that process to source the
file. To do this, simply start bash and pass the script name and argument to it:

$ /bin/bash ./lsps /usr/sbin/httpd

This last example gives us the same result; however, it is significantly different from the alias, the
function, or the sourcing of the lsps file. In this particular case, a new invocation of bash was started to
execute the commands in the script. This is important, because the environment in which the
commands are running is distinct from the environment where the user is typing. This is described in
more detail later.

The ./ syntax indicates that the file you're referring to is in the current

working directory. To avoid specifying ./ for users other than the superuser,

put the directory . in the PATH . The PATH of the superuser should not

include the current working directory, as a security precaution against Trojan
horse-style attacks.

Thus far, a shell script has been created and invoked in a variety of ways, but it hasn't been made into
a command. A script really becomes useful when it can be called by name like any other command.

17.2.1.2 Executable files

On a Linux system, programs are said to be executable if they have content that can be run by the
processor (native execution) or by another program such as a shell (interpreted execution). However, in
order to be eligible for execution when called at the command line, the files must have attributes that
indicate to the shell that they are executable. Conspicuously absent is anything in the filename that
indicates that the file is executable, such as the file extension of .exe found on MS-DOS and Windows
applications. It would be possible to name our example file lsps.exe if desired, or for that matter lsps.sh
or lsps.bin. None of these extensions has any meaning to the shell, though, and the extension would
become part of the command entered when executing the program. For this reason, most executable
Linux programs and scripts don't have filename extensions. To make a file executable, it must have at
least one of its executable bits set. To turn our example script from a plain text file to an executable
program, that bit must be set using the chmod command:

$ chmod a+x lsps

Once this is done, the script is executable by owner, group members, and everyone else on the system.
At this point, running the new command from the bash prompt yields the familiar output:

$./lsps /usr/sbin/httpd

When lsps is called by name, the commands in the script are interpreted and executed by the bash
shell. However, this isn't ultimately what is desired. In many cases, users will be running some other
shell interactively but will still want to program in bash. Programmers also use other scripting
languages such as Perl. To have our scripts interpreted correctly, the system must be told which
program should interpret the commands in our scripts.

17.2.1.3 She-bang!

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (2 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

There are many kinds of script files found on a Linux system, and each interpreted language comes with
a unique and specific command structure. There needs to be a way to tell Linux which interpreter to
use. This is accomplished by using a special line at the top of the script naming the appropriate
interpreter. Linux examines this line and launches the specified interpreter program, which then reads
the rest of the file. The special line must begin with #!, a construct often called "she-bang." For bash,

the she-bang line is:

#!/bin/bash

This command explicitly states that the program named bash can be found in the /bin directory and
designates bash to be the interpreter for the script. You'll also see other types of lines on script files,
including:

#!/bin/sh

The bourne shell.

#!/bin/csh

The C-shell.

#!/bin/tcsh

The enhanced C-shell.

#!/bin/sed

The stream editor.

#!/usr/bin/awk

The awk programming language.

#!/usr/bin/perl

The Perl programming language.

Each of these lines specifies a unique command interpreter use for the script lines that follow.[4]

[4] bash is fully backward compatible with sh; sh is just a link to bash on
Linux systems.

On the Exam

An incorrectly stated she-bang line can cause the wrong interpreter to attempt to execute
commands in a script.

17.2.1.4 The shell script's environment

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (3 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

When running a script with #!/bin/bash, a new invocation of bash with its own environment is started
to execute the script's commands as the parent shell waits. Exported variables in the parent shell are
copied into the child's environment; the child shell executes the appropriate shell configuration files
(such as .bash_profile). Because configuration files will be run, additional shell variables may be set and
environment variables may be overwritten. If you are depending upon a variable in your shell script, be
sure that it is either set by the shell configuration files or exported into the environment for your use,
but not both.

Another important concept regarding your shell's environment is one-way inheritance. Although your
current shell's environment is passed into a shell script, that environment is not passed back to the
original shell when your program terminates. This means that changes made to variables during the
execution of your script are not preserved when the script exits. Instead, the values in the parent shell's
variables are the same as they were before the script executed. This is a basic Unix construct;
inheritance goes from parent process to child process, and not the other way around.

On the Exam

It is important to remember how variables are set, how they are inherited, and that they are
inherited only from parent process to child process.

17.2.1.5 Location, ownership, and permissions

The ability to run any executable program, including a script, under Linux depends in part upon its
location in the filesystem. Either the user must explicitly specify the location of the file to run or it must
be located in a directory known by the shell to contain executables. Such directories are listed in the
PATH environment variable. For example, the shells on a Linux system (including bash) are located in

/bin. This directory is usually in the PATH, because you're likely to run programs that are stored there.

When you create shell programs or other utilities of your own, you may want to keep them together and
add the location to your own PATH. If you maintain your own bin directory, you might add the following

line to your .bash_ profile:

PATH=$PATH:$HOME/bin

This statement modifies your path to include your /home/bin directory. If you add personal scripts and
programs to this directory, bash finds them automatically.

Execute permissions (covered in Section 4.5) also affect your ability to run a script. Since a script is just
a text file, execute permission must be granted to them before they are considered executable, as
shown earlier.

You may wish to limit access to the file from other users using:

$ chmod 700 ~/bin/lsps

This prevents anyone but the owner from making changes to the script.

The issue of file ownership is dovetailed with making a script executable. By default, you own all of the
files you create. However, if you are the system administrator, you'll often be working as the superuser
and will be creating files with username root as well. It is important to assign the correct ownership and
permission to scripts to ensure that they are secured.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (4 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

17.2.1.6 SUID and GUID rights

On rare occasions, it may become necessary to allow a user to run a program under the name of a
different user. This is usually associated with programs run by nonprivileged users who need special
privileges to execute correctly. Linux offers two such rights, known as set user ID (SUID) and set group
ID (SGID).

When an executable file is granted the SUID right, processes created to execute it are owned by the
user who owns the file instead of the user who launched the program. This is a security enhancement in
that the delegation of a privileged task or ability does not imply that the superuser password must be
widely known. On the other hand, any process whose file is owned by root and which has the SUID set
will run as root for everyone. This could represent an opportunity to break the security of a system if
the file itself is easy to attack (as a script is). For this reason, Linux systems will ignore SUID and SGID
attributes for script files. Setting SUID and SGID attributes is detailed in Section 4.5.

On the Exam

Be sure to think through any questions that require you to determine a user's right to
execute a file. Consider location, ownership, execute permissions, and SUID/SGID rights
together. Also, watch for new scripts that haven't been granted any execute privileges.

17.2.2 Basic bash Scripts

Now that some of the requirements for creating and using executable scripts are established, some of
the features that make them so powerful can be introduced. This section contains basic information
needed to customize and create new bash scripts.

17.2.2.1 Return values

As shell scripts execute, it is important to confirm that their constituent commands complete
successfully. Most commands offer a return value to the shell when they terminate. This value is a
simple integer and has meaning specific to the program you're using. Almost all programs return the
value when they are successful, and return a nonzero value when a problem is encountered. The value
is stored in the special bash variable $?, which can be tested in your scripts to check for successful

command execution. This variable is reset for every command executed by the shell, so you must test it
immediately after execution of the command you're verifying. As a simple example, try using the cat
program on a nonexistent file:

$ cat bogus_file
cat: bogus_file: No such file or directory

Then immediately examine the status variable twice:

$ echo $?
1
$ echo $?
0

The first echo yielded 1 (failure) because the cat program failed to find the file you specified. The

second echo yielded 0 (success) because the first echo command succeeded. A good script makes use

of these status flags to exit gracefully in case of errors.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (5 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

If it sounds backward to equate zero with success and nonzero with failure, consider how these results
are used in practice:

Error detection

Scripts that check for errors include if-then code to evaluate a command's return status:

command
if (failure_returned) {
 ...error recovery code...
}

In a bash script, failure_returned is simply the $? variable, which contains the result of the

command's execution.

Error classification

Since commands can fail for multiple reasons, many return more than one failure code. For
example, grep returns 0 if matches are found and 1 if no matches are found; it returns 2 if

there is a problem with the search pattern or input files. Scripts may need to respond differently
to various error conditions.

On the Exam

Make certain you understand the meaning of return values in general and that they are
stored in the $? variable.

17.2.2.2 File tests

During the execution of a shell script, specific information about a file -- such as whether it exists, is
writable, is a directory or a file, and so on -- may sometimes be required. In bash, the built-in

command test performs this function.[5] test has two general forms:

[5] There is also a standalone executable version of test available in
/usr/bin for non-bash shells.

test expression

In this form, test and an expression are explicitly stated.

[expression]

In this form, test isn't mentioned; instead, the expression is enclosed inside brackets.

The expression can be formed to look for such things as empty files, the existence of files, the existence
of directories, equality of strings, and others. (See the more complete list with their operators in the
next section.)

When used in a script's if or while statement, the brackets ([and]) may appear to be grouping the

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (6 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

test logically. In reality, [is simply another form of the test command, which requires the trailing]. A

side effect of this bit of trickery is that the spaces around [and] are mandatory, a detail that is sure to

get you into trouble eventually. See the later section, "Abbreviated bash command reference," for some
of the available tests.

17.2.2.3 Command substitution

Bash offers a handy ability to do command substitution. This feature allows you to replace $(command

) with the result of command, usually in a script. That is, wherever $(command) is found, its output is

substituted prior to interpretation by the shell. For example, to set a variable to the number of lines in
your .bashrc file, you could use wc -l:

$ RCSIZE=$(wc -l ~/.bashrc)

An older form of command substitution encloses command in backquotes:

$ RCSIZE=`wc -l ~/.bashrc`

The result is the same, except that the backquote syntax allows the backslash character to escape the
dollar symbol ($), the backquote (`), and another backslash (\). The $(command) syntax avoids this

nuance by treating all characters between the parentheses literally.

17.2.2.4 Mailing from scripts

The scripts you write will often be rummaging around your system at night when you're asleep or at
least while you're not watching. Since you're too busy to check on every script's progress, a script will
sometimes need to send some mail to you or another administrator. This is particularly important when
something big goes wrong or when something important depends on the script's outcome. Sending mail
is as simple as piping into the mail command:

echo "Backup failure 5" | mail -s "Backup failed" root

The -s option indicates that a quoted subject for the email follows. The recipient could be yourself, root,
or if your system is configured correctly, any Internet email address. If you need to send a log file,
redirect the input of mail from that file:

mail -s "subject" recipient < logfile

Sending email from scripts is easy and makes tracking status easier than reviewing log files every day.
On the downside, having an inbox full of "success" messages can be a nuisance too, so many scripts are
written so that mail is sent only in response to an important event, such as a fatal error.

17.2.2.5 Abbreviated bash command reference

This section lists some of the important bash built-in commands used when writing scripts. Please note
that not all of the bash commands are listed here; for a complete overview of the bash shell, see
Learning the bash Shell by Cameron Newham and Bill Rosenblatt (O'Reilly & Associates).

break

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (7 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

break [n]

Description

Exit from the innermost (most deeply nested) for, while, or until loop or from the n innermost levels of
the loop.

case

Syntax

case string
in
 regex1)
 commands1
 ;;
 regex2)
 commands2
 ;;
 ...
esac

Description

Choose string from among a series of possible regular expressions. If string matches regular expression
regex1, perform the subsequent commands1. If string matches regex2, performcommands2. Proceed
down the list of regular expressions until one is found. To catch all remaining strings, use *) at the end.

continue

Syntax

continue [n]

Description

Skip remaining commands in a for, while, or until loop, resuming with the next iteration of the loop (or
skipping n loops).

echo

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (8 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

echo [options] [string]

Description

Write string to standard output, terminated by a newline. If no string is supplied, echo only a newline.

Frequently used options

-e

Enables interpretation of escape characters.

-n

Suppresses the trailing newline in the output.

\a

Sounds an audible alert.

\b

Inserts a backspace.

\c

Suppresses the trailing newline (same as -n).

\f

Form feed.

exit

Syntax

exit [n]

Description

Exit a shell script with status n. The value for n can be (success) or nonzero (failure). If n is not given,
the exit status is that of the most recent command.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (9 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example

if ! test -f somefile
then
 echo "Error: Missing file somefile"
 exit 1
fi
for x [in list]
do
 commands
done

for

Syntax

for x in list
do
 commands
done

Description

Assign each word in list to x in turn and execute commands. If list is omitted, it is assumed that
positional parameters from the command line, which are stored in $@, are to be used.

Example

for filename in bigfile*
{
 echo "Compressing $filename"
 gzip $filename
}

function

Syntax

function name
{
 commands
}

Description

Define function name. Positional parameters ($1, $2, ...) can be used within commands.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (10 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example

function myfunc
{
 echo "parameter is $1"
}
myfunc 1
parameter is 1
myfunc two
parameter is two

getopts

Syntax

getopts string name [args]

Description

Process command-line arguments (or args, if specified) and check for legal options. The getopts
command is used in shell script loops and is intended to ensure standard syntax for command-line
options. The string contains the option letters to be recognized by getopts when running the script.
Valid options are processed in turn and stored in the shell variable name. If an option letter is followed
by a colon, the option must be followed by one or more arguments when the command is entered by
the user.

if

Syntax

if expression1
then
 commands1
elif expression2
then
 commands2
else
 commands
fi

Description

The if command is used to define a conditional statement. There are three possible formats for using

the if command:

if-then-fi
if-then-else-fi

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (11 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

if-then-elif-then-...fi

The expressions are made up of tests (or [] commands).

kill

Syntax

kill [options] IDs

Description

Send signals to each specified process or job ID, which you must own unless you are a privileged user.
The default signal sent with the kill command is TERM, instructing processes to shut down.

Options

-l

List the signal names.

-s signal or -signal

Specifies the signal number or name.

read

Syntax

read [options] variable1 [variable2...]

Description

Read one line of standard input, and assign each word to the corresponding variable, with all remaining
words assigned to the last variable.

Example

echo -n "Enter last-name, age, height, and weight > "
read lastname everythingelse
echo $lastname
echo $everythingelese

The name entered is placed in variable $lastname; all of the other values, including the spaces

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (12 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

between them, are placed in $everythingelse.

return

Syntax

return [n]

Description

This command is used inside a function definition to exit the function with status n. If n is omitted, the
exit status of the previously executed command is returned.

shift

Syntax

shift [n]

Description

Shift positional parameters down n elements. If n is omitted, the default is 1, so $2 becomes $1, $3

becomes $2, and so on.

source

Syntax

source file [arguments]
. file [arguments]

Description

Read and execute lines in file. The file does not need to be executable but must be in a directory listed
in PATH. The "dot" syntax is equivalent to stating source.

test

Syntax

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (13 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

test expression
[expression]

Description

Evaluate the conditional expression and return a status of (true) or 1 (false). The first form explicitly
calls out the test command. The second form implies the test command. The spaces around expression
are required in the second form. expression is constructed using options.

Frequently used options

-d file

True if file exists and is a directory

-e file

True if file exists

-f file

True if file exists and is a regular file

-L file

True if file exists and is a symbolic link

-n string

True if the length of string is nonzero

-r file

True if file exists and is readable

-s file

True if file exists and has a size greater than zero

-w file

True if file exists and is writable

-x file

True if file exists and is executable

-z string

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (14 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

True if the length of string is zero

file1 -ot file2

True if file1 is older than file2

string1 = string2

True if the strings are equal

string1 != string2

True if the strings are not equal

Example

To determine if a file exists and is readable, use the -r option:

if test -r file
then
 echo "file exists"
fi

Using the [] form instead, the same test looks like this:

if [-r file]
then
 echo "file exists"
fi

until

Syntax

until
 test-commands
do
 commands
done

Description

Execute test-commands (usually a test command) and if the exit status is nonzero (that is, the test
fails), perform commands ; repeat. Opposite of while.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (15 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

while

Syntax

while
 test-commands
do
 commands
done

Description

Execute test-commands (usually a test command) and if the exit status is zero, perform commands;
repeat. Opposite of until.

Example

Example 17-7 shows a typical script from a Linux system. This example is /etc/rc.d/init.d/sendmail,
which is the script that starts and stops sendmail. This script demonstrates many of the built-in
commands referenced in the last section.

Example 17-7. Sample sendmail Startup Script

#!/bin/sh
#
sendmail This shell script takes care of starting
and stopping sendmail.
#
chkconfig: 2345 80 30
description: Sendmail is a Mail Transport Agent, which
is the program that moves mail from one
machine to another.
processname: sendmail
config: /etc/sendmail.cf
pidfile: /var/run/sendmail.pid

Source function library.
. /etc/rc.d/init.d/functions

Source networking configuration.
. /etc/sysconfig/network

Source sendmail configuration.
if [-f /etc/sysconfig/sendmail] ; then
 . /etc/sysconfig/sendmail
else
 DAEMON=yes
 QUEUE=1h
fi

Check that networking is up.
[${NETWORKING} = "no"] && exit 0

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (16 of 17) [3/9/2003 11:16:06]

InformIT Online Books > LPI Linux Certification in a Nutshell

[-f /usr/sbin/sendmail] || exit 0

See how we were called.
case "$1" in
 start)
 # Start daemons.
 echo -n "Starting sendmail: "
 /usr/bin/newaliases > /dev/null 2>&1
 for i in virtusertable access domaintable mailertable ; do
 if [-f /etc/mail/$i] ; then
 makemap hash /etc/mail/$i < /etc/mail/$i
 fi
 done
 daemon /usr/sbin/sendmail $(["$DAEMON" = yes] \
 && echo -bd) $([-n "$QUEUE"] && echo -q$QUEUE)
 echo
 touch /var/lock/subsys/sendmail
 ;;

 stop)
 # Stop daemons.
 echo -n "Shutting down sendmail: "
 killproc sendmail
 echo
 rm -f /var/lock/subsys/sendmail
 ;;

 restart)
 $0 stop
 $0 start
 ;;

 status)
 status sendmail
 ;;

 *)
 echo "Usage: sendmail {start|stop|restart|status}"
 exit 1
esac

exit 0

On the Exam

You should be familiar with a script's general structure, as well as the use of she-bang, test,
if statements and their syntax (including the trailing fi), return values, exit values, and so
on.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/17-2.htm (17 of 17) [3/9/2003 11:16:06]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 18. X (Topic 2.10)

18.2 Objective 1: Install and Configure XFree86

Most Linux distributions install and automatically configure XFree86, freeing users from much of its
installation and configuration. However, Exam 102 requires specific knowledge of some of the
underpinnings of X configuration.

Be careful about installing an X server on a system that already has X
installed. A backup should be made prior to the installation.

18.2.1 Selecting and Configuring an X Server

The XFree86 project provides support for an amazing array of graphics hardware. This outcome is
possible partly due to cooperation by manufacturers through public release of graphics device
documentation and driver software, and partly due to the tenacity of the XFree86 developers.
Fortunately, many manufacturers who were historically uninterested in offering technical information to
the XFree86 project have become cooperative. The result is that most recent video hardware is well-
supported by XFree86.

18.2.1.1 Supported video hardware

To avoid problems, it is important to verify XFree86 compatibility with your hardware prior to
installation. At the very least, you should be aware of these items:

Your XFree86 version

As with any software, improvements in XFree86 are made over time, particularly in support for
hardware devices. You should choose a version of XFree86 that offers a good balance between
the video support and stability you require. To determine the version of X you're running, simply
issue the following command:

$ /usr/X11R6/bin/X -version
XFree86 Version 4.0.1a / X Window System

The video chipset

XFree86 video drivers are written for graphics chipsets, not the video cards they're installed on.
Multiple video cards from a variety of manufacturers can carry the same chipset, making those
cards nearly identical in function. You must verify that the chipset on your video card is
supported by XFree86 to use advanced graphics features.

Monitor type

XFree86 can be configured to handle just about any monitor, particularly the newer and very
flexible multisync monitors sold today, which can handle preset configurations provided in the

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (1 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

XFree86 configuration utilities. However, if you have a nonstandard monitor, you need to know
some parameters describing its capabilities before configuring X, including your monitor's
horizontal sync frequency (in kHz), vertical refresh frequency (in Hz), and resolution (in pixels).
These items can usually be found in your monitor's documentation, but since most monitors
conform to standard display settings such as XGA (1024 x 768 pixels at 60 Hz vertical refresh),
you should be able to use a preset configuration.

As an example of these considerations, suppose you're using a Number Nine video chipset in your

system.[1] If you examine the chipset support information included with XFree86 Version 3.3.6, you'll
find that the I128 driver handles your chipset. However, XFree86 Version 4.0.1 does not, so v4.0.1 is
not a viable choice. Your chipset must be supported by the version of XFree86 you're installing. Check
the XFree86 release notes for specific information on supported chipsets.

[1] Number Nine was the manufacturer of some popular PC video hardware.
The company is now out of business.

18.2.1.2 Installing XFree86 from packages

The procedures for installation vary depending on the release of X you're using. For example, with
versions prior to 4.0, a specific X server is required to match your chipset in order to use modes other
than standard VGA. For versions after 4.0, a newer modular design allows a single server program to
manage all supported chipsets by calling driver modules. In addition, the type of XFree86 distribution
you're using affects installation. XFree86 is available as source code, in precompiled binary form, or as
an RPM or Debian package. (Because of the precompiled and package options, there's little reason to
compile from scratch.)

If you're going to use a version of XFree86 that came with a Linux distribution, simply use the package
installation tools from your distribution with the XFree86 packages. For example, on a Red Hat 6.0
system with XFree86 v3.3.3.1, the following components of XFree86 were installed by the RPM

package:[2]

[2] In this example, all of the package names are followed by a version
number. Here, XFree86 v3.3.3.1 is installed.

XFree86-SVGA-3.3.3.1-49
X11R6-contrib-3.3.2-6
Xconfigurator-4.2.3-1
XFree86-3.3.3.1-49
XFree86-75dpi-fonts-3.3.3.1-49
XFree86-libs-3.3.3.1-49
XFree86-xfs-3.3.3.1-49
XFree86-XF86Setup-3.3.3.1-49

The first item in this list is the SVGA X server (XFree86-SVGA-3.3.3.1-49), which supports a number of
video chipsets (other server programs, packaged separately, may be needed to support other video
chipsets). The XFree86 package (XFree86-3.3.3.1-49 in the list) is the core of XFree86. The other items
are either required or recommended packages. Such recommendations can come from the installation
program or from notes accompanying the package. For example, the XFree86 package indicates that:

In addition to installing the [XFree86] package, you will need to install the XFree86
package [that] corresponds to your video card, the X11R6-contrib package, the
Xconfigurator package, and the XFree86-libs package. You may also need to install one
of the XFree86 fonts [sic] packages.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (2 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

Using a packaged installation targeted for your particular Linux distribution will probably be the simplest
method.

18.2.1.3 Installing XFree86 from precompiled binaries

You may wish to try a version of XFree86 that is more recent than available packaged versions. In this
case, you may wish to install a precompiled binary from the XFree86 project. To get the files needed to
install the latest version, consult the XFree86 web site or one of the many mirror sites listed there.

The first step in deploying a precompiled XFree86 binary is to get the configuration program,

Xinstall.sh.[3] Using the -check option, this utility can determine which precompiled binary
distribution is right for your system:

[3] It's important to use binary-mode FTP to get this program. Browsers
may not transfer the program correctly.

./Xinstall.sh -check
Checking which OS you're running...
uname reports 'Linux' version '2.2.5-15smp',
 architecture 'i686'.
Object format is 'ELF'. libc version is '6.1'.
Binary distribution name is 'Linux-ix86-glibc21'

The last line directs us to the appropriate binary distribution, which in this case is Linux-ix86-glibc21
(your results will differ). Next we need to get the files for that distribution. Some, such as fonts and
extra programs, are optional. Details on exactly which files to get are available in the Install document,
which may be retrieved along with Xinstall.sh. The files listed in Table 18-1 are mandatory for use with
v4.0.1.

Table 18-1. Files Necessary for Use with XFree86 v4.0.1

Filename Description

Xinstall.sh The installer script

extract The utility for extracting tarballs

Xbin.tgz X clients/utilities and runtime libraries

Xlib.tgz Some data files required at runtime

Xman.tgz Manual pages

Xdoc.tgz XFree86 documentation

Xfnts.tgz Base set of fonts

Xfenc.tgz Base set of font-encoding data

Xetc.tgz Runtime configuration files

Xvar.tgz Runtime data

Xxserv.tgz XFree86 X server

Xmod.tgz XFree86 X server modules

After you have retrieved these files, simply run Xinstall.sh as root to begin installation as described in

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (3 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

the Install document.

18.2.1.4 Configuring an X server and the XF86Config file

XFree86 configuration differs slightly among versions and among Linux distributions, but essentially
involves the creation of the XF86Config file customized for your system. The X server uses this
configuration file as it starts to set such things as keyboard and mouse selections, installed fonts, and
screen resolutions.

XF86Config contains technical details concerning the capabilities of system hardware, which can be
intimidating for some users. For this reason, automated configuration tools are available that will
generate the file for you:

xf86config

This program is distributed with XFree86. It is a simple text-mode program that requests
information about the system from the user and then writes a corresponding XF86Config file.
This utility does not use information stored in an existing configuration file, so its utility is
limited. (Remember that xf86config is a binary program that writes the XF86Config text file.)

XF86Setup

This program is distributed with XFree86. XF86Setup is a graphical program that starts a VGA
X server, which should run on most PC hardware. It allows you to select the graphics chipset,
monitor, mouse, and keyboard device types and writes the appropriate configuration file for
you.

xf86cfg

This program is distributed with XFree86 v4.0. Like XF86Setup, it is a graphical tool; however,
xf86cfg's interface is slightly different. Whereas other tools offer a menu-based approach,
xf86cfg offers a block diagram of the system, including a monitor, video device, keyboard, and
mouse. The user configures each element by manipulating its properties. When the user is
happy with the configuration, the tool writes the XF86Config file.

Distribution-specific tools

Various Linux distributors provide their own configuration utilities. For example, Xconfigurator
is distributed by Red Hat Software. It is menu-based, provides for automated probing of
graphics chipsets and capabilities, and uses a list of known monitors to retrieve timing
information.

Example 18-1 contains an abbreviated XF86Config file created using the Red Hat Xconfigurator tool

for XFree86 v3.3.3.[4]

[4] The XF86Config files shown here are examples and are not intended for
use on your system.

Example 18-1. A sample XF86Config File for XFree86 v3.3.3

File generated by XConfigurator.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (4 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

Section "Files"
 RgbPath "/usr/X11R6/lib/X11/rgb"
 FontPath "unix/:-1"
EndSection

Section "ServerFlags"
EndSection

Section "Keyboard"
 Protocol "Standard"
 AutoRepeat 500 5
 LeftAlt Meta
 RightAlt Meta
 ScrollLock Compose
 RightCtl Control
 XkbDisable
 XkbKeycodes "xfree86"
 XkbTypes "default"
 XkbCompat "default"
 XkbSymbols "us(pc101)"
 XkbGeometry "pc"
 XkbRules "xfree86"
 XkbModel "pc101"
 XkbLayout "us"
EndSection

Section "Pointer"
 Protocol "PS/2"
 Device "/dev/mouse"
 Emulate3Buttons
 Emulate3Timeout 50
EndSection

Section "Monitor"
 Identifier "My Monitor"
 VendorName "Unknown"
 ModelName "Unknown"
 HorizSync 31.5 - 64.3
 VertRefresh 50-90
 # 1280x1024 @ 61 Hz, 64.2 kHz hsync
 Mode "1280x1024"
 DotClock 110
 Htimings 1280 1328 1512 1712
 Vtimings 1024 1025 1028 1054
 EndMode
EndSection

Section "Device"
 Identifier "My Video Card"
 VendorName "Unknown"
 BoardName "Unknown"
 VideoRam 16256
EndSection

Section "Screen"
 Driver "svga"
 Device "My Video Card"
 Monitor "My Monitor"

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (5 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

 Subsection "Display"
 Depth 32
 Modes "1280x1024"
 ViewPort 0 0
 EndSubsection
EndSection

Under v3.3.3, the default location for the XF86Config file is in /etc/X11. The file contains the following
sections:

Files

This section is used to specify the default font path and the path to the RGB database. Using the
FontPath "path" directive multiple times creates a list of directories that the X server will

search for fonts. The RGB database is an equivalence table of numeric red/green/blue color
values with names. Here's a short excerpt of the RGB database:

255 228 196 bisque
255 218 185 peach puff
255 218 185 PeachPuff
255 222 173 navajo white

Hundreds of these names are defined and may be used in the configuration of X applications where
color names are required.

ServerFlags

This section allows customization of X server options such as the handling of hotkeys.

Keyboard

This section is used to specify the keyboard input device, its parameters, and default keyboard-
mapping options.

Pointer

This section is used to define the pointing device (mouse).

Monitor

Multiple Monitor sections are used to define the specifications of monitors and a list of video

modes they can handle.

Device

Multiple Device sections are used to define video hardware (cards) installed.

Screen

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (6 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

The Screen section ties together a Device with a corresponding Monitor and includes some

configuration settings for them.

On the Exam

You don't need to memorize details about XF86Config, but it is an important file, and your
familiarity with it will be tested. In particular, be aware of what each of the sections does for
the X server, and remember that the Screen section ties together a Device and a

Monitor.

The XF86Config file format was modified slightly for XFree86 v4.0. In particular, a new ServerLayout

section has been added; it ties the Screen, Pointer, and Keyboard sections together. Example 18-2

contains an abbreviated XF86Config file created using the bundled xf86cfg tool from the XFree86
project.

Example 18-2. A Sample XF86Config File for XFree86 v4.0.1

Section "ServerLayout"
 Identifier "XFree86 Configured"
 Screen 0 "Screen0" 0 0
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
EndSection

Section "Files"
EndSection

Section "InputDevice"
 Identifier "Keyboard0"
 Driver "keyboard"
EndSection

Section "InputDevice"
 Identifier "Mouse0"
 Driver "mouse"
 Option "Protocol" "PS/2"
 Option "Device" "/dev/mouse"
EndSection

Section "Monitor"
 Identifier "Monitor0"
 VendorName "Monitor Vendor"
 ModelName "Monitor Model"
 HorizSync 31.5 - 64.3
 VertRefresh 50.0 - 90.0
EndSection

Section "Device"
 Identifier "Card0"
 Driver "nv"
 VendorName "NVidia"
 BoardName "Riva TNT"
 ChipSet "RIVATNT"
 BusID "PCI:1:0:0"
EndSection

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (7 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

Section "Screen"
 Identifier "Screen0"
 Device "Card0"
 Monitor "Monitor0"
 DefaultDepth 24
 SubSection "Display"
 Depth 24
 EndSubSection
EndSection

Under v4.0, the default location for the XF86Config file is in /etc/X11. The file contains the following
sections:

ServerLayout

This section ties together Screen with one or more InputDevices. Multiple ServerLayout

sections may be used for multiheaded configurations (i.e., systems with more than one
monitor).

Files

This section is used to add paths to fonts and color information, just as it is in XFree86 v3.3.3.

InputDevice

Multiple InputDevice sections should be used to include at least a keyboard and mouse.

Subsections within InputDevice in v4.0 replace the Pointer and Keyboard sections for

XFree86 v3.3.3.

Monitor

This section is similar to the Monitor section for XFree86 v3.3.3, except that mode

specifications are not usually necessary. The X server is already aware of standard VESA video
modes and chooses the best mode based on the horizontal sync and vertical refresh rates.

Device

This section specifies the modular driver for the X server. Multiple Device sections can be

included to handle multiple graphics devices.

Screen

This section ties together a Monitor with a Device and is specified in the ServerLayout.

Multiple Screen sections can be included to handle multiple monitor/device pairs.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (8 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

As already mentioned, you don't need to worry about details in XF86Config. However, you
should be aware of the major differences in the configuration files for XFree86 Versions 3.3
and 4.0.

18.2.2 X Fonts

XFree86 is distributed with a collection of fonts for most basic purposes, including text displays in
terminal windows and browsers. For many users, the default fonts are adequate, but others may prefer
to add additional fonts to their system. A variety of fonts are available, both free and commercially,
from many sources, such as Adobe. Some very creative fonts are created by individuals and distributed
on the Internet (a search engine should return some useful links to a query such as "XFree86 fonts").

XFree86 makes fonts that it finds in the font path available to client programs. A basic font path is
compiled into the X server, but you can specify your own font path using the FontPath directive in the

Files section of XF86Config. The simple syntax is:

FontPath "path"

For example:

Section "Files"
 RgbPath "/usr/X11R6/lib/X11/rgb"
 FontPath "/usr/X11R6/lib/X11/fonts/misc"
 FontPath "/usr/X11R6/lib/X11/fonts/Type1"
 FontPath "/usr/X11R6/lib/X11/fonts/Speedo"
 FontPath "/usr/X11R6/lib/X11/fonts/100dpi"
 FontPath "/usr/X11R6/lib/X11/fonts/75dpi"
 FontPath "/usr/X11R6/lib/X11/fonts/local"
EndSection

This group of FontPath directives creates a font path consisting of six directories, all under

/usr/X11R6/lib/X11/fonts. When XFree86 starts, it parses these font directories and includes their
contents in the list of fonts available during the X session.

18.2.2.1 Installing fonts

Adding new fonts is straightforward.[5] First, a suitable directory should be created for the new fonts,
such as /usr/X11R6/lib/X11/local or /usr/local/fonts. You may wish to separate your own fonts from the
default XFree86 directories to protect them during upgrades. After the fonts are installed in the new
directory, the mkfontdir utility is run to catalog the new fonts in the new directory. New entries are
added to the XF86Config file to include the path for new fonts. For example:

[5] For this brief discussion, we assume that we're working with Type 1
fonts. Other types, such as TrueType fonts, may require additional
configuration depending on your version of XFree86.

FontPath "/usr/local/fonts"

At this point, the X server can be restarted to recognize the new fonts, or the fonts can be dynamically

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (9 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

added using the xset command:

xset fp+ /usr/local/fonts

xset is beyond the scope of the LPIC Level 1 exams.

On the Exam

Be sure you understand how the X font path is created and how to extend it to include
additional directories. Knowledge of the internal details of font files is not necessary.

18.2.2.2 The X font server

On a network with multiple workstations, managing fonts manually for each system can be time
consuming. To simplify this problem, the administrator can install all of the desired fonts on a single
system and then run xfs, the X fonts server, on that system. The X font server is a small daemon that
sends fonts to clients on both local and remote systems. Some Linux distributions use xfs exclusively,
without a list of directories in the manually created font path. To include xfs in your system's font path,
add a FontPath directive like this:

Section "Files"
 RgbPath "/usr/X11R6/lib/X11/rgb"

 FontPath "unix/:-1"
EndSection

If you install xfs from a package from your distribution, it is probably automatically configured to start
at boot time and run continually, serving fonts to local and remote client programs. To start xfs
manually, simply enter the xfs command. For security purposes, you may wish to run xfs as a non-root
user. xfs is configured using its configuration file, /etc/X11/fs/config. Example 18-3 contains an
example config file for xfs.

Example 18-3. Sample configuration File for xfs

Allow a max of four clients to connect to this font server
client-limit = 4

When a font server reaches its limit, start up a new one
clone-self = on

catalogue = /usr/X11R6/lib/X11/fonts/misc:unscaled,
 /usr/X11R6/lib/X11/fonts/75dpi:unscaled,
 /usr/X11R6/lib/X11/fonts/100dpi:unscaled,
 /usr/X11R6/lib/X11/fonts/misc,
 /usr/X11R6/lib/X11/fonts/Type1,
 /usr/X11R6/lib/X11/fonts/Speedo,
 /usr/X11R6/lib/X11/fonts/75dpi,
 /usr/X11R6/lib/X11/fonts/100dpi,
 /usr/share/fonts/ISO8859-2/100dpi,
 /usr/share/fonts/ISO8859-9/100dpi
 /usr/X11R6/lib/X11/fonts/local

In 12 points, decipoints
default-point-size = 120

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (10 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

100 x 100 and 75 x 75
default-resolutions = 75,75,100,100

How to log errors
use-syslog = on

As you can see, the config file contains the following keyword =value pairs:

catalogue

This keyword holds a comma-separated list of directories containing fonts to be served by xfs.
This is where new font directories are added.

alternate-servers (strings)

This section contains a listing of alternate font servers that can be found on the local machine or
on other machines.

client-limit

This shows the maximum number of client requests to be served.

clone-self

When on, the font server makes copies of itself if it reaches the client-limit.

You don't need to remember details about the contents of the xfs configuration file (config), but be
aware of the use and general contents of the file. In particular, remember that the catalogue keyword

is used similarly to FontPath in XF86Config.

On the Exam

Remember that xfs can take the place of the list of directories in a manually configured font
path. However, running xfs doesn't replace the font path -- xfs itself must be on that path
as noted earlier in Example 18-1 with the unix/:-1 entry.

18.2.3 Controlling X Applications with .Xresources

The X Window System also has many built-in customization features. Many X applications are
programmed with a variety of resources, which are configuration settings that can be externally
manipulated. Rather than have a configuration utility built into each application, applications can be
written to examine the contents of a file in the user's home directory. The .Xresources file contains a
line for each configured resource in the following form:

program*resource: value

This line can be translated as follows:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (11 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

● program is the name of a configurable program, such as emacs or xterm .

● resource is one of the configurable settings allowed by the program, such as colors.

● value is the setting to apply to the resource.

For example, the following is an excerpt from .Xresources that configures colors for an xterm :

xterm*background: Black
xterm*foreground: Wheat
xterm*cursorColor: Orchid
xterm*reverseVideo: false

On the Exam

You should be aware of X resources and the function of the .Xresources file. In particular,
you should understand that X applications will look in the .Xresources file for settings. You
should also be able to construct a resource setting given a particular example, but you do
not need to be able to generate a configuration file from scratch.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/18-2.htm (12 of 12) [3/9/2003 11:16:08]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 18. X (Topic 2.10)

18.3 Objective 2: Set Up xdm

The X Display Manager, or xdm, is a tool to manage X sessions on physical displays both locally and
across the network. Part of its job is to handle user authentication through a graphical login screen,
which replaces the familiar text-mode login.

18.3.1 Configuring xdm

xdm is distributed as part of XFree86 and is configured by a series of files located in /etc/X11/xdm.
These files include:

Xaccess

This file controls inbound requests from remote hosts.

Xresources

This file is similar to .Xresources, discussed earlier. It holds configuration information for some
xdm resources, including the graphical login screen. This file can be edited to modify the
appearance of the xdm login screen.

Xservers

This file associates the X display names (:0, :1, ...) with either the local X server software or a

foreign display such as an X terminal.

Xsession

This file contains the script xdm launches after a successful login. It usually looks for .xsession
in the user's home directory and executes the commands found there. If such a file doesn't
exist, Xsession starts a default window manager (or environment) and applications.

Xsetup_0

This file is a script started before the graphical login screen. It often includes commands to set
colors, display graphics, or run other programs. This script is executed as root.

xdm-config

This file associates xdm configuration resources with the other files in this list. It usually isn't
necessary to make changes in this file unless an expert administrator plans to customize xdm
configuration.

18.3.1.1 Running xdm manually

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/18-3.htm (1 of 4) [3/9/2003 11:16:09]

InformIT Online Books > LPI Linux Certification in a Nutshell

xdm uses the X server to run on your local display. Therefore, you must have a working X configuration
prior to using a display manager. Then, to start xdm, simply enter it as root:

xdm

xdm launches the X server and display the graphical login, and you can log in as usual. xdm then
starts your graphical environment. After you log out, xdm resets and again displays the login screen.

Most Linux distributions enable virtual consoles. You can switch among them using the key
combinations Ctrl-Alt-F1, Ctrl-Alt-F2, and so on. Typically, the first six consoles are set up as text-
mode screens, and X launches on console 7 (Ctrl-Alt-F7). This means that, as with startx, your
original text-mode console remains unchanged after you manually start xdm. Therefore, you must log
out of your text-mode console if you plan to leave the system unattended with xdm running manually.

If you want to stop xdm, you first must be sure that all of the X sessions under its management are
logged out. Otherwise, they'll die when xdm exits and you could lose data. Then simply stop the xdm
process using kill or killall from a text console:

killall xdm

Of course, xdm isn't very useful for your local system if you must always start it manually. That's why
most Linux distributions include a boot-time option to start xdm for you, eliminating the text-mode
login completely.

18.3.1.2 Running xdm automatically

For Linux systems using the System-V-style initialization, a runlevel is usually reserved for login under
xdm. This line at the bottom of /etc/inittab instructs init to start xdm for runlevel 5:

Run xdm in runlevel 5
x:5:respawn:/usr/X11R6/bin/xdm -nodaemon

Using this configuration, when the system enters runlevel 5, xdm starts and presents the graphical
login as before. See Section 5.2 for more information on runlevels.

It's also possible to automatically start xdm simply by adding it to the end of an initialization script,
such as rc.local. This method offers less control over xdm but may be adequate for some situations and
for Linux distributions that don't offer runlevels.

18.3.1.3 Basic xdm customization

You may wish to personalize the look of xdm for your system. The look of the graphical login screen

can be altered by manipulating the resources in /etc/X11/xdm/Xresources.[6] For example, the
following excerpt shows settings to control the greeting (Welcome to Linux on smp-pc), other prompts,
and colors:

[6] Note that Xresources uses ! to initiate comments.

! Xresources file
xlogin*borderWidth: 10

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/18-3.htm (2 of 4) [3/9/2003 11:16:09]

InformIT Online Books > LPI Linux Certification in a Nutshell

xlogin*greeting: Welcome to Linux on CLIENTHOST
xlogin*namePrompt: Login:\040
xlogin*fail: Login incorrect - try again!
xlogin*failColor: red
xlogin*Foreground: Yellow
xlogin*Background: MidnightBlue

You can also include command-line options to the X server in /etc/X11/xdm/Xservers if you wish to
override those found in XF86Config. For example, to change the default color depth, add the -bpp (bits
per pixel) option for the local display:

Xservers file
:0 local /usr/X11R6/bin/X -bpp 24

To include additional X programs or settings on the graphical login screen, put them in
/etc/X11/xdm/Xsetup_0. In this example, the background color of the X display is set to a solid color (in
hexadecimal form), and a clock is added at the lower righthand corner of the screen:

#!/bin/sh
Xsetup
/usr/X11R6/bin/xsetroot -solid "#356390"
/usr/X11R6/bin/xclock -digital -update 1 -geometry -5-5 &

Note that in this example, xsetroot exits immediately after it sets the color, allowing the Xsetup_0

script to continue. xclock, however, does not exit and must be put into the background using an & at

the end of the command line. If such commands are not placed into the background, the Xsetup_0
script hangs, and the login display does not appear.

18.3.2 X Stations

X stations, also known as X terminals, sadly are a vanishing breed of low-cost display devices for X.
They are usually diskless systems that implement an X server and drive a monitor. Such devices can be
configured to access a remote host to find an xdm daemon or will broadcast to the entire network
looking for a "willing host" to offer xdm services. The selected system will run an X session across the
network with the X terminal as the target display. With this setup, a large number of relatively
inexpensive X terminals can make use of a few high-powered host systems to run graphical clients.

18.3.2.1 xdm for X terminals

To use an X terminal with your host, xdm must first be running on the host machine. The host listens
for inbound connections from the X terminals using XDMCP, the xdm Control Protocol (the default port
for xdmcp is 177). When a request is received, xdm responds with the same graphical login screen
that's used on the local system. The difference is that the X server is implemented in the X terminal
hardware, not in the XFree86 software on the xdm host, and all of the graphics information is
transmitted over the network.

You can configure access to your system's xdm daemon in the /etc/X11/xdm/Xaccess file. This file is a
simple list of hosts that are to be restricted or enabled. To enable a host, simply enter its name. To
restrict a host, enter its name with an exclamation point (!) before it. The * wildcard is also allowed to

handle groups of devices.

The following example allows access to all X terminals on the local domain but prohibits access from
xterm1 on an outside domain:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/18-3.htm (3 of 4) [3/9/2003 11:16:09]

InformIT Online Books > LPI Linux Certification in a Nutshell

*.localdomain.com
!xterm1.outsidedomain.com

On the Exam

You should be aware of the configuration files for xdm, how they are used, and where they
are located. In particular, remember that the Xresources file controls graphical login
properties. Also remember that xdm can be started using a special runlevel and that xdm
must be running for X terminals to connect via XDMCP.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/18-3.htm (4 of 4) [3/9/2003 11:16:09]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 18. X (Topic 2.10)

18.4 Objective 3: Identify and Terminate Runaway X Applications

This short Objective highlights what can be a frustrating aspect of working with X. You're likely to
sometimes experience problems with X, perhaps even an X server crash. Usually the applications that
were running during the X session exit immediately. However, some X client programs may leave
processes running after the X server terminates. These programs may consume resources on your
system and need to be identified.

As an example of this behavior, it's possible for the Netscape browser to remain after an X session
crash. If this happens, you'll probably note that your system is sluggish. Use the top utility to identify
the offending program and kill or killall to terminate it.

If your X session hangs completely, you can use a virtual terminal[7] to log in again and kill runaway
processes or even the X server. Use Ctrl-Alt-F2 or Ctrl-Alt-F3 to switch to terminals 2 or 3,
respectively.

[7] Virtual terminals are configured in /etc/inittab. Most Linux distributions
preconfigure six virtual terminals.

On the Exam

Unlike some other operating systems where the GUI is an integral part of the system, an X
server is simply a special process with other client processes depending upon it. If the X
process terminates or has a problem, it's likely that the X clients will also fail in some way,
including failing to exit cleanly. Remember that the termination of X may leave X clients
active.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/18-4.htm [3/9/2003 11:16:10]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 18. X (Topic 2.10)

18.5 Objective 4: Install and Customize a Window Manager Environment

The selection of a desktop environment for X is a personal decision. At a minimum, you need a window
manager such as twm to provide basic window frames, menus, and controls. On the more elaborate
side, an integrated working environment such as KDE or GNOME offers a rich set of applications.
Regardless of how you configure your desktop, it's important to understand some basic customization
techniques.

18.5.1 Starting X and a Default Window Manager

Starting XFree86 can be as simple as issuing the X command as root. However, X alone doesn't give
you a working environment. At the very least, you also need to start a window manager and an

application and set up basic X access authority.[8] You may also wish to choose from among multiple
desktop environments and window managers installed on your system.

[8] X authority configuration is beyond the scope of the LPIC Level 1
certification and is not covered in this book.

18.5.1.1 The XFree86 startup process

Assuming for the moment that we're not using xdm, the process of starting X goes like this:

1. The user issues the startx command. This is a script provided by XFree86 and often modified by
distributors and administrators. startx is intended as a frontend to xinit.

2. startx calls xinit with two main arguments:

a. An Xinitrc script, which contains X programs to run. This script could be .xinitrc from the
user's home directory, or if that doesn't exist, a systemwide default found in
/etc/X11/xinit/xinitrc.

b. Server options, such as X authority information.

3. xinit launches XFree86 and the chosen Xinitrc script.

4. XFree86 starts. Note that X itself does not provide any applications. They appear only as the
result of the commands found in the Xinitrc script.

5. Client programs and a window manager found in the Xinitrc script start.

The contents of startx and the system default /etc/X11/xinit/xinitrc can vary from distribution to
distribution and can be changed by administrators to suit local needs. They may also reference
additional files, such as /etc/X11/xinit/Xclients, to determine which programs and window manager to
run. Example 18-4 shows the contents of /etc/X11/xinit/xinitrc, a modified version of the original
distributed with XFree86.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/18-5.htm (1 of 5) [3/9/2003 11:16:11]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example 18-4. A System Default xinitrc

#!/bin/sh
$XConsortium: xinitrc.cpp,v 1.4 91/08/22 rws Exp $

userresources=$HOME/.Xresources
usermodmap=$HOME/.Xmodmap
sysresources=/usr/X11R6/lib/X11/xinit/.Xresources
sysmodmap=/usr/X11R6/lib/X11/xinit/.Xmodmap

merge in defaults and keymaps

if [-f $sysresources]; then
 xrdb -merge $sysresources
fi

if [-f $sysmodmap]; then
 xmodmap $sysmodmap
fi

if [-f $userresources]; then
 xrdb -merge $userresources
fi

if [-f $usermodmap]; then
 xmodmap $usermodmap
fi

start some nice programs

(sleep 1; xclock -geometry 50x50-1+1) &
(sleep 1; xterm -geometry 80x50+494+51) &
(sleep 1; xterm -geometry 80x20+494-0) &
exec twm

In this example, resource and keyboard mappings are set, a few applications are launched, and the
twm window manager is started. twm is installed as a basic default window manager on most
distributions.

18.5.1.2 Customizing twm

Each of the window managers and desktop environments has its own style of configuration. In the case
of twm, a single file called .twmrc in the user's home directory is used. If .twmrc doesn't exist, the
system-wide default /etc/X11/twm/system.twmrc is used. The file can include:

● Font selections

● Color selections

● Bindings between actions (such as mouse clicks) and twm responses

● Menu definitions

Even for a basic window manager such as twm, a wide array of configuration options is available to

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/18-5.htm (2 of 5) [3/9/2003 11:16:11]

InformIT Online Books > LPI Linux Certification in a Nutshell

tailor the window manager to your personal taste. Example 18-5 contains parts of system.twmrc, which

defines a default options menu, defops, and a submenu that starts various X terminals.

Example 18-5. Menu Configuration in system.twmrc

menu "defops"
{
"Twm" f.title
"Netscape" f.exec "netscape &"
"Terminals" f.menu "Terms"
}

menu "Terms"
{
"Aterm" f.exec "exec aterm &"
"Kvt" f.exec "exec kvt &"
"Xterm" f.exec "exec xterm &"}

For complete information on twm, see its manpage (man twm).

On the Exam

This Objective requires that you have a general understanding of the configuration of menus
for a window manager. You will not be required to generate window manager configuration
files for the test, but you should be aware of the need to edit and modify them.

18.5.2 xterm et al.

One of the most important applications available to a system administrator working in a graphical
environment is a terminal emulator. The standard terminal emulator distributed with X is xterm, which
understands DEC VT and Tektronix graphics terminal protocols. The VT behavior that is emulated
includes cursor positioning, character effects, and reverse video, among others. In essence, an xterm is
a direct replacement for a hardware terminal.

xterm has a large resource configuration file located in /usr/lib/X11/app-defaults/XTerm that contains
configurable menus, fonts, colors, and actions. You may customize this file to alter the default behavior
of xterm on your system. These settings can also be overridden by resource settings contained in your
own .Xdefaults file, located in your home directory.

On the Exam

You should be familiar with at least one of the popular X terminal programs available on
your Linux system. Remember that some programs have system-wide configuration files
that can be used to fine-tune their behavior and appearance.

18.5.3 X Libraries

Just as many executable programs are dependent upon shared system libraries for their execution,
most X applications require a number of X-specific libraries. XFree86 comes bundled with the necessary
set of libraries for traditional X applications. However, many graphical programming projects are
created using toolkits whose libraries are not included in the XFree86 distribution. In these cases, you
need to install the required libraries before programs requiring them will compile or execute.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/18-5.htm (3 of 5) [3/9/2003 11:16:11]

InformIT Online Books > LPI Linux Certification in a Nutshell

For example, the GIMP Toolkit (GTK) is used to build much of the GNOME desktop environment. This
means that GTK must be installed on the system in order to run GNOME applications, including The
GIMP (http://www.gimp.org/).

Library dependency issues typically occur when you try new software. Either the compiler fails as you
attempt to build the program, or the loader fails when you try to run a precompiled dynamic binary. In
either case, you need to locate the correct version of the libraries and install them. It should be
relatively easy to find recent versions of the popular libraries in your distribution's package format by
visiting web sites of the library distributor or your Linux distribution.

To manually check for library dependencies, you may use the ldd utility, described fully in Section 14.4.

18.5.4 Remote X Clients

One of the fundamental design elements of the X Window System is that it is a network protocol, which
allows for displays to occur remotely across a network. Many sites employ high-powered systems for
computation and use desktop X servers (X terminals or Linux systems, for example) for display
rendering.

To send the output from an X application to a remote machine, you need to set the display

environment variable.[9] This variable contains a description of the output destination and has three
components:

[9] Many X programs also include a command-line option to select the
display.

[host]:display[.screen]

host

This part of the description specifies the remote hostname on the network. It can be any valid
hostname, fully qualified domain name, or IP address. host is optional; the local system is used

if the host is not specified.

display

This specifies which display the output should be directed toward. A single system can

manage many displays. Note that the colon is required even if the host is omitted.

screen

This optional parameter is used for multiheaded systems (i.e., systems with more than one
monitor) and specifies on which output screen the application will appear.

Setting display to "point to" a remote host display causes all subsequent X applications to be

displayed there. For example:

export DISPLAY=yourhost:0.0

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/18-5.htm (4 of 5) [3/9/2003 11:16:11]

http://www.gimp.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

xterm

In this example, the xterm is displayed on the first display on yourhost.[10]

[10] This example ignores X authentication issues.

18.5.4.1 Examples

The default display on the local host:

:0

The default display on a remote host:

yourhost:0

Display programs on the first screen of the second display found on the machine located at
192.168.1.2:

192.168.1.2:1.0

Display programs on the first screen of the third display on yourhost:

yourhost:2.0

On the Exam

You must be familiar with the display environment variable and how to use it to direct X

client applications to remote X servers.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/18-5.htm (5 of 5) [3/9/2003 11:16:11]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 19. Networking Fundamentals (Topic
1.12)

19.2 Objective 3: TCP/IP Troubleshooting and Configuration

Linux distributions offer various automation and startup techniques for networks, but most of the
essential commands and concepts are not distribution-dependent. The exam tests fundamental concepts
and their relationships to one another as well as to system problems. This Objective covers the
configuration of TCP/IP on common network interfaces such as Ethernet.

19.2.1 Network Interfaces

A computer must contain at least one network interface to be considered part of a network. The
network interface provides a communications link between the computer and external network
hardware. This could mean typical network adapters such as Ethernet or Token Ring, PPP dialup
connections, parallel ports, wireless, and other networking forms.

19.2.1.1 Configuration files

The following files contain important information about your system's network configuration:

/etc/hostname (or sometimes /etc/HOSTNAME)

This file contains the local assigned hostname for the system.

/etc/hosts

This file contains simple mappings between IP addresses and names and is used for name
resolution. For very small private networks, /etc/hosts may be sufficient for basic name
resolution. For example, this file associates the local address 192.168.1.30 with the system

smp and also with smp.mydomain.com :

127.0.0.1 localhost localhost.localdomain
192.168.1.1 gate
192.168.1.30 smp smp.mydomain.com

/etc/nsswitch.conf

This file controls the sources used by various system library lookup functions, such as name
resolution. It allows the administrator to configure the use of traditional local files (/etc/hosts,
/etc/passwd), an NIS server, or DNS. nsswitch.conf directly affects network configuration
(among other things) by controlling how hostnames and other network parameters are resolved.
For example, this fragment shows that local files are used for password, shadow password,
group, and hostname resolution; for hostnames, DNS is used if a search of local files doesn't
yield a result:

passwd: files nisplus nis

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (1 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

shadow: files nisplus nis
group: files nisplus nis
hosts: files dns nisplus nis

For more information, view the manpage with man 5 nsswitch. The nsswitch.conf file supersedes
host.conf.

/etc/host.conf

This file controls name resolution sources for pre-glibc2 systems. It should contain:

order hosts,bind
multi on

This configuration has the resolver checking /etc/hosts first for name resolution, then DNS. multi on

enables multiple IP addresses for hosts. Newer Linux system libraries use /etc/nsswitch.conf instead of
/etc/host.conf.

/etc/resolv.conf

This file controls the client-side portions of the DNS system, which is implemented in system
library functions used by all programs to resolve system names. In particular, /etc/resolv.conf
specifies the IP addresses of DNS servers. For example:

nameserver 192.168.1.5
nameserver 192.168.250.2

Additional parameters are also available. For more information, view the manpage with man 5
resolver.

/etc/networks

Like /etc/hosts, this file sets up equivalence between addresses and names, but here the
addresses represent entire networks (and thus must be valid network addresses, ending in 0).
The result is that you can use a symbolic name to refer to a network just as you would a specific
host. This may be convenient (though not required) in NFS or routing configuration, for
example, and will be shown in commands such as netstat. For example:

loopback 127.0.0.0
mylan 192.168.1.0

It's not unusual for /etc/networks to be left blank.

On the Exam

Be familiar with all the files listed in this section; each contains specific information
important for network setup. Watch for questions on /etc/host.conf, which is not used in
newer glibc2 libraries.

19.2.1.2 Configuration commands

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (2 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

The commands listed in this section are used to establish, monitor, and troubleshoot a network
configuration under Linux.

host

Syntax

host [options] host [server]

Description

Look up the system with IP address or name host on the DNS server.

Frequently used options

-l

List the entire domain, dumping all hosts registered on the DNS server (this can be very long).

-v

Set verbose mode to view output.

Example 1

$ host oreilly.com
oreilly.com has address 204.148.40.5

Example 2

$ host -v oreilly.com
Trying null domain
rcode = 0 (Success), ancount=1
The following answer is not authoritative:
The following answer is not verified as authentic by the server:
oreilly.com 17397 IN A 204.148.40.5
For authoritative answers, see:
oreilly.com 168597 IN NS AUTH03.NS.UU.NET
oreilly.com 168597 IN NS NS.oreilly.com
Additional information:
AUTH03.NS.UU.NET 168838 IN A 198.6.1.83
NS.oreilly.com 168597 IN A 204.148.40.4 $

See also the nslookup command in Section 20.5.1.3 in Chapter 20.

hostname, domainname, dnsdomainname

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (3 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

hostname [localname]
domainname [nisname]
dnsdomainname

Description

Set or display the current host, domain, or node name of the system. This is a single program with links
defining additional names. When called as hostname, the system's hostname is displayed. If localname
is provided, the hostname is set. domainname displays or sets the NIS domain name.
dnsdomainname displays the current DNS domain name but does not set it. See man 1 hostname
for full information.

ifconfig

Syntax

ifconfig interface parameters

Description

Configure network interfaces. ifconfig is used to create and configure interfaces and their parameters,
usually at boot time. Without parameters, the interface and its configuration are displayed. If interface
is also omitted, a list of all active interfaces and their configurations is displayed.

Frequently used parameters

address

The interface 's IP address.

netmask mask

The interface 's subnet mask.

up

Activate an interface (implied if address is specified).

down

Shut down the driver for the interface.

Example 1

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (4 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

Display all interfaces:

ifconfig
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255
 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1521805 errors:37 dropped:0
 overruns:0 frame:37
 TX packets:715468 errors:0 dropped:0 overruns:0
 carrier:0
 collisions:1955 txqueuelen:100
 Interrupt:10 Base address:0xef00

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:366567 errors:0 dropped:0 overruns:0
 frame:0
 TX packets:366567 errors:0 dropped:0 overruns:0
 carrier:0
 collisions:0 txqueuelen:0

Example 2

Shut down eth0:

ifconfig eth0 down
ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255
 Mask:255.255.255.0
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:1521901 errors:37 dropped:0
 overruns:0 frame:37
 TX packets:715476 errors:0 dropped:0 overruns:0
 carrier:0
 collisions:1955 txqueuelen:100
 Interrupt:10 Base address:0xef00

Note in the emphasized line the lack of the UP indicator, which is present in Example 1. The missing UP

indicates that the interface is down.

Example 3

Configure eth0 from scratch:

ifconfig eth0 192.168.1.100 netmask 255.255.255.0
 broadcast 192.168.1.255

netstat

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (5 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

Syntax

netstat [options]

Description

Depending on options, netstat displays network connections, routing tables, interface statistics,
masquerade connections, netlink messages, and multicast memberships. Much of this is beyond the
scope of the LPIC Level 1 exams, but you must be aware of the command and its basic use.

Frequently used options

-c

Continuous operation. This option yields a netstat display every second until interrupted with
Ctrl-C.

-i

Display a list of interfaces.

-n

Numeric mode. Display addresses instead of host, port, and usernames.

-p

Programs mode. Display the PID and process name.

-r

Routing mode. Display the routing table in the format of the route command.

-v

Verbose mode.

Example

Display the interfaces table and statistics (the example output is truncated):

netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK
eth0 1500 0 1518801 37 0 0 713297
lo 3924 0 365816 0 0 0 365816

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (6 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

ping

Syntax

ping [options] destination

Description

Send an ICMP ECHO_REQUEST datagram to destination, expecting an ICMP ECHO_RESPONSE. ping is

frequently used to test basic network connectivity.

Frequently used options

-c count

Send and receive count packets.

-q

Quiet output. Display only summary lines when ping starts and finishes.

route

Syntax

route [options]
route add [options and keywords] target
route del [options and keywords] target

Description

In the first form, display the IP routing table. In the second and third forms, respectively add or delete
routes to target from the table. target can be a numeric IP address, a resolvable name, or the keyword
default. The route program is typically used to establish static routes to specific networks or hosts
(such as the default gateway) after an interface is configured. On systems acting as routers, a
potentially complex routing scheme can be established initially, but this is beyond the scope of the LPIC
Level 1 exams.

Frequently used options and keywords

-v

Verbose output.

-h

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (7 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

Display a usage message.

-n

Numeric mode; don't resolve hostnames.

-net

Specify that target is a network. Mutually exclusive with -host.

-host

Specify that target is a single host. Mutually exclusive with -net.

-F

Display the kernel routing table (the default behavior without add or delete keywords).

-C

Display the kernel routing cache.

netmask mask

Specify the mask of the route to be added. Often, the netmask is not required because it can be
determined to be class A, B, or C, depending on the target address.

gw gateway

IP packets for target are routed through gateway, which must be reachable, probably through a
static route to gateway, which is already established.

When used to display routes, the following routing table columns are printed:

Destination

The destination network or host.

Gateway

The gateway address. If no gateway is set for the route, an asterisk (*) is displayed by default.

Genmask

The netmask for the destination. 255.255.255.255 is used for a host and 0.0.0.0 is used for the
default route.

Route status flags

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (8 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

U

Route is up.
H

Target is a host.
G

Use gateway.
R

Reinstate route for dynamic routing.
D

Dynamically installed by daemon or redirect.
M

Modified from routing daemon or redirect.
!

Reject route.

Metric

The distance in hops to the target.

Ref

Number of references to this route. This is displayed for compatibility with other route
commands but is not used in the Linux kernel.

Use

A count of lookups for the route. Depending on the use of -F and -C, the Use is either route
cache misses (-F) or hits (-C).

Iface

The interface to which packets for this route are sent.

Example 1

Display the current routing table for a workstation:

route
Kernel IP routing table
Destination Gateway Genmask Flags Met Ref Use Iface
192.168.1.30 * 255.255.255.255 UH 0 0 0 eth0
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
10.0.0.0 - 255.0.0.0 ! 0 - 0 -
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
default gate 0.0.0.0 UG 0 0 0 eth0

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (9 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

In this example, the route to the local host 192.168.1.30 uses interface eth0. Note the mask

255.255.255.255 is used for host routes. The route to the local subnet 192.168.1.0 (with

corresponding class C mask 255.255.255.0) is also through eth0. The route to 10.0.0.0 is rejected

as indicated by the ! flag. The class A loopback network route uses device lo. The last route shows the

default gateway route, which is used when no others match. This default uses eth0 to send data to

router gate. The mask 0.0.0.0 is used for the default route.

Example 2

Display the current routing cache; the Metric (M) and Reference (R) columns are abbreviated here:

route -C
Kernel IP routing cache
Source Destination Gateway Flg M R Use Iface
smp 192.168.1.255 192.168.1.255 bl 0 0 1 eth0
192.168.1.102 192.168.1.255 192.168.1.255 ibl 0 0 0 lo
192.168.1.102 smp smp il 0 0 1 lo
192.168.1.50 smp smp il 0 0 224 lo
smp 192.168.1.102 192.168.1.102 0 1 0 eth0
smp ns1.mynet.com gate 0 0 2 eth0
smp 192.168.1.50 192.168.1.50 0 1 0 eth0
localhost localhost localhost l 0 0 15 lo
ns1.mynet.com smp smp l 0 0 6 lo
smp ns1.mynet.com gate 0 0 6 eth0

Example 3

Add the default gateway 192.168.1.1 via eth0:

route add default gw 192.168.1.1 eth0

traceroute

Syntax

traceroute [options] destination

Description

Display the route that packets take to reach destination, showing intermediate gateways (routers).
There isn't a direct method to use to make this determination, so traceroute uses a trick to obtain as
much information as it can. By using the time-to-live field in the IP header, traceroute stimulates error
responses from gateways. The time-to-live field specifies the maximum number of gateway hops until
the packet should expire. That number is decremented at each gateway hop, with the result that all
packets will die at some point and not roam the Internet. To get the first gateway in the route,
traceroute sets the time-to-live parameter to 1. The first gateway in the route to destination
decrements the counter, and finding a result, reports an ICMP TIME_EXCEEDED message back to the

sending host. The second gateway is identified by setting the initial time-to-live value to 2 and so on.
This continues until a PORT_UNREACHABLE message is returned, indicating that the host has been

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (10 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

contacted. To account for the potential for multiple gateways at any one hop count, each probe is sent
three times.

The display consists of lines showing each gateway, numbered for the initial time-to-live value. If no
response is seen from a particular gateway, an asterisk is printed. This happens for gateways that don't
return "time exceeded" messages, or do return them but set a very low time-to-live on the response.
Transit times for each probe are also printed.

Frequently used options

-f ttl

Set the initial probe's time-to-live value to ttl, instead of 1.

-n

Display numeric addresses instead of names.

-v

Use verbose mode.

-w secs

Set the timeout on returned ICMP packets to secs, instead of 5.

Example

traceroute www.lpi.org
traceroute to www.lpi.org (209.167.177.93),
 30 hops max, 40 byte packets
 1 gate (192.168.1.1)
 3.181 ms 1.200 ms 1.104 ms
 2 209.125.145.1 (209.125.135.1)
 16.041 ms 15.149 ms 14.747 ms
 3 a1-9-1-0-1.a01.phl1.us.io.net (137.94.47.1)
 84.132 ms 133.937 ms 77.865 ms
 4 ge-6-0.r01.phlapa01.us.io.net (126.250.29.17)
 22.450 ms 16.114 ms 16.051 ms
 5 p4-6-0-0.r01.nycmny01.us.bb.verio.net (129.250.3.126)
 18.043 ms 18.485 ms 18.175 ms
 6 nyc1.uunet.verio.net (129.250.9.62)
 19.735 ms 21.135 ms 19.212 ms
 7 105.ATM3-0.XR1.NYC1.ALTER.NET (146.188.177.154)
 20.237 ms 18.515 ms 18.712 ms
 8 295.ATM6-0.XR1.NYC4.ALTER.NET (146.188.178.90)
 26.855 ms 29.540 ms 35.908 ms
 9 189.ATM8-0-0.GW5.NYC4.ALTER.NET (146.188.179.225)
 36.541 ms 36.127 ms 30.849 ms
10 224.ATM1-0-0.BB1.TOR2.UUNET.CA.ALTER.NET (137.39.75.26)
 58.823 ms 68.675 ms 62.522 ms
11 f0-0-0.bb2.tor2.uunet.ca (205.150.242.110)
 336.310 ms 174.557 ms 394.909 ms

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (11 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

12 209.167.167.118 (209.167.167.118)
 56.027 ms 58.555 ms 56.289 ms
13 209.167.177.90 (209.167.177.90)
 59.349 ms 57.409 ms 57.993 ms
14 new.lpi.org (209.167.177.93)
 57.021 ms 56.162 ms 58.809 ms

In this example, there are 13 hops to www.lpi.org, reached with a time-to-live value of 14. All three
probes of all time-to-live counts are successful.

Most of these commands will appear in system scripts used at boot and shutdown times. Such scripts
differ among various Linux distributions but are usually found somewhere under /etc, such as
/etc/rc.d/init.d or /etc/sysconfig. You should review the networking scripts on a working Linux system to
gain a perspective on how the various configuration commands are used together.

On the Exam

While the creation of complete network management scripts from scratch is beyond the LPIC
Level 1 exams, you must be familiar with these commands individually, their functions, how
they are used, as well as why they are used. For example, you must be familiar with route
and its use in establishing routes to the loopback device, the localhost, the gateway
machine, and the creation of the default gateway route. A general understanding of the
routing table display is also required. Questions may ask you to determine the cause of a
network problem based on the routing configuration (such as a missing default route).

19.2.1.3 Common manual network interface tasks

Network interfaces are established in the kernel at boot time through the probing of Ethernet hardware.
As a result, these interfaces always exist unless the hardware or kernel module is removed. Other types
of interfaces, such as PPP, are created by user programs. These interfaces are transient and exist only
when they are in use.

To list interface parameters, use ifconfig with the interface name:

ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:A0:24:D3:C7:21
 inet addr:192.168.1.30 Bcast:192.168.1.255
 Mask:255.255.255.0
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:1857128 errors:46 dropped:0
 overruns:0 frame:46
 TX packets:871709 errors:0 dropped:0
 overruns:0 carrier:0
 collisions:2557 txqueuelen:100
 Interrupt:10 Base address:0xef00

If you run ifconfig without any parameters, it displays all active interfaces, including the loopback
interface lo and perhaps a PPP interface if a modem is dialed into a service provider.

To shut down a network interface that is currently running, simply use ifconfig with the down
keyword:

ifconfig eth0 down

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (12 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

When the interface goes down, any routes associated with it are removed from the routing table. For a
typical system with a single Ethernet interface, this means that the routes to both the interface and the
default gateway will be lost. Therefore, to start a previously configured network interface, ifconfig is
used with up followed by the necessary route commands. For example:

ifconfig eth0 up
route add -host 192.168.1.30 eth0
route add default gw 192.168.1.1 eth0

To reconfigure interface parameters, follow those same procedures and include the changes. For
example, to change to a different IP address, the address is specified when bringing up the interface
and adding the interface route:

ifconfig eth0 down
ifconfig eth0 192.168.1.60 up
route add -host 192.168.1.60 eth0
route add default gw 192.168.1.1 eth0

Your distribution probably supplies scripts to handle some of these chores. For example, Red Hat
systems come with scripts like ifup, which handle all the details necessary to get an interface and its
routes up and running.

On the Exam

Be prepared to answer questions on the use of ifconfig and route for basic interface
manipulation. Also remember that scripts that use these commands, both manually and
automatically, are usually available at boot time.

19.2.2 DHCP

The Dynamic Host Configuration Protocol (DHCP)[6] is a protocol extension of the BOOTP protocol,
which provides automated IP address assignment (among other things) to client systems on a network.

It handles IP address allocation in one of two ways:[7]

[6] DHCP is a vendor-neutral protocol.

[7] If you read RFC 1531, you'll note that a third type of allocation, called
Automatic, is mentioned. For the purposes of this discussion, consider
Automatic and Manual to be equivalent methods.

Dynamic allocation

In this scheme, a DHCP server maintains a preset list of IP addresses designated by the system
administrator. IP addresses are assigned as clients request an address from the available
addresses in the pool. The address can be used, or leased, for a limited period of time. The
client must continually renegotiate the lease with the server to maintain use of the address
beyond the allotted period. When the lease expires, the IP address is placed back into the pool
for use by other requesting clients and a new IP address is assigned.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (13 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

Manual allocation

The system administrator may wish to designate specific IP addresses to specific network
interfaces (for example, to an Ethernet MAC address) while still using DHCP to deliver the
address to the client. This allows the convenience of automated address setup and assures the
same address each time.

DHCP can be configured to assign not only the IP address to the client but also such things as name
servers, gateways, and architecture-specific parameters. Here's an overview of how it works:

1. A DHCP client sends a broadcast message to the network in order to discover a DHCP server.

2. One or more DHCP servers respond to the request via their own broadcast messages, offering
an IP address to the client.

3. The client chooses one of the servers and broadcasts an acknowledgment, requesting the
chosen server's identity.

4. The selected server logs the connection with the client and responds with an acknowledgement
and possibly additional information. All of the other servers do nothing because the client
declined their offer.

19.2.2.1 Subnets and relays

Since DHCP communications are initiated using broadcasts, they are normally confined to a single
subnet. To accommodate DHCP clients and servers separated by one or more routers, a DHCP relay
system can be established on subnets without DHCP servers. A relay system listens for DHCP client
broadcasts, forwards them to a DHCP server on another subnet, and returns DHCP traffic back to the
client. This configuration can centralize DHCP management in a large routed environment.

19.2.2.2 Leases

As already mentioned, when a client receives a dynamically assigned IP address from a DHCP server,
the address is said to be leased for a finite duration. The length of a DHCP lease is configurable by the
system administrator and typically lasts for one or more days. Shorter leases allow for faster turnover of
addresses and are useful when the number of available addresses is small or when many transient
systems (such as laptops) are being served. Longer leases reduce DHCP activity, thus reducing
broadcast traffic on the network.

When a lease expires without being renegotiated by the client, it as assumed that the client system is
unavailable, and the address is put back into the free pool of addresses. A lease may also be terminated
by a client that no longer needs the IP address, in which case it is released. When this occurs, the DHCP
server immediately places the IP address back in the free pool.

19.2.2.3 dhcpd

The DHCP server process is called dhcpd. It is typically started at boot time and listens for incoming
DHCP request broadcasts. dhcpd can serve multiple subnets via multiple interfaces, serving a different
pool of IP addresses to each.

dhcpd is configured using the text configuration file /etc/dhcpd.conf, which contains one or more
subnet declarations. These are text lines of the following form:

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (14 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

subnet network-address netmask subnet-mask {
 parameter...
 parameter...
 ...
}

Each subnet declaration encloses parameters for each subnet between curly braces. Parameters include
one or more ranges of IP addresses to serve, lease times, and optional items such as gateways
(routers), DNS servers, and so forth. Each parameter line is terminated with a semicolon. For example:

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.200 192.168.1.204;
 default-lease-time 600;
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.25;
}

In this example, the private class C network 192.168.1.0 is served five IP addresses, 200 through

204. The default DHCP lease is 600 seconds (10 minutes). Options are also set for the subnet mask,
broadcast address, router (or gateway), and DNS server. For full information on dhcp.conf, see its
manpage.

The preceding option lines are not required to create a minimal DHCP setup that simply serves IP
addresses. Details on the daemon follow.

dhcpd

Syntax

dhcpd [options]

Description

Launch the DHCP server daemon. dhcpd requires that both its configuration file /etc/dhcpd.conf and its
lease log file /var/state/dhcp/dhcpd.leases (or similar) exist. The daemon puts itself in the background
and returns control to the calling shell.

Frequently used options

-cf config-file

Use config-file instead of the default /etc/dhcpd.conf.

-lf lease-file

Use lease-file instead of the default to store lease information.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (15 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

-q

Use quiet mode. This option suppresses the default copyright message, keeping log files a little
cleaner.

A full and detailed description of the configuration file syntax can be found in the dhcpd.conf manpage.
When dhcpd runs, it sends output -- including information on each transaction -- to syslog. For
example, this series of four log entries in /var/log/messages shows a successful exchange between
dhcpd and a requesting DHCP client:

Apr 24 02:27:00 rh62 dhcpd: DHCPDISCOVER
 from 00:60:97:93:f6:8a via eth0
Apr 24 02:27:00 rh62 dhcpd: DHCPOFFER
 on 192.168.1.200 to 00:60:97:93:f6:8a via eth0
Apr 24 02:27:01 rh62 dhcpd: DHCPREQUEST
 for 192.168.1.200 from 00:60:97:93:f6:8a via eth0
Apr 24 02:27:01 rh62 dhcpd: DHCPACK
on 192.168.1.200 to 00:60:97:93:f6:8a via eth0

On the Exam

You must be able to configure a basic DHCP server. You should understand the basic syntax
of the dhcpd.conf file and understand the sequence of events in a DHCP negotiation. You
may be asked to locate a DHCP configuration problem given a particular scenario.

The use of DHCP relay systems and the detailed configuration of dhcpd are beyond the
scope of Exam 102.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/19-2.htm (16 of 16) [3/9/2003 11:16:13]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 20. Networking Services (Topic 1.13)

20.5 Objective 5: Set Up and Configure Basic DNS Services

The Domain Name Service (DNS) is the distributed database of name-to-IP-address translations.
Technically, it isn't necessary to use host and domain names such as www.lpi.org, because it's the
actual IP address that the computer requires to establish communications. DNS was created to allow the
use of more convenient global domain names instead. For example, when a user enters a DNS name as
part of a URL in a browser, the name portion is sent to a DNS server to be resolved into an IP address.
Once the address is found, it is used to rewrite the URL and directly fetch the web page.

On the Exam

You must be familiar with the concept of name resolution on the Internet using DNS.

The server daemon that implements DNS is named, the name daemon , which is part of the Berkeley
Internet Name Daemon package (BIND). It is named's job to respond to requests from the resolver
and return an IP address.

20.5.1 The resolver

The code that resolves names to IP addresses using DNS for client programs is implemented in system
libraries collectively called the resolver. The resolver uses one of several means to determine an IP
address from a hostname or domain name:

Static local files

The local file /etc/hosts can contain name-to-address mapping for a few systems on a network.
However, for large enterprises, using static local files to manage IP address resolution is
problematic due to the frequent changes required in the data. Updating all of the client systems
would be impractical. This resolution method is sometimes referred to as the files method.

Network Information Service (NIS)

Some private networks use a shared information service that can include address resolution.
This is NIS, or a later version of it called NIS+, and is referred to as the nis method of

resolution. Both services are beyond the scope of the LPIC Level 1 exams.

Domain Name Service (DNS)

Because addresses and domains on the public Internet change frequently and are so numerous,
static local files can't handle resolution far outside the enterprise. As already mentioned, DNS is
a distributed database. That is, small portions of the DNS are managed by local authorities that
are responsible only for their particular slice of the system. As you'd expect, using DNS for
name resolution is called the dns method.

In most cases, /etc/hosts will be used for name resolution of the local host and perhaps a few other

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-5.htm (1 of 7) [3/9/2003 11:16:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

nearby systems. DNS, perhaps together with NIS in enterprise environments, will handle everything
else.

/etc/hosts and the other files used to configure the resolver are described in Section 19.2 but here's a
quick recap:

/etc/hosts

This file lists statically defined name-to-address translations.

/etc/nsswitch.conf (or /etc/host.conf on older Linux systems)

The "name service switch" file (nsswitch.conf) defines the order of name server methods to be
used in succession by the resolver (it can also control other things such as passwords, but those
don't apply here). Typically, this single entry is used to control name resolution:

hosts: files dns

This entry instructs the resolver to resolve names using /etc/hosts first, and if a match isn't found, to
make a DNS query.

/etc/resolv.conf

This file lists the IP addresses of name servers:

nameserver 127.0.0.1
nameserver 192.168.1.5
nameserver 192.168.250.2

On the Exam

Be sure that you understand how /etc/nsswitch controls the resolution order, that
/etc/resolv.conf identifies DNS servers by address, and that /etc/hosts is for local, statically
resolved addresses. Also remember that older versions of Linux used /etc/host.conf to
configure the resolution order instead of /etc/nsswitch.conf.

When the resolver determines that a DNS query is required, it sends a request containing a domain
name to one of the DNS servers listed in /etc/resolv.conf. The DNS server uses its own records to find
the domain or may resort to escalating to other DNS servers if the information isn't readily available.
When a result is found by the DNS servers, the IP address corresponding to the requested name is
returned to the originating client.

20.5.1.1 Domain registration

Domain names are assigned through a registration process with one of the domain name registrars
available on the Internet (http://www.internic.net/regist.html). Originally, a single authority managed
domain names. As commercial uses for domain names spread, additional entities sought the ability to
charge for the service of domain registration, and today there are a number of qualified registrars (a
search for "domain registrar" on one of the popular search engines will yield a daunting list). Once a
domain name is registered, it is listed in a worldwide database along with contact information for the
owners or their agents. The name servers that contain DNS information for the domain can go along

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-5.htm (2 of 7) [3/9/2003 11:16:15]

http://www.internic.net/regist.html

InformIT Online Books > LPI Linux Certification in a Nutshell

with this record.

Most registrants offer a domain name search service, so you can test desired domain names for
availability. If the domain name you're seeking is available, you can provide payment information to a
registrant and purchase rights to use the name, usually for one or two years.

20.5.1.2 Using named as a local caching-only name server

named is often configured to serve DNS requests even when it does not have local information for a
domain. Instead, it is used for its caching ability. When a client program requests an address resolution
from the local named , the daemon first checks its local cache. If it doesn't find the domain there, it
goes to other DNS servers as usual. If the cache does contain the domain, it is returned immediately to
the client from the cache, which speeds the resolution process.

Some Linux distributions come with a caching-only named configuration pre-installed. If this isn't the
case for you, simply follow the brief instructions in section 3 of the DNS HOWTO available from
http://www.linuxdoc.org/ (or in your /usr/doc/HOWTO directory). Part of the configuration includes
setting your local system as the default DNS server in /etc/resolv.conf :

nameserver 127.0.0.1

You can test the configuration using the nslookup utility:

nslookup
Default Server: localhost
Address: 127.0.0.1

> lpi.org
Server: localhost
Address: 127.0.0.1

Name: lpi.org
Address: 209.167.177.93

> lpi.org
Server: localhost
Address: 127.0.0.1

Non-authoritative answer:
Name: lpi.org
Address: 209.167.177.93

> exit

In this example, nslookup attaches to the default server localhost (127.0.0.1). In the first query

for lpi.org, the local named must find the address from external DNS servers. However, the result is

found in the cache on the second try, as indicated by the Non-authoritative answer response. If

this behavior isn't seen, there may be a problem with the named configuration in /etc/named.conf.

Some debugging information can be found in /var/log/messages. For example, the highlighted line in
this short excerpt shows an error in the configuration file:

smp named[216]: starting. named
smp named[216]: cache zone "" (IN) loaded (serial 0)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-5.htm (3 of 7) [3/9/2003 11:16:15]

http://www.linuxdoc.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

smp named[216]: Zone "0.0.127.in-addr.arpa"
 (file named.local): No default TTL
 set using SOA minimum instead
smp named[216]: master zone "0.0.127.in-addr.arpa"
 (IN) loaded (serial 1997022700)
smp named[216]: /etc/named.conf:18: can't redefine
channel 'default_syslog'
smp named[216]: listening on [127.0.0.1].53 (lo)
smp named[216]: listening on [192.168.1.30].53 (eth0)
smp named[216]: listening on [172.16.132.1].53 (vmnet1)
smp named[216]: Forwarding source address is [0.0.0.0].1855
smp named[216]: Ready to answer queries.

Note that configuration of a caching-only name server is beyond the scope of the LPIC Level 1 exams
but is a useful exercise in understanding the configuration of named.

20.5.1.3 DNS query utilities

A few tools exist to verify the operation of DNS name resolution. Here's a brief synopsis of nslookup
and host, both specifically mentioned in this Objective. The host utility does not offer interactive mode
but uses a syntax similar to nslookup.

nslookup

Syntax

nslookup host [dnsserver]

Description

Look up host, optionally specifying a particular dnsserver. nslookup can be used in either interactive or
noninteractive modes. If host is provided on the command line, noninteractive mode is used. In
interactive mode, a number of commands are available to control nslookup (the ls command to
nslookup is used in the example). See the manpage for more details.

Noninteractive example

In this example, nslookup provides immediate results because host, in this case oreillynet.com, is

provided on the command line:

nslookup oreillynet.com 192.168.1.2
Server: ns1.mydomain.com
Address: 192.168.1.2

Non-authoritative answer:
Name: oreillynet.com
Address: 208.201.239.36

Interactive example

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-5.htm (4 of 7) [3/9/2003 11:16:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

Here, nslookup is used interactively with DNS server 192.168.1.2 to find records from

yourdomain.com :

nslookup
Default Server: localhost
Address: 127.0.0.1

> server 192.168.1.2
Default Server: ns1.mydomain.com
Address: 192.168.1.2

> ls -a yourdomain.com
[ns1.mydomain.com]
$ORIGIN yourdomain.com.
ipass 2D IN CNAME snoopy
smtp 2D IN CNAME charlie
mail 2D IN CNAME charlie
pop 2D IN CNAME lucy
yourdomain 2D IN CNAME charlie
ww2 2D IN CNAME linus
www 2D IN CNAME sally
> exit

host

Syntax

host [options] host [dnsserver]

Description

Look up host, optionally specifying a particular dnsserver.

Frequently used options

-d

Enable debugging, showing network transactions in detail.

-v

Use verbose mode. Results are displayed in the official domain master file format.

Example

host -v oreillynet.com
Trying null domain
rcode = 0 (Success), ancount=1
The following answer is not authoritative:
oreillynet.com 1991 IN A 208.201.239.36

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-5.htm (5 of 7) [3/9/2003 11:16:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

For authoritative answers, see:
oreillynet.com 167591 IN NS NS1.SONIC.NET
oreillynet.com 167591 IN NS NS.SONGLINE.COM
Additional information:
NS1.SONIC.NET 167591 IN A 208.201.224.11
NS.SONGLINE.COM 167591 IN A 208.201.239.31

On the Exam

Detailed knowledge of nslookup and host are not required, but you must be familiar with
their purpose and basic operation.

Additional utilities, such as dig and dnsquery, also can help you with DNS queries, though they are not
mentioned in this exam Objective.

20.5.1.4 BIND Version 4 versus Version 8 configuration files

It's likely that a Linux administrator will maintain or install systems running BIND v4.x as well as the
newer v8.x. This LPI Objective requires an understanding of the differences between the configuration
files for these two BIND versions. Under BIND v4, the configuration file was called /etc/named.boot.
Example 20-5 shows a trivial BIND v4 configuration file.

Example 20-5. BIND v4 named.boot File

directory /var/named
cache . root.hints
primary 0.0.127.IN-ADDR.ARPA 127.0.0.zone
primary localhost localhost.zone

In BIND v8, the configuration file was renamed /etc/named.conf. Example 20-6 shows the equivalent
configuration in the BIND v8 format.

Example 20-6. BIND v8 named.conf File

// generated by named-bootconf.pl

options {
 directory "/var/named";
};

zone "." {
 type hint;
 file "root.hints";
};

zone "0.0.127.IN-ADDR.ARPA" {
 type master;
 file "127.0.0.zone";
};

zone "localhost" {
 type master;
 file "localhost.zone";
};

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-5.htm (6 of 7) [3/9/2003 11:16:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

};

As you can see, the information contained in the files is largely the same, but the v8 format contains a
more formal structure. For those upgrading to Version 8, the Perl script named-bootconf.pl is included in
the v8 package to upgrade named.boot to named.conf.

On the Exam

You should be generally familiar with the structural differences between the configuration
files for BIND v4 and v8. However, detailed named configuration is beyond the scope of the
LPIC Level 1 exams.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-5.htm (7 of 7) [3/9/2003 11:16:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 20. Networking Services (Topic 1.13)

20.2 Objective 2: Operate and Perform Basic Configuration of sendmail

The sendmail Mail Transfer Agent (or MTA) is responsible for handling a large portion of email sent on
the Internet and inside enterprises. It has broad capabilities to handle mail routing and can perform
complex rewriting of email addresses. It also has a long history of deployment on early networked
systems where I/O bottlenecks were significant. As a result of this history, sendmail's configuration file
was constructed over the years to be succinct and small, allowing it to be read quickly by the sendmail
daemon. Unfortunately, it can also appear to be somewhat cryptic to administrators, and detailed
configuration of sendmail has become known as somewhat of an art.

Configuration details of sendmail are nontrivial and beyond the scope of the LPIC Level 1 exams.
However, a basic sendmail configuration for a system in an established domain is relatively simple to
implement and is covered in Exam 102.

20.2.1 Configuring sendmail

The sendmail configuration file is /etc/sendmail.cf. This text file contains information to control the
processing of mail on your system, and it is read at every invocation of sendmail. Each line in the file
defines a configuration command, which begins with a short one- or two-letter command definition. The
file can also contain comments beginning with #. To simplify a basic setup, example sendmail.cf files

exist in most installations.

20.2.1.1 The smart host parameter

To enable mail transfer inside an established organization, you need to configure sendmail to transfer
messages to a smart host, most likely the main mail-processing system in your domain. For example, if
your enterprise's mail is handled by mail.yourdomain.com, you can configure your Linux systems to

transfer all mail to that computer for further processing. To make this change, simply use the DS

directive in sendmail.cf :

DSmail.yourdomain.com

20.2.2 Mail Aliases

Even on simple sendmail installations, it's useful to configure some of your system users to have their
mail redirected to another user. For example, artificial users such as nobody shouldn't receive mail, so

forwarding any mail received for that username to an administrator may help with problem solving. This
forwarding is accomplished using mail aliases. A mail alias is simply a mapping from a username to one
or more recipients in this form:

sysadmin: jdean, bsmith

Aliases are defined in /etc/aliases. Local mail intended for sysadmin is received by both jdean and

bsmith on the local system, as shown in Example 20-2.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-2.htm (1 of 3) [3/9/2003 11:16:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example 20-2. A Typical /etc/aliases File

Basic system aliases -- these MUST be present.
MAILER-DAEMON: postmaster
postmaster: root

General redirections for pseudo accounts.
bin: root
daemon: root
games: root
ingres: root
nobody: root
system: root
toor: root
uucp: root

Well-known aliases.
manager: root
dumper: root
operator: root
webmaster: root
abuse: root
spam: root

Trap decode to catch security attacks
decode: root

Person who should get root's mail
root: jdean

Departmental accounts
sales: bsmith
support: jdoe

sendmaildoesn't actually read the text aliases file, since it's not uncommon to find many aliases defined
there. Instead, it reads a compiled database, /etc/aliases.db, built from /etc/aliases. Therefore, the
database must be updated after any change is made to aliases, using the newaliases command;

newaliases has no options and must be run as root.

20.2.2.1 Forwarding mail from your account to another account

In addition to permanently established mail aliases, individual users have the capability to create their
own mail aliases on an as-needed basis by using a .forward file in the home directory. Mail is sent to the
alias by simply putting an email address on a line by itself in .forward.

On the Exam

Remember, the /etc/aliases and .forward files define mail aliases, and the newaliases
command must be executed after changing the aliases file to recreate the alias database.

20.2.3 Queued Mail

If sendmail cannot deliver mail immediately, such as on a system using an intermittent dialup
connection, mail is queued for later processing. To see the mail queue, use the mailq command, like
this:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-2.htm (2 of 3) [3/9/2003 11:16:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

$ mailq
Mail Queue (2 requests)
--Q-ID-- --Size-- -Priority- ---Q-Time--- -Sender/Recipient
WAA12372 3427 30043 Jul 4 2:19 bsmith
 (host map: lookup (mydom.com): deferred)
 jdean@mydom.com
WAA12384 313 30055 Jul 8 22:40 jdoe
 (host map: lookup (yourdom.com): deferred)
 you@yourdom.com

The first line printed for each message shows the internal identifier used on the local host for the
message, the size of the message in bytes, the date and time the message was accepted into the
queue, and the sender of the message. The second line shows the error message that caused this mail
to be retained in the queue. Subsequent lines show message recipients. In this example, two outbound
messages are queued because the DNS host lookups did not succeed.

On the Exam

Be aware that mail could be queued by sendmail and that mailq displays a list of those
messages.

20.2.4 Starting and Stopping sendmail

sendmail is typically managed through the runlevel system and the series of scripts and links in
/etc/rc.d. See Section 20.3 for details on starting and stopping services.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-2.htm (3 of 3) [3/9/2003 11:16:15]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 20. Networking Services (Topic 1.13)

20.3 Objective 3: Operate and Perform Basic Configuration of Apache

Apache is a phenomenal open source success story. Despite the availability of commercial web servers,
Apache continues to be the most popular web server on the Internet. It is also widely deployed inside
corporate networks for managing internal communications. Apache is known as an HTTP daemon, or
httpd .

Because it is so popular and likely to be found on just about every Linux server, understanding the
basics of Apache administration is required for Exam 102.

20.3.1 Configuring Apache

Apache is configured using one or more text files. The names and locations of Apache configuration files
vary by distribution. If you acquire Apache as source code, compile it, and install it, you get the default
setup as provided with the software. If you use the preconfigured Apache version that came with a
Linux distribution, things may be somewhat different. A typical Apache configuration is controlled by

three files[2] located in /etc/httpd/conf or /usr/local/apache/conf, depending on how Apache is
installed:

[2] To simplify editing during Apache configuration, some distributions
concatenate httpd.conf, srm.conf, and access.conf into a single httpd.conf
file.

httpd.conf

This file contains general attributes about the Apache server, such as the name of the
administrator, the username under which the server should execute, how logging is handled,
and others.

srm.conf

This file is used to specify some local parameters about your system and your web site. Included
here are definitions for the top of the HTML tree, where CGI programs are located, languages,
and more.

access.conf

This is a security definition file, which controls access to the server by client browsers.

Configuration is managed through configuration directives, one per line, in each of the files. The
configuration files can also contain comments, which begin with a #. Directives are in the form:

DirectiveName [argument-list]

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-3.htm (1 of 3) [3/9/2003 11:16:16]

InformIT Online Books > LPI Linux Certification in a Nutshell

For example, the DocumentRoot directive, which tells Apache where the top of the HTML tree is

located, might look like this:

DocumentRoot /home/httpd/html

Here are some basic Apache configuration directives:

ServerType

This directive can be either standalone or inetd. If you prefer to have inetd listen for

inbound HTTP requests, set this to inetd and configure inetd.conf as needed. For web servers

that see a significant amount of traffic, standalone is often specified, making Apache

independent of inetd, and running indefinitely.

Port

This parameter defines the port to which Apache listens. The default HTTP port is 80.

User and Group

These two parameters determine the name and group, respectively, that Apache executes
under. Typical examples are nobody, www, and httpd.

ServerAdmin

This directive specifies the email address of the administrator, such as root@localhost.

DocumentRoot

This directive tells Apache where to find the top of the HTML tree, such as /home/httpd/html.

UserDir

System users may use a standard personal subdirectory for their own HTML documents. This
directive determines the name of that directory. It is often set to public_html. Files for user
jdean would be accessed using a URL of http://localhost/~jdean.

Of course, there are many more, and additional syntax is used when necessary. In access.conf, groups
can be delineated by keywords that look like HTML. Directives in such a group affect only a subset of
the content served by Apache. For example, the following group of directives controls CGI execution in
/home/httpd/cgi-bin:

<Directory /home/httpd/cgi-bin>
AllowOverride None
Options ExecCGI
</Directory>

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-3.htm (2 of 3) [3/9/2003 11:16:16]

InformIT Online Books > LPI Linux Certification in a Nutshell

On the Exam

The LPI exam Objectives don't specify particular Apache configuration directives, but you
should be prepared to interpret various configuration examples and have knowledge of the
three configuration files and their likely locations.

20.3.2 Starting and Stopping Apache

Typically, Apache is managed through the runlevel system and the series of scripts and links in
/etc/rc.d. See Chapter 5 for information on starting and stopping services such as Apache.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-3.htm (3 of 3) [3/9/2003 11:16:16]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 20. Networking Services (Topic 1.13)

20.4 Objective 4: Properly Manage the NFS, SMB, and NMB Daemons

Networked file and printer sharing is among the fundamental services offered by Linux and other
operating systems. For years, the standard file sharing protocol for Unix has been the Network File
System (NFS). Originally developed by Sun Microsystems, NFS has been implemented on many
operating systems and is available in both commercial and free software implementations.

20.4.1 NFS

Any Linux system may act as both an NFS server and an NFS client. Clients use mount to attach
remote filesystems from NFS servers to their local filesystem. Once mounted, the directory hierarchy
mounted on the client appears to users as a local filesystem.

20.4.1.1 Exporting (sharing) local filesystems using NFS

To share a part of your system's filesystem, you must add a specification to /etc/exports. Each line in
this file describes a shared filesystem resource. The format of the file is:

directory system(options) system(options) ...

directory is a local filesystem directory, such as /home. Each of the space-separated systems

describes clients by name or address, and the associated options control access. If the system name
is omitted, no restriction is placed on which clients can connect. Typical options are:

ro

Export with read-only attribute.

rw

Export with read/write attribute, the default.

no_root_squash

Allow access by GID 0, root.

noaccess

Prohibit access below the named directory. This has the effect of pruning parts of other shared
directories, perhaps for specific systems.

Example 20-3 shows three shared directories from an /etc/exports file.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-4.htm (1 of 6) [3/9/2003 11:16:17]

InformIT Online Books > LPI Linux Certification in a Nutshell

Example 20-3. Sample /etc/exports File

/ orion(rw,no_root_squash)
/usr *.mydomain.com(ro) orion(rw)
/pub (ro,insecure,all_squash)
/pub/private factory*.mydomain.com(noaccess)

In this example, the entire filesystem (/) is shared with the system orion in read/write mode, and

root access is accepted. The /usr directory is shared as read-only (ro) to all systems in

mydomain.com and read/write (rw) to orion. The /pub directory is shared as read-only (ro) to any

system, but factory*.mydomain.com systems cannot look into /pub/private because the

noaccess option is used.

In order for new or revised entries to be incorporated in the NFS configuration, NFS daemons must be
reconfigured or restarted (see Section 20.4.1.3 later).

On the Exam

Detailed configuration of NFS exports is beyond the scope LPIC Level 1 exams, but you must
understand the contents of /etc/exports and how to incorporate them into a running system.

20.4.1.2 Mounting remote NFS filesystems

Mounting an NFS volume requires the use of a local mount point, a directory in the filesystem over
which the remote directory hierarchy will be placed. Once the directory exists, mount is used to create
the NFS connection from the local client to the remote server. The syntax is similar to that used for local
filesystems, with the addition of the NFS server name or address. For example, if server1 is offering

its /home directory via NFS, it could be mounted locally as follows:

mkdir /mnt/server1
mount -t nfs server1:/home /mnt/server1

In this example, the mount command uses the -t option to specify mount type nfs. The second

argument specifies the data source by concatenating the name of the NFS server (server1) with its

exported directory (/home). The final argument is the directory name that will serve as the local mount

point (/mnt/server1). After successfully mounting, /mnt/server1 appears to be a local filesystem.

This configuration could be incorporated into /etc/fstab for automated mounting at boot time with a line
like this:

server1:/home /mnt/server1 nfs defaults 0 0

In this example, defaults indicates that the filesystem should be mounted using the default options

(see the manpage for mount for defaults). The two zeros indicate that the filesystem should not be
backed up using dump and that it should not have a filesystem check at boot time.

20.4.1.3 Starting and stopping NFS

NFS consists of multiple daemons, which are typically managed through the runlevel system and the

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-4.htm (2 of 6) [3/9/2003 11:16:17]

InformIT Online Books > LPI Linux Certification in a Nutshell

series of scripts and links in /etc/rc.d. See Chapter 5, Objective 2," for details on starting and stopping
services such as the NFS family.

20.4.2 Samba and the SMB and NMB Daemons

Another extremely popular sharing mechanism is that used on Microsoft and IBM systems, called Server
Message Block (SMB). It is implemented as free software as a suite of programs collectively known as
Samba, which runs on a variety of operating systems including Linux. Samba consists of two daemons:

smbd

This daemon handles file and printer sharing, as well as authentication.

nmbd

This daemon implements the Windows Internet Name Service (WINS), which maps Windows
system names to IP addresses.

On the Exam

It is the goal of the Samba team to eventually implement all of the services found on
Windows servers, including Windows NT/2000 Domain Controller functionality. The LPI exam
deliberately avoids specifics in this area, leaving only basic Samba configuration for the test.

20.4.2.1 Getting started

Your Linux distribution probably came with a recent version of Samba. If you already have Samba
installed, setting up a basic configuration is easy. To check whether Samba is already installed on your
system, issue the following command on the command line:

smbd -h

If Samba is installed on your system, you should see a message similar to:

Usage: smbd [-D] [-p port] [-d debuglevel] [-l log basename]
 [-s services file]
Version 2.0.3
 -D become a daemon
 -p port listen on the specified port
 -d debuglevel set the debuglevel
 -l log basename. Basename for log/debug files
 -s services file. Filename of services file
 -P passive only
 -a append to log file (default)
 -o overwrite log file, don't append
 -i scope NetBIOS scope to use (default none)

If not, you can get source or binary distributions for Samba from http://www.samba.org/.

To begin using Samba, you must create its configuration file, smb.conf. Depending on how you acquired
Samba, the default location for this file may be /etc or /usr/local/samba. A basic smb.conf set up is

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-4.htm (3 of 6) [3/9/2003 11:16:17]

http://www.samba.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

shown in Example 20-4.

Example 20-4. Sample /etc/smb.conf File

[global]
workgroup = HOME
server string = LINUX
encrypt passwords = Yes
log file = /var/log/samba/log.%m
max log size = 50
socket options = TCP_NODELAY
printcap name = /etc/printcap
dns proxy = No
socket address = 192.168.1.30
wins support = no
wins server = 192.168.1.202
hosts allow = 192.168.1. 127.

[myshare]
path = /home/myshare
guest ok = yes
comment = My Shared Data
writeable = yes

[homes]
 comment = Home Directories
 browseable = no
 writable = yes

[printers]
 comment = All Printers
 printing = BSD
 print command = /usr/bin/lpr -r %s
 path = /var/spool/samba
 guest ok = yes
 printable = yes

This example configuration allows Samba to participate in an SMB workgroup called HOME with a system

name of LINUX. Hosts on the private network 192.168.1 as well as the loopback network (127.) are

allowed to access shared resources. The default sections of Samba's /etc/smb.conf file are as follows:

[global]

The global section defines items applying to the entire system, such as the workgroup and

system names.

[homes]

A section that defines users' home directories to be shared.

[printers]

This section shares all of the printers located in /etc/printcap (provided that a BSD-style printer

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-4.htm (4 of 6) [3/9/2003 11:16:17]

InformIT Online Books > LPI Linux Certification in a Nutshell

setup is in use).

Samba also has the following custom share section:

[myshare]

This defines a shared directory myshare. The name myshare will appear as shared resources to

clients. Users' home directories do not need to be explicitly shared if [homes] is used.

To use Samba, only the workgroup, server string, and a shared service such as [myshare] need to be

configured.

See Samba's manpage for more detailed information on the smb.conf file.

20.4.2.2 WINS and browsing

Windows networks allow users to view available shared resources through browsing, a process by which
one machine acts as a browser and is updated with information from other machines on the

network.[3] Client machines can then obtain lists of resources on the entire network from that single
browser machine. Samba's nmbd daemon implements WINS. To use Samba as a WINS client, you can
specify the address of the WINS server on your network using the wins server directive, as shown in

Example 20-2. Samba can also act as a WINS server itself, although this is beyond the scope of the
LPIC Level 1 exams.

[3] This browser has nothing to do with a web browser such as Netscape
Navigator. Instead, it is a service of the operating system, or in the case of
Samba, nmbd.

20.4.2.3 Using SWAT

Samba v2.0 and later comes with a web-based configuration tool called the Samba Web Administration
Tool, or SWAT. To use swat with inetd, use a line similar to this in /etc/inetd.conf:

swat stream tcp nowait.400 root /usr/sbin/swat swat

On the Exam

You should be generally familiar with the smb.conf file and with the concepts of shared
directories, shared printers, WINS, and SWAT. You don't need to worry about creating
custom Samba configurations for Exam 102.

You can also run the swat daemon manually. In either case, you must list its port, 901, in
/etc/services. Once swat is configured, you can point your browser to http://localhost:901 and log in
using the root password; swat offers a convenient series of forms that you can fill in using the browser
to configure Samba. When you commit changes, the smb.conf file is updated for your system.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-4.htm (5 of 6) [3/9/2003 11:16:17]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/20-4.htm (6 of 6) [3/9/2003 11:16:17]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 21. Security (Topic 1.14)

21.2 Objective 2: Set Up Host Security

Once a Linux system is installed and working, you may need to do nothing more to it. However, if you
have specific security needs or just want to be cautious, you'll want to implement additional security
measures on your system.

21.2.1 Shadow Passwords

The shadow password system enhances system security by removing encrypted passwords from the
publicly available /etc/passwd file and moving them to the secured /etc/shadow file. This prevents users
from running password-cracking programs against all of the encrypted passwords on your system.

Shadow passwords are covered in Section 7.1 which describes user management. In order to secure a
system, it is a good idea to implement shadow passwords if they aren't already. You can check this by
looking for /etc/shadow and verifying that the user list matches the one in /etc/passwd. If shadow
passwords are not enabled, you may enable them by entering the pwconv command with no
arguments. In the unlikely event that you use group passwords, you should also enable group
shadowing with grpconv.

21.2.2 inetd Minimalism

As mentioned in Section 20.1, inetd and /etc/inetd.conf (its configuration file) handle access to many
system services. Despite the use of TCP wrappers on these services, the best security can be achieved
by simply not offering services that aren't explicitly needed. Do this by removing or commenting out
lines in inetd.conf for services that are unnecessary. For example, to eliminate the talk and finger
servers from your system, comment their configuration lines:

#talk dgram udp wait root /usr/sbin/tcpd in.talkd
#ntalk dgram udp wait root /usr/sbin/tcpd in.ntalkd
#finger stream tcp nowait root /usr/sbin/tcpd in.fingerd

After making this change, you must instruct inetd to reconfigure itself. For example:

finger root@localhost
[localhost]
Login: root Name: root
Directory: /root Shell: /bin/bash
On since Sat Feb 12 00:11 (EST) on tty1
 2 hours 48 minutes idle (messages off)
On since Sat Feb 12 01:11 (EST) on ttyp1 (messages off)
No mail.
No Plan.
vi /etc/inetd.conf
killall -HUP inetd
finger root@localhost
[localhost]
finger: connect: Connection refused

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/21-2.htm (1 of 3) [3/9/2003 11:16:18]

InformIT Online Books > LPI Linux Certification in a Nutshell

In this example, finger is first demonstrated to work. Then inetd is edited to disable fingerd, inetd is
reconfigured, and finger stops working.

21.2.3 Logging and Superuser Mail

The syslog system is a constant companion to the security-conscious system administrator. Its logs are
necessary to review security breaches and to trace possible perpetrators. The configuration of syslog is
described in Section 7.3.

Some system responses to security problems can come in the form of email to user root. You may wish
to log in as root regularly to check its mail, but you can make such checking passive by instructing
sendmail to forward root 's mail to administrators. To do so, add a line like this to /etc/aliases:

root: jdoe, bsmith

Then execute the newaliases command to recompile the aliases database:

newaliases

Now all email for root goes to both jdoe and bsmith (but not root), who will presumably act on
important messages.

21.2.4 Watching for Security Announcements

Another important function of system administration is to keep on top of any new bugs and exploits in
the software on your system. There are countless sites on the web you can watch to find
announcements about such things, but two stand out and could be mentioned on Exam 102:

CERT

In 1988, a small Computer Emergency Response Team formed at the Software Engineering
Institute (SEI), a research and development center operated by Carnegie Mellon University. The
Defense Advanced Research Projects Agency (DARPA) originally funded its work. It is now
known as the CERT Coordination Center (CERT/CC), and "CERT" no longer officially stands for
anything. Funding comes from a mix of federal, civil, and private sources.

CERT/CC is made up of network security experts who provide 24-hour technical assistance for
responding to computer security incidents. It also analyzes product vulnerabilities, publishes
technical documents, and presents security-related training courses. CERT/CC may be found at:
http://www.cert.org/.Specifically, security advisories may be found at:
http://www.cert.org/advisories.

A periodic visit to the CERT/CC site can keep you informed of developments in computer
security and on problems found with various software packages.

BUGTRAQ

In 1993, a mailing list was created to publicly disclose demonstrated bugs in popular software,
with the intent of forcing responsible parties to fix the problems quickly. The list has grown into
a respected resource on security topics and has thousands of subscribers. To subscribe to the

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/21-2.htm (2 of 3) [3/9/2003 11:16:18]

http://www.cert.org/
http://www.cert.org/advisories

InformIT Online Books > LPI Linux Certification in a Nutshell

BUGTRAQ list, follow the instructions in the BUGTRAQ section of http://www.securityfocus.com/.
Archives of BUGTRAQ are also available there.

Attention to these and other resources can help you keep your system up-to-date. You'll be aware of
problems found in software you're using, and since updates are almost always produced quickly in
response to these notifications, you can upgrade, patch, or replace software as needed to keep your
systems secure.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/21-2.htm (3 of 3) [3/9/2003 11:16:18]

http://www.securityfocus.com/

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 21. Security (Topic 1.14)

21.3 Objective 3: Set Up User-Level Security

Even after you've taken the precautions listed earlier, the potential for valid users of your system to
cause problems by consuming resources still exists. Such a problem could be accidental, but if it
happens intentionally, it is called a Denial of Service (DoS) attack. For example, a user could create
processes that replicate themselves and never exit. Eventually your system would grind to a halt
because of thousands of processes, each trying to create more clones. You could also have a user begin
allocating memory until the system cannot cope with the requests. In either case, you'd probably need
to restart the system, if it responds at all. Clearly, prevention is more desirable for everyone.

You can prevent these scenarios without undue restrictions on users by using ulimit. This is a bash

built-in command[7] that sets maximums on various system resources for users. To enforce limits on
users, include ulimit commands in /etc/profile.

[7] tcsh has the limit command with similar functionality.

ulimit

Syntax

ulimit [options] [limit]

Description

The bash built-in ulimit provides control over resources available to the shell and its child processes.
For each resource, two limits may be set: a hard limit and a soft limit. Hard limits can be changed only
by the superuser; soft limits may be increased by users up to the value of the hard limit. Hard and soft
limits are specified with the special -H and -S options, respectively. Other options specify specific limits.
If an option is provided with a limit value, the corresponding limit is set. If limit is not provided, the
current limit is displayed. limit is either the special word unlimited or a numeric value.

Options

-H

Specify the hard limit. Unless -H is specified, the soft limit is assumed.

-S

Explicitly specify the soft limit. This is the default.

-a

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/21-3.htm (1 of 2) [3/9/2003 11:16:19]

InformIT Online Books > LPI Linux Certification in a Nutshell

Display all current limits. This option does not accept a limit value.

-f

The maximum size of files created by the shell. This is the default resource if options are not
specified.

-u

The maximum number of processes available to a single user.

-v

The maximum amount of virtual memory available to the shell.

Example 1

Display all limits for an account:

$ ulimit -a
core file size (blocks) 1000000
data seg size (kbytes) unlimited
file size (blocks) unlimited
max memory size (kbytes) unlimited
stack size (kbytes) 8192
cpu time (seconds) unlimited
max user processes 256
pipe size (512 bytes) 8
open files 1024
virtual memory (kbytes) 2105343

Example 2

Set the maximum number of processes to 128:

$ ulimit -Hu 128

Example 3

Set the maximum working number of processes to 128 but allow the user to raise his limit as high as
150:

$ ulimit -Su 128
$ ulimit -Hu 150

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/21-3.htm (2 of 2) [3/9/2003 11:16:19]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 18. X (Topic 2.10)

18.1 An Overview of X

X is implemented using a client/server model. X servers and clients can be located on the same
computer or separated across a network, so that computation is handled separately from display
rendering. While X servers manage hardware, they do not define the look of the display and they offer
no utilities to manipulate clients. The X server is responsible for rendering various shapes and colors on
screen. Examples of X Servers include:

● Software from XFree86, which controls your Linux PC's video card.

● XFree86 software on a separate networked system, displaying output from a program running
on your system.

● Other networked Unix systems running their own X server software.

● X implementations for other operating systems, such as Microsoft Windows.

● An X Terminal, which is a hardware device with no computational ability of its own, built solely
for display purposes.

X clients are user programs, such as spreadsheets or CAD tools, which display graphical output.
Examples of X clients are:

● A browser, such as Netscape Navigator.

● A mail program, such as Evolution or Kmail.

● Office applications, such as StarOffice, Gnumeric, or AbiWord.

● A terminal emulator, such as xterm, running within an X window.

A special client program called a window manager is responsible for these functions and provides
windows, window sizing, open and close buttons, and so forth. The window manager controls the other
clients running under an X server. Multiple window managers are available for XFree86, allowing you to
choose an interface style that suits your needs and personal taste.

A few complete graphical desktop environments are also available. These packages can include a
window manager and additional applications that work together to create a complete, unified working
environment. Most Linux distributions ship with either the KDE or GNOME, or both, along with a number
of standalone window managers. There is no standard window manager or environment for Linux -- the
selection is entirely up to the user.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/18-1.htm [3/9/2003 11:16:19]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 22. Exam 102 Review Questions and Exercises

This section presents review questions to highlight important concepts and hands-on exercises that you
can use to gain experience with the Topics covered on the LPI's Exam 102. The exercises can be
particularly useful if you're not accustomed to routine Linux administration and should help you better
prepare for the exam. To complete the exercises, you need a working Linux system that is not in
production use.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/22-0.htm [3/9/2003 11:16:19]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 22. Exam 102 Review Questions and
Exercises

22.1 Hardware and Architecture (Topic 1.1)

22.1.1 Review Questions

1. Describe the general functions of the PC BIOS and how its embedded routines are used by LILO.

2. Why is there a concern for Linux systems regarding disk cylinders beyond 1024?

3. Name three files in the /proc filesystem that contain information on resource allocations.

4. What is the general procedure to configure a SCSI controller to boot from a device at SCSI ID 3?

5. Why are you unlikely to be able to use a WinModem on a Linux system?

22.1.2 Exercises

22.1.2.1 Exercise 1.1-1: PC BIOS

1. Boot your PC and enter the BIOS configuration utility using the method defined for your system.
Locate the section that covers date and time. Is the programmed time correct?

2. Examine the enabled serial and parallel ports. Can you manually configure the interrupts and/or
I/O ports assigned to them?

3. If you have an IDE hard disk, examine the BIOS reported cylinder count. Does the disk have
more than 1024 cylinders? If so, what precautions are required when locating LILO and kernel
images on the disk?

22.1.2.2 Exercise 1.1-2: NIC

1. Examine your network interface. Is it a standalone card or is the interface included on your
system board? If it is a card, is it a PCI or ISA card? If it is an ISA card, determine what
resources it is using by examining jumpers or running its configuration utility.

2. Examine the kernel's interrupt assignments by executing cat /proc/interrupts. Is your NIC
correctly described? Are there any surprises in the list?

3. Repeat number 2 for /proc/dma and /proc/ioports.

22.1.2.3 Exercise 1.1-3: SCSI

1. If you have a SCSI controller, reboot your PC and enter the SCSI BIOS using the method
defined for your system. What device number is selected, if any, for boot? How are the

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-1.htm (1 of 2) [3/9/2003 11:16:20]

InformIT Online Books > LPI Linux Certification in a Nutshell

controller's onboard terminators configured? What data rate is the controller configured for?

22.1.2.4 Exercise 1.1-4: Modems

1. Using minicom, attach to your modem. For example:

minicom /dev/modem
Welcome to minicom 1.82

OPTIONS: History Buffer, F-key Macros,
Search History Buffer, I18n
Compiled on Mar 21 1999, 21:10:56.

Press CTRL-A Z for help on special keys

AT S7=45 S0=0 L1 V1 X4 &c1 E1 Q0
OK
AT
OK

1. Does the modem respond to the AT command with OK ? Try manually dialing your Internet

Service Provider and watch the output of the modem.

22.1.2.5 Exercise 1.1-5: Sound

1. Examine /etc/conf.modules or /etc/modules.conf. Do you see sound configuration parameters?
Try to determine what each parameter does and why it is in the file.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-1.htm (2 of 2) [3/9/2003 11:16:20]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 22. Exam 102 Review Questions and
Exercises

22.2 Linux Installation and Package Management (Topic 2.2)

22.2.1 Review Questions

1. Why is it beneficial to keep the root partition relatively small?

2. Why is the /var directory usually located in a partition of its own?

3. As a system administrator for a network with many workstations and a central NFS file server,
how can you safely share /usr with your users while still maintaining control of its contents?

4. Describe how a tarball is made and how its contents are extracted.

5. In general terms, describe the procedure used to compile and install free or open source
software from source code.

6. What is a shared library? How can you determine what library dependencies exist in a compiled
executable?

7. Briefly describe the major functional modes of RPM.

8. Why might a Debian Linux administrator use dpkg -iG instead of simply dpkg -i to install a
package?

22.2.2 Exercises

22.2.2.1 Exercise 2.2-1: Disk layout

1. In a shell, examine your disk layout using cfdisk or fdisk. For example:

fdisk
Command (m for help): p

Disk /dev/sda: 255 heads, 63 sectors, 1109 cylinders
Units = cylinders of 16065 * 512 bytes

 Device Boot Start End Blocks Id System
/dev/sda1 1 51 409626 83 Linux
/dev/sda2 52 1109 8498385 5 Extended
/dev/sda5 52 90 313236 83 Linux
/dev/sda6 91 97 56196 83 Linux
/dev/sda7 98 136 313236 83 Linux
/dev/sda8 137 264 1028128+ 83 Linux
/dev/sda9 265 519 2048256 83 Linux
/dev/sda10 520 532 104391 83 Linux

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-2.htm (1 of 3) [3/9/2003 11:16:21]

InformIT Online Books > LPI Linux Certification in a Nutshell

/dev/sda11 533 545 104391 82 Linux swap
/dev/sda12 546 1109 4530298+ 83 Linux

Is the entire disk consumed by the existing filesystems?

2. Examine how system directories are mapped to disk partitions on your system. Are /var and
/tmp in their own partitions? Is /boot in its own partition within cylinder 1024? Is the root
filesystem relatively small?

3. Where is LILO installed on your system? If it is installed in the boot sector, does your
configuration allow for multiple boot scenarios? If it is installed in the root partition, is it within
the first 1024 cylinders?

4. Locate a tarball (from freshmeat.net, for example), and install it on your system with the
following steps:

a. Unpack it using tar xzvf file.

b. Configure with ./configure.

c. Build the software using make as directed in the documentation.

d. Install the software using the instructions provided.

Were there any difficulties with this procedure?

5. Use ldd to examine library dependencies of executable programs on your system. For example:

ldd `which xterm`
 libXaw.so.7 => /usr/X11R6/lib/libXaw.so.7 (0x40019000)
 libXmu.so.6 => /usr/X11R6/lib/libXmu.so.6 (0x4006a000)
 libXt.so.6 => /usr/X11R6/lib/libXt.so.6 (0x4007e000)
 libSM.so.6 => /usr/X11R6/lib/libSM.so.6 (0x400c7000)
 libICE.so.6 => /usr/X11R6/lib/libICE.so.6 (0x400d0000)
 libXpm.so.4 => /usr/X11R6/lib/libXpm.so.4 (0x400e6000)
 libXext.so.6 => /usr/X11R6/lib/libXext.so.6 (0x400f4000)
 libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x40101000)
 libncurses.so.4 => /usr/lib/libncurses.so.4 (0x401c4000)
 libc.so.6 => /lib/libc.so.6 (0x40201000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

6. Using a system that utilizes dpkg, obtain a list of all packages installed under dpkg
management with dpkg -l | less. Find a package in the list that looks unfamiliar, and query
information about the package using dpkg -s pkg_name.

7. Using a system that utilizes RPM, obtain a list of all packages installed under RPM management
with rpm -qa | less. Find a package in the list that looks unfamiliar, and query information
about the package using rpm -qi pkg_name.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-2.htm (2 of 3) [3/9/2003 11:16:21]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-2.htm (3 of 3) [3/9/2003 11:16:21]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 22. Exam 102 Review Questions and
Exercises

22.3 Kernel (Topic 1.5)

22.3.1 Review Questions

1. What is the procedure for removing and installing modules in the running kernel? Why is this
procedure necessary?

2. Describe the differences between the insmod and modprobe commands.

3. Which file stores optional parameters used by kernel modules?

4. Describe the nature of a monolithic kernel and the consequences and/or advantages of using
one.

5. Name the major steps required to configure, build, and install a custom kernel and its modules.

22.3.2 Exercises

1. Using the procedures found in Chapter 15, as well as the kernel HOWTO, configure, build, and
install a custom kernel and modules. Boot the new kernel. Does your system behave normally?
Are you able to boot both your original kernel and the new one?

2. Using lsmod, examine the modules attached to your running kernel (presuming you're running
a recent, modular kernel, that is).

a. Try removing a noncritical module -- for example, rmmod sound. Did the command fail
because the module was in use?

b. Try inserting a module -- for example, modprobe fat, followed by lsmod. Did the
module get inserted correctly? Remove it with rmmod fat. Was the removal successful?

c. What is logged in /var/log/messages during these changes?

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/22-3.htm [3/9/2003 11:16:21]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 22. Exam 102 Review Questions and
Exercises

22.4 Text Editing, Processing, and Printing (Topic 1.7)

22.4.1 Review Questions

1. What is the difference between the commands :q and :q! when running vi?

2. What does it mean to put vi into command mode ?

3. What does lpd do to handle incoming print jobs destined for empty print queues?

4. Describe the kinds of information included in /etc/printcap.

5. What is the function of a print filter?

6. What does the -P option specify to the print commands?

7. When is it useful to pipe into the standard input of lpr instead of simply using a filename as an
argument?

8. How is the Ghostscript program used in printing to a non-PostScript printer?

9. What filter is used on a Linux system to print to remote printers on Windows clients?

22.4.2 Exercises

1. Use vi to create a text file. Enter insert mode with i and insert text. Quit insert mode with Esc
and move around using h, j, k, and l, then reenter insert mode and add more text. End the
session with ZZ. cat the file. Is it as expected?

2. On a system with an existing printer, examine /etc/printcap. Which print filter is used for the
printer? Which queue or queues are directed at the printer?

3. Check the printer status with lpq -Pprinter and lpc status. Print to the queue using lpr -
Pprinter file.

4. Examine /var/spool/lp for the spool directory of your print queue. Examine the files you find
there.

5. If APSfilter is not installed, install it and allow it to add new print queues. How are these
queues different from one another and from your default queue?

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-4.htm (1 of 2) [3/9/2003 11:16:22]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-4.htm (2 of 2) [3/9/2003 11:16:22]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 22. Exam 102 Review Questions and
Exercises

22.5 Shells, Scripting, Programming, and Compiling (Topic 1.9)

22.5.1 Review Questions

1. Name the two major shell variants found on Unix and Linux systems.

2. What characteristic of a bash variable changes when the variable is exported?

3. Describe the concept of shell aliases.

4. When is a shell function more suitable than a shell alias?

5. Describe the function of /etc/profile.

6. What must the author of a new script file do to the file's mode?

7. How does the shell determine what interpreter to execute when starting a script?

8. How can a shell script use return values of the commands it executes?

22.5.2 Exercises

1. Using bash, enter the export command and the set command. Which set of variables is a
subset of the other? What is the difference between the variables reported by export and those
reported by set? Finally, enter which export. Where is the export command located?

2. Examine /etc/profile. How is the default umask set? What customizations are done in the file for
system users?

3. Create a simple bash script using the #!/bin/bash syntax, set the executable mode bits, and

execute the shell. If it runs correctly, add errors to see the diagnostic messages. Have the script
report both exported and nonexported variables. Verify that the nonexported variables do not
survive the startup of the new shell.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/22-5.htm [3/9/2003 11:16:22]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 22. Exam 102 Review Questions and
Exercises

22.6 X (Topic 2.10)

22.6.1 Review Questions

1. When using XFree86 v3.3.x, what software installation may be required when changing to a
different video chipset, and why?

2. Describe how the location of fonts is conveyed to the XFree86 X server.

3. How is the use of a font server different from the use of a font path?

4. Which file controls access to xdm by remote X terminals?

5. Describe the function of xinit.

6. Compare and contrast a window manager, a desktop environment, and an X server.

7. Name the three components of the DISPLAY environment variable.

22.6.2 Exercises

1. From http://safari.informit.com/www.xfree86.org, obtain XFree86 in the precompiled binary
form for your system using the instructions found in Chapter 18. Start with the Xinstall.sh script
and run it with ./Xinstall.sh -check to determine which package to get.

2. Back up your old installation (/etc/X11 and /usr/X11R6). Install the new version using
Xinstall.sh as directed in the instructions accompanying the package.

3. Use xf86config to configure the new X server. Are you able to get an X display? Is the
resolution correct?

4. Try generating the X configuration using XF86Setup or xf86cfg (depending on the X version).
Is the program successful? Does it yield a working X configuration?

5. Obtain a new Type 1 font from the Internet (try a search at http://www.google.com/ or your
favorite search engine). Add the font to /usr/X11R6/lib/X11/fonts/local and use the mkfontdir
utility on that directory. Verify that the local font directory is in the font path. Restart X and use
xfontsel to view the new font. Was the font added correctly?

6. Configure xfs as described in Chapter 18, and remove the FontPath statements from

XF86Config, substituting unix/:-1. Start the font server and restart the X server. Using
xfontsel, are you able to verify the availability of the same fonts as were available before?

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-6.htm (1 of 2) [3/9/2003 11:16:23]

http://safari.informit.com/www.xfree86.org
http://www.google.com/

InformIT Online Books > LPI Linux Certification in a Nutshell

7. Start xdm on your system, and note that the system starts the X server and presents a login
prompt. If all works correctly, change the default runlevel to that which starts xdm and reboot.
Does the system now present a graphical login screen?

8. Examine the scripts and programs used on your system for starting X, beginning with startx.
Look for how the system uses files in the user's home directory to control GUI startup.

9. Examine your window manager configuration. Which window manager are you using? Is it part
of a desktop environment, such as KDE or GNOME? Determine where its menus are configured
and add an item or two to the menus.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-6.htm (2 of 2) [3/9/2003 11:16:23]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 22. Exam 102 Review Questions and
Exercises

22.7 Networking Fundamentals (Topic 1.12)

22.7.1 Review Questions

1. Describe how the subnet mask affects the maximum number of hosts that can be put on a
TCP/IP network.

2. Name the three default address classes and the subnet masks associated with them.

3. The UDP protocol is said to be connectionless. Describe this concept and its consequences on
applications that use UDP.

4. What user command is frequently used to send ICMP messages to remote hosts in order to
verify those hosts' functionality?

5. Describe the contents and use of /etc/hosts.

6. In what configuration file are DNS servers listed? What is intended if the local loopback address
is included there on a workstation?

7. Name two modes of the netstat command and the program's output in each case.

8. Describe why the route command is needed for a single interface on a nonrouting workstation.

9. How does traceroute determine the identities of intermediate gateways?

10. Describe the advantages and consequences of implementing DHCP.

11. What utility is used to configure and dial a modem prior to the creation of a PPP connection?

12. What are the four authentication modes commonly used during PPP negotiations?

22.7.2 Exercises

1. Examine your system's TCP/IP configuration using ifconfig eth0 or a similar command for your
network interface. Are you using DHCP? What type of subnet are you running with? Is it a Class
A, B, or C address? Are you using a private address? Experiment with taking the interface offline
using ifconfig eth0 down and ifconfig eth0 up.

2. Examine the contents of /etc/services.

3. Use the dig command to locate information from DNS servers about a domain name.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-7.htm (1 of 2) [3/9/2003 11:16:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

4. Examine your /etc/hosts file. How much name resolution is accomplished in this file manually?

5. Examine your /etc/resolv.conf file. How many DNS servers do you have available?

6. Execute netstat -r. How many routes are reported? What are the routes to the local network
and interface for?

7. Use traceroute to examine the route to a favorite web site.

8. If you are using DHCP, use pump -r to release your IP address, followed by pump -R and
pump -s. Does the system still function correctly on the network?

9. Using a standard modem (not a WinModem), use minicom to connect to the modem and verify
that it responds to the AT command.

10. Execute a manual PPP connection as described in Chapter 19. Does your modem successfully
connect to your Internet Service Provider? Examine /var/log/messages for information on the
PPP session.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-7.htm (2 of 2) [3/9/2003 11:16:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 22. Exam 102 Review Questions and
Exercises

22.8 Networking Services (Topic 1.13)

22.8.1 Review Questions

1. Describe the function of inetd and how it is configured.

2. Describe the TCP Wrappers security tool and how it can enhance security on a networked
system.

3. Describe the use of mail aliases and how to enable new aliases.

4. What files are used to configure the Apache web server?

5. How does the administrator share a directory using NFS?

6. How does the administrator mount a directory shared by a remote NFS server?

7. What is the function of nmbd?

8. Which file is used to configure smbd?

9. Describe the function and location of the resolver.

10. Name two programs that can be used to do queries against an NFS server.

11. Describe in general terms the main difference between BIND v4 and BIND v8 configuration files.

22.8.2 Exercises

1. Examine your inetd.conf. Are telnetd and ftpd enabled? If so, are TCP Wrappers (tcpd)
configured for them?

2. Enable TCP Wrappers and place ALL:ALL in /etc/hosts.deny, then attempt a Telnet session. Is

the inbound request ignored as expected?

3. Familiarize yourself with /etc/sendmail.cf and /etc/aliases. Run newaliases.

4. Familiarize yourself with Apache configuration files in /etc/httpd/html/*.conf (or your directory
location).

5. Examine your /etc/exports file, if it exists. Are you sharing NFS volumes?

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-8.htm (1 of 2) [3/9/2003 11:16:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

6. Examine your /etc/smb.conf file. Are you sharing Samba printers or volumes?

7. Examine your resolver configuration in /etc/resolv.conf, /etc/hosts.conf, and /etc/nsswitch.conf.
Is the local /etc/hosts file consulted prior to DNS servers?

8. By examining /etc/named.conf and noting format details, determine what general release of
BIND you are using.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/22-8.htm (2 of 2) [3/9/2003 11:16:24]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 22. Exam 102 Review Questions and
Exercises

22.9 Security (Topic 1.14)

22.9.1 Review Questions

1. What daemon is associated with the control files /etc/hosts.allow and /etc/hosts.deny.

2. In general terms, describe a method to locate SUID programs in the local filesystem. Why might
an administrator do this routinely?

3. What is the function of the md5sum utility?

4. Why might a user run SSH instead of Telnet?

5. Describe shadow passwords and the file where the passwords are stored.

22.9.2 Exercises

1. Use find as described in Chapter 21, to locate SUID files. Is the list larger than you expected?
Are the entries on your list justifiably SUID programs?

2. Use the md5sum utility on a binary program file and examine its output.

3. Using the instructions in Chapter 21 (or a package from your distribution), install SSH. Start
sshd and attempt to connect to your own system with ssh localhost. The connection should
proceed in a manner similar to a Telnet session.

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/22-9.htm [3/9/2003 11:16:25]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 23. Exam 102 Practice Test

Exam 102 consists of approximately 72 questions. Most are multiple-choice single-answer, a few are
multiple-choice multiple-answer, and the remainder are fill-in questions. No notes or other materials are
permitted, and you have 90 minutes to complete the exam. The answers are provided (Section 23.2).

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/23-0.htm [3/9/2003 11:16:25]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 23. Exam 102 Practice Test

23.2 Answers

1. e. With the top bit of the last byte set in the subnet mask (.128), we have 7 bits left. 27 is 128,
less the network address and broadcast address, leaving 126 addresses for hosts.

2. c. FTP clients use mget with wildcards.

3. d. Routes to the interface and the network are required to exchange information on the local
LAN. To act as an Internet workstation (i.e., using Netscape), a default gateway is also
necessary.

4. a, b, c, and e. XF86Config does not specify a window manager.

5. e. The -- purge option is a variant of -r, remove.

6. c. As defined in /etc/services, port 25 is the SMTP port, often monitored by sendmail.

7. c. The directive indicates that a font server should listen on its default port.

8. b. IP is the underlying datagram protocol.

9. a. The appropriate option is either -s or -- status.

10. d. A window manager is a client, controlled by the X server. Answers a and b are incorrect
because they imply that the X server originates the graphical output. Answers c and e are
common misconceptions.

11. b. The ifconfig command is used to configure and display interface information. ipconfig is a
Windows utility.

12. 3 and 4.

13. b and c.

14. d. PPP interfaces are not persistent. Instead, they are initialized when needed.

15. c. The DHCP client is called pump, after the lady's shoe of the same name. That's an extension
from a "boot" because DHCP is a descendant from bootp.

16. b. The spool directory directive looks like this:

sd=/var/spool/lpd/lp

17. b. The query mode is required, which implies -q. The -a option in query mode yields all

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/23-2.htm (1 of 4) [3/9/2003 11:16:26]

InformIT Online Books > LPI Linux Certification in a Nutshell

packages.

18. c. The hosts.deny and hosts.allow files contain configuration information for TCP Wrappers. The
files won't be used, however, unless tcpd is included in inetd.conf.

19. e.

20. c. Answer a attempts to mount the /proc filesystem. Answers b, d, and e have incorrect syntax.

21. c. Both Telnet and FTP are connection-oriented and use TCP for reliable connections.

22. a, b, and d.

23. b. Read/write access is available to everyone, including root.

24. d. NFS-mounted directories seamlessly blend into the local filesystem, requiring no special
syntax for access.

25. c. While both ICMP and UDP are connectionless, they are different protocols.

26. c. Provided that file is an RPM file, the -U indicates that an upgrade should occur. -h turns on
hash marks.

27. c. Because the program was statically linked using the -static option to gcc, there are no
library dependencies, and ldd will yield an error.

28. d. Linux has no control over the BIOS settings.

29. c. CHAP is one of the PPP authentication techniques that embeds its information inside the PPP
stream. It is an alternative to clear text passwords.

30. e. lilo must be run to rebuild the boot loader after a new kernel is installed.

31. The DNS daemon is named. It is included in a package called BIND.

32. d. The intent of the chat script is to prepare the modem with appropriate settings to establish a
PPP connection.

33. b. A print server translates formats, such as PostScript to PCL.

34. d. The presence of the localhost address 127.0.0.1 indicates that named is running. Since the
system is a workstation, it's safe to assume that it is not serving DNS to a wider community.

35. a. BIND v8 has a newer, more modular format, but the information is about the same.

36. /etc/sendmail.cf.

37. /etc/hosts.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/23-2.htm (2 of 4) [3/9/2003 11:16:26]

InformIT Online Books > LPI Linux Certification in a Nutshell

38. e. options lines in /etc/modules.conf or /etc/conf.modules configure kernel modules.

39. d. Xsession is the system-wide default application startup file.

40. e. lpc is the line printer control program.

41. a.

42. a and b. Both the second stage of lilo and the kernel should be kept within the 1024-cylinder
boundary.

43. c. Answer a is wrong because it installs modules before compiling them. Answers b and e are
wrong because they build the kernel after configuring. Answer d is backward.

44. c. tracert is a Windows utility with the same function as traceroute.

45. c.

46. d. X terminals use XDMCP to attach to xdm daemons.

47. c. The .tgz extension indicates that the file is a compressed tar archive. This requires the use of
the z option. x directs tar to extract. f directs tar to use the filename found next on the
command line.

48. b. An 8-bit SCSI bus has three address lines. 28 is 8, less the address of the controller, which
leaves 7 target addresses.

49. b.

50. a. Just as with any interface, routes must be added before communications can occur.

51. b. Apache uses httpd.conf, srm.conf, and access.conf. Some implementations may roll all of
these files into a single httpd.conf.

52. a. startx is included with XFree86 as a suggestion, and customization is encouraged.

53. b. The smbprint filter is provided by the Samba package for printing to Windows printers.

54. d. Use q for query mode. Use the l query option to list, and use the p query option to specify a
file rather than an installed RPM.

55. c.

56. b.

57. c. t is the option to list the contents of an archive.

58. c. The format is [host]:display [.screen]. The first display is :0; the second display is :1.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/23-2.htm (3 of 4) [3/9/2003 11:16:26]

InformIT Online Books > LPI Linux Certification in a Nutshell

59. e.

60. The file is /etc/profile.

61. a.

62. b. The .forward file is placed in the home directory containing a single line with the target email
address.

63. d. Zero exit values usually indicate success.

64. b. Instead of using set, the command should have been:

export myvar='World'

This gives the myvar variable to the new shell.

65. a. Without options, rpm won't overwrite an existing package installation.

66. e.

67. d.

68. b. Options -i (install) and -L (list installed files) are incompatible and don't make sense
together.

69. a. For security purposes, fingerd is usually disabled using a comment in /etc/inetd.conf.

70. e. The valid modes are Update (-U), Verify (-V), Erase (-e), and Query (-q).

71. a. ld.so.conf is the text file in which you add library directories. ld.so.cache is the binary index
resulting from ldconfig.

72. d. Quota files are stored on the volume they control.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/23-2.htm (4 of 4) [3/9/2003 11:16:26]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 23. Exam 102 Practice Test

23.1 Questions

1. How many hosts can exist on a subnet with mask 255.255.255.128? Select one.

a. 512

b. 256

c. 128

d. 127

e. 126

2. When running a text-mode FTP client, which command retrieves multiple files? Select one.

a. get *.txt

b. retrieve *.txt

c. mget *.txt

d. mretrieve *.txt

e. get -m *.txt

3. For an Internet workstation with a single network interface, what routes must be added to
interface eth0 after it is initialized? Select one.

a. None

b. Interface

c. Interface and default gateway

d. Interface, local network, and default gateway

4. Which of the following is true regarding the XF86Config file? Select all that apply.

a. Can set the screen resolution setting

b. Can set the bits-per-pixel (color depth) setting

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (1 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

c. Includes keyboard and mouse selections

d. Includes information on which window manager to run

e. Contains information on where to find fonts

5. What is the correct syntax to remove mypkg entirely from a Debian GNU/Linux system,
including configuration files? Select one.

a. dpkg -r mypkg

b. dpkg -- remove mypkg

c. dpkg -- kill mypkg

d. dpkg -R mypkg

e. dpkg -- purge mypkg

6. On a Linux server, what service is most likely "listening" on port 25? Select one.

a. Apache

b. News

c. Sendmail

d. Samba

e. FTP

7. Your system's FontPath directives include only one entry:

unix/:-1

Which of the following is true? Select one.

a. Error -1 has occurred during X startup

b. Only the default font will be available to applications

c. An X font server is to be used

d. An X font server failed to initialize

e. No fonts were found by XFree86 or by a font server

8. Which one of these protocols is used as a datagram delivery service by the remaining three?

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (2 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

Select one.

a. TCP

b. IP

c. UDP

d. ICMP

9. How do you use dpkg to verify the status of an installed package mypkg? Select one.

a. dpkg -s mypkg

b. dpkg -S mypkg

c. dpkg -stat mypkg

d. dpkg -- stat mypkg

e. dpkg -- Status mypkg

10. Which of the following statements is true about an X server? Select one.

a. An X server is a high-performance system offering graphical programs over a network.

b. An X server sends its graphical output to a window manager.

c. An X server is under the control of a window manager.

d. A window manager is under the control of an X server.

e. A window manager is also known as an X server.

11. Which command will display information about Ethernet interface eth0 ? Select one.

a. cat /proc/eth/0

b. ifconfig eth0

c. ipconfig eth0

d. ipconfig /dev/eth0

e. cat /etc/eth0.conf

12. What are the two interrupts usually associated with a PC's onboard serial interface?

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (3 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

13. Which of the following commands will cause a kernel module to be included in the running
kernel? Select all that apply.

a. modinsert

b. modprobe

c. insmod

d. prbmod

e. rmmod

14. When is the PPP interface ppp0 created? Select one.

a. At boot time by the kernel.

b. At installation time by mknod.

c. At dialup time by the chat script.

d. At dialup time by pppd.

e. When the modem powers up.

15. What program is run on a client machine to request an IP address from a DHCP server? Select
one.

a. dhcpd

b. inetd

c. pump

d. dhcp_client

e. bootp

16. What does the printcap entry sd indicate? Select one.

a. The system default printer

b. A printer's spool directory

c. A device file for the printer

d. A location where errors are stored

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (4 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

e. The printer driver

17. How can you query the RPM database for a list of all installed RPM packages? Select one.

a. rpm -q

b. rpm -qa

c. rpm -a

d. rpm -al

e. rpm -qal

18. Where are TCP Wrappers configured and where are they enabled?

a. Configured in tcpd.conf, enabled in tcpd.conf

b. Configured in inetd.conf, enabled in inetd.conf

c. Configured in hosts.deny and hosts.allow, enabled in inetd.conf

d. Configured in inetd.conf, enabled in hosts.deny and hosts.allow

19. Which pair of dpkg options are equivalent and what do they do? Select one.

a. -C and -- configure; they reconfigure an unpackaged package.

b. -C and -- clear-avail; they erase existing information about what packages are
available.

c. -A and -- audit; they update information about what packages are available.

d. -C and -- audit; they provide resource consumption information on installed packages.

e. -C and -- audit; they search for partially installed packages.

20. Which of the following is a valid entry in /etc/fstab for a remote NFS mount from server fs1?
Select one.

a. fs1:/proc /mnt/fs1 nfs defaults 9 9

b. /mnt/fs1 fs1:/proc nfs defaults 0 0

c. fs1:/home /mnt/fs1 nfs defaults 0 0

d. /mnt/fs1 fs1:/home nfs defaults 0 0

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (5 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

e. /home:fs1 /mnt/fs1 nfs defaults 0 0

21. Which network protocol is used by Telnet and FTP? Select one.

a. ICMP

b. UDP

c. TCP

d. DHCP

e. PPP

22. Which of the following programs will display DNS information for a host? Choose all that apply.

a. host

b. nslookup

c. nsstat

d. dig

e. ping

23. Consider the following entry in /etc/exports:

/home pickle(rw,no_root_squash)

How is this entry handled by the NFS daemon? Select one.

a. Directory /home is shared to everyone, without requiring passwords.

b. Directory /home is shared to everyone, requiring passwords.

c. Directory pickle is mounted on /home.

d. Root is not allowed access to the shared directory.

e. The mount attempt will fail.

24. From the user's point of view, which answer describes the appearance of an NFS mounted
directory? Select one.

a. A new device in /dev.

b. A new local volume accessed using a volume letter, such as D:.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (6 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

c. A new local volume accessed using the NFS server's name.

d. Part of the local filesystem, accessed using ordinary pathnames.

e. Part of the NFS server's filesystem, accessed using the NFS server's name.

25. Which of the following statements regarding the ICMP protocol is not true? Select one.

a. ICMP is connectionless.

b. ICMP provides network flow control.

c. ICMP is also known as UDP.

d. ICMP is used by ping.

26. What will happen when rpm is launched as follows? Select one.

rpm -Uvh file

a. The RPM file will be verified.

b. An installed package may be upgraded with the version in file, with verbose output.

c. An installed package may be upgraded with the version in file, with verbose output and
hash marks indicating progress.

d. An error will occur because a major mode is not specified.

e. An error will occur because no file options were specified.

27. Consider the following C program:

#include <stdio.h>
main() {
 printf("Hello, world\n");
}

and its compilation command:

gcc -o hw hw.c -static

Assuming that the compilation is successful, what will result from the following command?
Select one.

ldd ./hw

a. An error message indicating that an option is required.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (7 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

b. An error message indicating that hw is the wrong file type.

c. An error message indicating that hw is not dynamically linked.

d. A list of source and header files from which hw was compiled.

e. A list of shared libraries upon which hw is dependent.

28. How are changes to the system BIOS made? Select one.

a. Using linuxconf.

b. By manually editing text files.

c. Using the lilo command.

d. At boot time using system-specific menus.

e. At boot time using LILO commands.

29. What is CHAP? Select one.

a. The PPP chat script.

b. An authentication protocol using clear text.

c. An authentication protocol embedded in the PPP data stream.

d. The pppd configuration utility.

e. A modem communications protocol.

30. After a new kernel is compiled and copied correctly to the appropriate locations, what command
must be run to ensure that the new kernel boots properly? Select one.

a. make install

b. make config

c. make lilo

d. LILO

e. lilo

31. What server daemon resolves domain names to IP addresses for requesting hosts?

32. During the two-way communication that takes place during a chat script used to start PPP, what

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (8 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

is chat communicating with? Select one.

a. The pppd daemon.

b. The PPP server.

c. The kernel.

d. The modem.

e. The syslogd daemon.

33. What function does a print filter serve? Select one.

a. It collates output from multiple users.

b. It translates various data formats into a page description language.

c. It rejects print requests from unauthorized users.

d. It rejects print requests from unauthorized hosts.

e. It analyzes print data and directs print requests to the appropriate lpd.

34. Consider the following excerpt from file /etc/resolv.conf of a Linux workstation:

nameserver 127.0.0.1
nameserver 192.168.1.5
nameserver 192.168.250.2

What can be said about this configuration? Select one.

a. Two DNS servers on the public network are being used for resolution.

b. One DNS server on the local network is being used for resolution.

c. The configuration contains errors that will prevent the resolver from functioning.

d. A caching-only name server is running.

e. The resolver library will consult nameserver 192.168.250.2 first.

35. Which of the following is true regarding BIND v4 and BIND v8 configuration files? Select one.

a. The information is largely the same, but the syntax is different.

b. The syntax is largely the same, but the information is different.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (9 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

c. The two BIND versions use the same configuration file.

d. BIND v4 uses a binary configuration file instead of text.

e. BIND v8 uses a binary configuration file instead of text.

36. What file is used to configure sendmail ? Include the entire path.

37. Name the file that contains simple mappings between IP addresses and system names.

38. What is the meaning and location of the following kernel configuration file excerpt? Select one.

options opl3 io=0x388

a. Kernel option opl3 is set to use I/O port 0x388; /usr/src/linux/.config.

b. Kernel module option opl3 is set to use I/O port 0x388; /usr/src/linux/.config.

c. Kernel module opl3 is set to use I/O port 0x388; /usr/src/linux/.config.

d. Kernel option opl3 is set to use I/O port 0x388; /usr/src/linux/.config.

e. Kernel module opl3 is set to use I/O port 0x388; /etc/conf.modules or

/etc/modules.conf.

39. When using xdm, which of the following files can be used to start a window manager? Select
one.

a. Xservers

b. Xaccess

c. xdm-config

d. Xsession

e. Xsetup_0

40. What program can be used to interactively change the behavior of a print queue? Select one.

a. lpd

b. lpr

c. lpq

d. lprm

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (10 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

e. lpc

41. What command displays queued outgoing mail? Select one.

a. mailq

b. mailqueue

c. mqueue

d. mq

e. sendmail -mq

42. When partitioning a disk with more than 1024 cylinders, which of the following could affect the
system's ability to boot? Select all that apply.

a. Location of LILO on disk.

b. Location of /boot on disk.

c. Location of /var on disk.

d. Disk transfer rate.

e. Disk seek time.

43. Which of the following represents a valid sequence of commands to compile and install a new
kernel? Select one.

a. make modules_install; make modules; make bzImage; make clean; make dep

b. make dep; make clean; make bzImage; make config; make modules; make
modules_install

c. make config; make dep; make clean; make bzImage; make modules; make
modules_install

d. make config; make bzImage; make dep; make clean; make modules; make
modules_install

e. make dep; make clean; make bzImage; make modules; make modules_install;
make config

44. What program will display a list of each hop across the network to a specified destination? Select
one.

a. tracert

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (11 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

b. rttrace

c. traceroute

d. routetrace

e. init

45. Which of the following is a reasonable size for a swap partition for a Linux workstation with 128
MB RAM? Select one.

a. 1 KB

b. 0.5 MB

c. 100 MB

d. 5 GB

e. 10 GB

46. What is XDMCP, and how is it used? Select one.

a. An X utility, used to copy files between a host and an X terminal.

b. An X utility, used to configure XDM.

c. An X utility, used to configure IP addresses on X terminals on the network.

d. An X protocol, used to discover/listen for X terminals on the network.

e. An X protocol, used to exchange graphics information between X clients and X servers
over the network.

47. What is the first step in compiling software obtained in a compressed tar archive myapp.tgz ?
Select one.

a. make install=myapp.tgz

b. make myapp

c. tar xzf myapp.tgz

d. tar xvf myapp.tgz

e. tar cvf myapp.tgz

48. How many target devices can be added to an 8-bit SCSI-2 bus? Select one.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (12 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

a. 6

b. 7

c. 8

d. 15

e. 16

49. Which file holds configuration information used during the process of kernel compilation? Select
one.

a. /usr/src/linux/config

b. /usr/src/linux/.config

c. /usr/src/linux/kernel.conf

d. /etc/kernel.conf

e. /etc/sysconfig/kernel.conf

50. After a PPP connection is established and authenticated, what needs to be done before the
interface can be used? Select one.

a. Add a route to ppp0.

b. Enable ppp0.

c. ifup ppp0.

d. Run pppd.

e. Turn on the modem.

51. Which of the following is not the name of an Apache configuration file? Select one.

a. httpd.conf

b. html.conf

c. srm.conf

d. access.conf

52. What is the startx command? Select one.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (13 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

a. A script included with XFree86 to make startup user friendly.

b. A script used to start xdm.

c. A compiled binary program that directly launches the X server.

d. A configuration file created by X configuration tools such as XF86Config.

e. A script originated by Linux distributors to tailor X startup to their particular X
implementation.

53. Which statement is true regarding the configuration of a printer on a remote Windows machine?
Select one.

a. It can be configured like a TCP/IP network-attached printer.

b. The input filter must be set to smbprint.

c. The Windows printer must contain PostScript capability.

d. The rp directive must be used in the printcap file.

e. Linux can't print to Windows printers.

54. How can you obtain a list of files contained in an .rpm file? Select one.

a. rpm -q file

b. rpm -i file

c. rpm -ql file

d. rpm -qlp file

e. rpm -qal file

55. What types of files are located in the directory tree specified by the Apache DocumentRoot

configuration directive? Select one.

a. Apache documentation files.

b. Apache configuration files.

c. Web site HTML files.

d. Web site configuration files.

e. Apache startup and shutdown commands.

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (14 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

56. How can root change the attributes of file myfile so that its owner is user1 and its group is
group1 ? Select one.

a. chgrp user1.group1 myfile

b. chown user1.group1 myfile

c. chmod user1.group1 myfile

d. chage user1.group1 myfile

e. chattr user1.group1 myfile

57. Which of the following commands will display a listing of files contained in a tar archive tape in
/dev/st0 ? Select one.

a. tar cf /dev/st0

b. tar xf /dev/st0

c. tar tf /dev/st0

d. tar -zf /dev/st0

e. tar -zcvf /dev/st0

58. Which of the following accurately describes the contents of the xdisp:1.0 DISPLAY environment

variable? Select one.

a. System xdisp is to send X programs to the first display of the local X server.

b. System xdisp is to receive X programs on the first display of its X server.

c. System xdisp is to receive X programs on the second display of its X server.

d. Local program xdisp is to use the second display of the local X server.

e. Local program xdisp is to use the second display of any available X terminal.

59. Which file contains information on the I/O port assignments in use? Select one.

a. /dev/ioports

b. /etc/ioports

c. /etc/sysconfig/ioports

d. /etc/proc/ioports

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (15 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

e. /proc/ioports

60. What is the system-wide bash configuration file called? Include the entire path.

61. What happens when ldconfig is executed? Select one.

a. The binary index file of library locations is rebuilt.

b. The text index file of library locations is rebuilt.

c. make is run to rebuild libraries whose source code has changed.

d. The disk is scanned for libraries to include in the index.

e. Nothing, unless libraries have been recompiled since ldconfig was last run.

62. How can a nonprivileged user configure sendmail to forward mail to another account? Select
one.

a. He can add a new entry in /etc/aliases.

b. He can create a .forward file containing the new address.

c. He can create an .alias file containing the new address.

d. He can create a sendmail.cf file containing the new address.

e. He cannot forward mail without assistance from the administrator.

63. How does a process indicate to the controlling shell that it has exited with an error condition?
Select one.

a. It prints an error message to stderr.

b. It prints an error message to stdout.

c. It sets an exit code with a zero value.

d. It sets an exit code with a nonzero value.

e. It causes a segmentation fault.

64. Consider the following trivial script called myscript:

#!/bin/bash
echo "Hello"
echo $myvar

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (16 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

Also consider this command sequence and result:

set myvar='World'
./myscript
Hello

The script ran without error but didn't echo World. Why not? Select one.

a. The syntax of the set command is incorrect.

b. The script executes in a new shell, and myvar wasn't exported.

c. The #!/bin/bash syntax is incorrect.

d. The $myvar syntax is incorrect.

e. The script is sourced by the current shell, and myvar is available only to new shells.

65. Why might an administrator use the -- force option for rpm? Select one.

a. To overwrite a previously installed package.

b. To overwrite a Debian package.

c. To prevent confirmation messages.

d. To force the deletion of installed packages.

e. To force the deletion of package dependencies.

66. Which of the following commands cannot be used to exit from vi when in command mode?
Select one.

a. ZZ

b. :x

c. :q

d. :q!

e. :bye

67. What does this short configuration file excerpt tell the Samba daemon? Select one.

[home]
 path = /home
 guest ok = yes
 writable = yes

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (17 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

a. The location of the Samba software is rooted at /home.

b. A printer called home uses /home as a spool directory.

c. A share called home is located on /home and is writable by authenticated users.

d. A share called home is located on /home and is writable by anyone.

e. A share called home on remote system guest will be mounted at /home.

68. Which is not a valid dpkg installation command? Select one.

a. dpkg -i package_file

b. dpkg -iL package_file

c. dpkg -iR package_dir

d. dpkg -iG package_file

e. dpkg -iE package_file

69. How can the finger daemon be enabled? Select one.

a. Uncomment the in.fingerd line in /etc/inetd.conf.

b. Use cron to run fingerd once per minute.

c. Include fingerd in the TCP Wrappers configuration.

d. Remove fingerd from hosts.deny.

e. Add fingerd to hosts.allow.

70. Which of the following is not a major rpm mode option? Select one.

a. -U

b. -V

c. -e

d. -q

e. -v

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (18 of 19) [3/9/2003 11:16:32]

InformIT Online Books > LPI Linux Certification in a Nutshell

71. Which of the following is the text file that contains directories where the dynamic linker should
look for libraries? Select one.

a. ld.so.conf

b. conf.ld.so

c. ld.so.cache

d. so.config

e. configld

72. Where is quota information for users of volume /home stored? Select one.

a. /etc/sysconfig/quota/quota.home.user

b. /etc/quota/quota.home.user

c. /home/quota.home.user

d. /home/quota.user

e. /home/quota.home.user

file:///C|/Arquivos%20de%20programas/eDonkey20...x%20Certification%20in%20a%20Nutshell/23-1.htm (19 of 19) [3/9/2003 11:16:32]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Part II: General Linux Exam 102

Chapter 24. Exam 102 Highlighter's Index

Section 24.1. Hardware and Architecture

Section 24.2. Linux Installation and Package Management

Section 24.3. Kernel

Section 24.4. Text-Editing, Processing, and Printing

Section 24.5. Shells, Scripting, Programming, and Compiling

Section 24.6. X

Section 24.7. Networking Fundamentals

Section 24.8. Networking Services

Section 24.9. Security

file:///C|/Arquivos%20de%20programas/eDonkey2000/in...0Linux%20Certification%20in%20a%20Nutshell/24-0.htm [3/9/2003 11:16:32]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 24. Exam 102 Highlighter's Index

24.1 Hardware and Architecture

24.1.1 Objective 1: Configure Fundamental System Hardware

24.1.1.1 PC BIOS

● The BIOS is the PC's firmware.

● The BIOS sets date and time for onboard clock, storage device configuration, and so on via
menus.

24.1.1.2 Resource assignments

● Interrupts (IRQs) allow peripherals to interrupt the CPU.

● I/O addresses are locations in the microprocessor's memory map for hardware devices.

● DMA allows certain devices to work directly with memory, freeing the microprocessor (see Table
24-1).

Table 24-1. Some Common Device Settings

Device I/O Address IRQ DMA

ttyS0 (COM1) 3f8 4 NA

ttyS1 (COM2) 2f8 3 NA

ttyS2 (COM3) 3e8 4 NA

ttyS3 (COM4) 2e8 3 NA

lp0 (LPT1) 378-37f 7 NA

lp1 (LPT2) 278-27f 5 NA

fd0, fd1 (floppies 1 and 2) 3f0-3f7 6 2

fd2, fd3 (floppies 3 and 4) 370-377 10 3

24.1.1.3 1024-cylinder limit

● LILO and the kernel image should be kept within the first 1024 cylinders on hard disks.

24.1.2 Objective 2: Set Up SCSI and NIC Devices

24.1.2.1 NICs

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-1.htm (1 of 3) [3/9/2003 11:16:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

● NICs have been configured using hardware jumpers, nonvolatile memory, and automated
means.

● The proc filesystem includes information on interrupts, I/O ports, and DMA in /proc/interrupts,
/proc/ioports, and /proc/dma.

24.1.2.2 SCSI

● The Small Computer System Interface (SCSI) defines a bus for multiple storage devices.

● SCSI capabilities range from 5 MBps to 80 MBps and higher for the newest types.

● 8-bit SCSI offers up to seven devices plus the controller on a single bus.

● 16-bit SCSI offers up to 15 devices plus the controller on a single bus.

● Each device on the bus has a unique SCSI ID, 0-7 or 0-15. Controllers often default to address
7.

● Linux device files for SCSI disks are typically /dev/sda, /dev/sdb, and so forth.

● Linux device files for SCSI tape drives are typically /dev/st0, /dev/st1, and so on.

● SCSI buses must be terminated on both ends. Many SCSI devices include internal terminators to
eliminate the need for external terminators.

● PC SCSI adapters have their own BIOS, where the default boot device, bus speed, and onboard
termination settings can be made.

24.1.3 Objective 3: Configure Modems and Sound Cards

24.1.3.1 Modems

● Modems are serial devices. Some are external and are attached to a serial port. Others are
installed in a computer and include serial port electronics onboard.

● Some modems are cost-reduced by implementing portions of their functionality in Windows
software libraries. These so-called "WinModems" often aren't compatible with Linux without add-
on drivers.

24.1.3.2 Sound devices

● Sound is well-supported under Linux.

● pnpdump output is stored for use at boot time by isapnp, which does plug-n-play
configuration.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-1.htm (2 of 3) [3/9/2003 11:16:33]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-1.htm (3 of 3) [3/9/2003 11:16:33]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 24. Exam 102 Highlighter's Index

24.2 Linux Installation and Package Management

24.2.1 Objective 1: Design a Hard Disk Layout

24.2.1.1 Guidelines

● Keep / small by distributing larger parts of the directory tree to other filesystems.

● Separate a small /boot partition below cylinder 1024 for kernels.

● Separate /var into its own partition to prevent runaway logs from filling /.

● Separate /tmp.

● Separate /usr if it is to be shared read-only among other systems via NFS.

● Set swap size to be about the size of main memory.

24.2.2 Objective 2: Install a Boot Manager

● LILO is a popular Linux boot loader.

● LILO consists of the lilo command, which installs the boot loader, and the boot loader itself.

● LILO is configured using /etc/lilo.conf.

24.2.3 Objective 3: Make and Install Programs from Source

● Software often comes in a tarball, a compressed tar archive file.

● Larger source code packages include a configure script to verify that everything is in order to
compile the software.

● make is then used to build the software.

● make is also often used to install the software into directories such as /usr/local/bin.

24.2.4 Objective 4: Manage Shared Libraries

● System libraries provide many of the functions required by a program.

● A program that contains executable code from libraries is statically linked, because it stands
alone and contains all necessary code to execute.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-2.htm (1 of 2) [3/9/2003 11:16:34]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Since static linking leads to larger executable files and more resource consumption, system
libraries can be shared among many executing programs at the same time.

● A program that contains references to external, shared libraries is dynamically linked at runtime
by the dynamic linker, ld.so.

● New locations for shared libraries can be added to the LD_LIBRARY_PATH variable. As an

alternative, the locations can be added to /etc/ld.so.conf, which lists library file directories. This
file is translated into the binary index /etc/ld.so.cache using ldconfig.

24.2.5 Objective 5: Use Debian Package Management

● dpkg automates the installation and maintenance of software packages.

● dpkg has a number of options.

24.2.6 Objective 6: Use Red Hat Package Manager (RPM)

● RPM automates the installation and maintenance of software packages.

● Package dependencies are handled automatically.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-2.htm (2 of 2) [3/9/2003 11:16:34]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 24. Exam 102 Highlighter's Index

24.3 Kernel

24.3.1 Objective 1: Manage Kernel Modules at Runtime

● The Linux kernel is modular, and device driver software is inserted into the running kernel as
needed.

● Module files are objects, stored under /lib/modules.

● Kernel modules can be managed using:

lsmod

List modules.
insmod

Insert a module into the kernel.
rmmod

Remove a module from the kernel.
modinfo

Get information about a module.
modprobe

Insert modules along with their prerequisites.

● Modules are configured in /etc/conf.modules or /etc/modules.conf.

● modprobe determines module dependencies using a file called modules.dep. This file is usually
created at boot time using depmod.

24.3.2 Objective 2: Reconfigure, Build, and Install a Custom Kernel and Modules

● To build a kernel, you need the compiler, assembler, linker, make, kernel source, and kernel
headers.

● These are typical kernel compilation steps, done in /usr/src/linux:

1. Make a configuration using make oldconfig (existing setup), make config (basic
interactive text program), make menuconfig (interactive text menu program), or
make xconfig (graphical program). Each method creates the .config file containing
kernel options.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-3.htm (1 of 2) [3/9/2003 11:16:34]

InformIT Online Books > LPI Linux Certification in a Nutshell

2. Modify EXTRAVERSION in Makefile, if desired.

3. Build dependencies using make dep.

4. Clean old results with make clean.

5. Create the kernel with make bzImage.

6. Create modules with make modules.

7. Install the modules with make modules_install.

8. Copy the new image to /boot.

9. Update /etc/lilo.conf for the new image.

10. Update the boot loader by running the lilo command.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-3.htm (2 of 2) [3/9/2003 11:16:34]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 24. Exam 102 Highlighter's Index

24.4 Text-Editing, Processing, and Printing

24.4.1 Objective 1: Perform Basic File-Editing Operations Using vi

● Start vi with vi file1 file2. See Table 24-2.

Table 24-2. Basic vi Editing Commands

Command Description

ZZ Write the file contents (if changed) and quit.

:x Write the file contents (if changed) and quit (the ex equivalent of ZZ).

:q Quit without saving changes.

:q! Quit without saving changes and without confirmation.

:n
Next file. When multiple files are specified for editing, this command loads the
next file.

Esc (the Escape key) Exit insert mode and put the editor back into command mode.

h Left one character.

j Down one line.

k Up one line.

l (ell) Right one character.

0 (zero) Beginning of the current line.

^ First non-whitespace character on the current line.

$ End of the current line.

H Top of the screen.

L Bottom of the screen.

G End-of-file.

Ctrl-F Down one screen.

Ctrl-B Up one screen.

i Enter insert mode to place text before the cursor.

a
Enter insert mode to place text after the cursor (append). This is necessary at
the ends of lines.

C Delete to end-of-line and enter insert mode.

R
Enter replace mode (a variant of insert mode) and overwrite existing
characters.

dm
Delete a text block defined by a movement command m relative to the location
where the command started.

dd Delete the entire current line.

D Delete to end-of-line (same as d$)

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-4.htm (1 of 4) [3/9/2003 11:16:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

ym
Yank (copy) a text block defined by a movement command m relative to the
location where the command started.

yy Yank the entire current line.

P Paste text on a line before the cursor.

p Paste text on a line after the cursor.

/pattern Search forward for pattern.

?pattern Search backward for pattern.

n Repeat the last search.

N Repeat the last search in the opposite direction.

24.4.2 Objective 2: Manage Printers and Print Queues

● Printers are assigned to queues, which are managed by lpd , the print daemon. lpd listens for
inbound print requests, forking a copy of itself for each active print queue.

● lpr submits jobs to print queues.

● lpq queries and displays queue status.

● lprm allows jobs to be removed from print queues.

● lpc allows root to administer queues; it has both interactive and command-line forms.

● filters translate data formats into a printer definition language.

● Spool directories hold spooled job data.

24.4.3 Objective 3: Print Files

● Files are printed with the lpr command:

lpr /etc/lilo.conf
man -t 5 myfile.txt | lpr -Pqueue2

24.4.4 Objective 4: Install and Configure Local and Remote Printers

24.4.4.1 /etc/printcap

● New printer definitions are added to /etc/printcap:

lp|ljet:\
 :sd=/var/spool/lpd/lp:\
 :mx#0:\
 :sh:\
 :lp=/dev/lp0:\
 :if=/var/spool/lpd/lp/filter:
 :lf=/var/spool/lpd/lp/log:

The lines in this example are defined as follows:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-4.htm (2 of 4) [3/9/2003 11:16:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

lp|ljet:\

This parameter defines two alternate names for the printer, lp or ljet.
sd=spool_directory

This parameter specifies the spool directory, under /var/spool/lpd.
mx=max_size

The maximum size of a print job in blocks. Setting this to #0 indicates no limit.

sh

Suppress header pages. Placing this attribute in printcap sets it, eliminating the headers.
lp=printer_device

The local printer device, such as a parallel port.
if=input_filter

The input filter to be used. See Section 24.4.4.2 for additional information.

lf=log_file

The file where error messages are logged.

24.4.4.2 Filters

● APSfilter is implemented as executable scripts. Installation configures /etc/printcap
automatically. Multiple queues may be defined to give the user access to specific printer
capabilities.

● Magicfilter is a binary program; installation does not automatically create print queues.

24.4.4.3 Remote queues and Samba printers

● Printing on a remote system or network printer is done through a local queue. /etc/printcap for
the local queue looks something like this:

rlp:\
 :sd=/var/spool/lpd/rlp:\
 :rm=lphost:\
 :rp=rlp:\
 :mx#0:\
 :sh:\
 :if=/usr/local/bin/magicfilter:

● Printing to Windows printers is similar and uses the smbprint filter:

winpr:\
 :sd=/var/spool/lpd/winpr:\
 :mx#0:\
 :sh:\

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-4.htm (3 of 4) [3/9/2003 11:16:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

 :if=/usr/bin/smbprint:

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-4.htm (4 of 4) [3/9/2003 11:16:35]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 24. Exam 102 Highlighter's Index

24.5 Shells, Scripting, Programming, and Compiling

24.5.1 Objective 1: Customize and Use the Shell Environment

● A shell presents an interactive Textual User Interface, an operating environment, a facility for
launching programs, and a programming language.

● Shells can generally be divided into those derived from the Bourne shell, sh (including bash),
and the C-shells, such as tcsh.

● Shells are distinct from the kernel and run as user programs.

● Shells can be customized by manipulating variables.

● Shells use configuration files at startup.

● Shells pass environment variables to child processes, including other shells.

24.5.1.1 bash

● bash is a descendant of sh.

● Shell variables are known only to the local shell and are not passed on to other processes.

● Environment variables are passed on to other processes.

● A shell variable is made an environment variable when it is exported.

● This sets a shell variable:

PI=3.14

● This turns it into an environment variable:

export PI

● This definition does both at the same time:

export PI=3.14

● Shell aliases conveniently create new commands or modify existing commands:

alias more='less'

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-5.htm (1 of 3) [3/9/2003 11:16:36]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Functions are defined for and called in scripts. This line creates a function named lsps:

lsps () { ls -l; ps; }

● bash configuration files control the shell's behavior. Table 24-3 contains a list of these files.

Table 24-3. Bash Configuration Files

File Description

/etc/profile The system-wide initialization file; executed when you log in.

/etc/bashrc
Another system-wide initialization file; may be executed by a user's .bashrc for each
bash shell launched.

~/.bash_profile If this file exists, it is executed automatically after /etc/profile when you log in.

~/.bash_login If .bash_profile doesn't exist, this file is executed automatically when you log in.

~/.profile
If neither .bash_profile nor .bash_login exists, this file is executed automatically when
you log in.

~/.bashrc This file is executed automatically when bash starts.

~/.bash_logout This file is executed automatically when you log out.

~/.inputrc
This file contains optional key bindings and variables that affect how bash responds to
your keystrokes.

24.5.2 Objective 2: Customize or Write Simple Scripts

● Scripts are executable text files containing commands.

● Scripts must have appropriate execution bits set in the mode.

● Some scripts define the interpreter using the #!/bin/bash syntax on the first line.

24.5.2.1 Environment

● A script that starts using #!/bin/bash operates in a new invocation of the shell. This shell first

executes standard system and user startup scripts. It also inherits exported variables from the
parent shell.

● Like binary programs, scripts can offer a return value after execution.

● Scripts use file tests to examine and check for specific information on files.

● Scripts can use command substitution to utilize the result of an external command.

● Scripts often send email to notify administrators of errors or status.

● Refer to Chapter 17 for details on bash commands.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-5.htm (2 of 3) [3/9/2003 11:16:36]

InformIT Online Books > LPI Linux Certification in a Nutshell

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-5.htm (3 of 3) [3/9/2003 11:16:36]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 24. Exam 102 Highlighter's Index

24.6 X

● X is a client-server GUI system. XFree86 is the X implementation used for Linux.

● An X server is software or hardware that renders graphical output on a display device.

● An X client is software whose output is displayed by an X server and is usually managed by a
window manager.

● An X window manager is a client that applies frames and controls to other client windows.

24.6.1 Objective 1: Install and Configure XFree86

24.6.1.1 Selecting and configuring an X server

● XFree86 configuration depends on the software version, the video chipset in use, and the
monitor's capabilities.

● XFree86 can be installed from Linux distribution packages (.rpm, .deb), precompiled binaries, or
compiled from source.

● Configuration of XFree86 is done in the XF86Config file.

● XF86Config contains sections that define input devices, monitors, graphics modes, and so on.

● XF86Config files differ between XFree86 Versions 3.x and 4.x.

24.6.1.2 X fonts

● The X server uses X fonts to satisfy font requests from X clients.

● Fonts are enumerated either through a static list presented in /etc/X11/XF86Config or through a
font server such as xfs.

● xfs is configured using its configuration file, /etc/X11/fs/config.

24.6.1.3 .Xresources

● X resource settings in the .Xresources file control client program parameters. For example, this
line defines a black background for an xterm:

xterm*background: Black

24.6.2 Objective 2: Set Up xdm

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-6.htm (1 of 3) [3/9/2003 11:16:37]

InformIT Online Books > LPI Linux Certification in a Nutshell

● xdm, the X Display Manager, handles X sessions on physical displays both locally and across the
network.

● xdm handles authentication.

● xdm is configured by a series of files in /etc/X11/xdm.

● xdm is typically started automatically in runlevel 5 by making the appropriate settings in
/etc/inittab.

● xdm may be personalized by changing the resources in /etc/X11/xdm/ Xresources.

● Command-line options for the X server can be added to the /etc/X11/xdm/Xservers file.

24.6.2.1 X stations

● X stations, also known as X terminals, are low-cost hardware systems that implement an X
server and display.

● xdm can listen for inbound connection requests from X terminals using the xdmcp protocol.

● Specific access rules for X terminals to the xdm daemon can be configured in
/etc/X11/xdm/Xaccess.

24.6.3 Objective 3: Identify and Terminate Runaway X Applications

● X applications can occasionally become unresponsive or remain running after the X server is
terminated.

● Use the top utility to identify processes.

● Use kill or killall to terminate processes.

● If the X server is unresponsive, use Ctrl-Alt-F2 to switch to another console, and kill offending
processes.

24.6.4 Objective 4: Install and Customize a Window Manager

● An X server doesn't supply a working user environment.

● Starting X usually involves launching not only the X server but also a window manager and
other clients.

● A default window manager, such as the basic twm, is started by a combination of the startx
script and xinit.

● xinit also calls scripts that include a window manager and default clients.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-6.htm (2 of 3) [3/9/2003 11:16:37]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Default system X configuration can be overridden by files in the user's home directory.

24.6.4.1 Window managers

● Each window manager and desktop environment has its own style of configuration.

● twm uses .twmrc in the user's home directory. If that file doesn't exist, it uses the systemwide
/etc/X11/twm/system.twmrc.

● Window manager configuration files can contain font and color selections, bindings between
actions (such as mouse clicks) and responses, and menu definitions.

24.6.4.2 xterm

● A terminal emulator is a program that offers a command-line interface in a GUI window.

● xterm is the standard terminal emulator; there are many others.

● xterm can be configured in /usr/lib/X11/app-defaults/XTerm.

24.6.4.3 X libraries

● X applications are dependent upon shared X libraries.

● Various graphical toolkits such as GTK or Qt can be used to develop X client applications.

● Software that depends on a particular library will not run unless that library is installed.

● You can determine which libraries an executable requires with ldd .

24.6.4.4 Remote X clients

● X clients can be displayed on remote X servers.

● The DISPLAY environment variable is used to indicate the destination for X client displays.

● DISPLAY has the format [host]:display[. screen] where host is a remote hostname or IP

address, display is the display target (starting with 0), and screen is the screen to use on

multiheaded displays.

● DISPLAY must be exported.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-6.htm (3 of 3) [3/9/2003 11:16:37]

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 24. Exam 102 Highlighter's Index

24.7 Networking Fundamentals

24.7.1 Objective 1: Fundamentals of TCP/IP

24.7.1.1 Addressing and masks

● An address mask separates the network portion from the host portion of the 32-bit IP address.

● Class A addresses have 8 bits of network address and 24 bits of host address.

● Class B addresses have 16 bits of network address and 16 bits of host address.

● Class C addresses have 24 bits of network address and 8 bits of host address.

● Subnets can be defined using the defined "class" schemes or using a locally defined split of
network/host bits.

● The all-zero and all-ones addresses are reserved on all subnets for the network and broadcast
addresses, respectively. This implies that the maximum number of hosts on a network with n
bits in the host portion of the address is 2n-2. For example, a Class C network has 8 bits in the
host portion. Therefore, it can have a maximum of 28-2=254 hosts.

24.7.1.2 Protocols

TCP/IP is a name representing a larger suite of network protocols. Some network protocols maintain a
constant connection while others do not.

IP

The Internet Protocolis the fundamental building block of the Internet. It is used by other
protocols.

ICMP

This connectionless messaging protocol uses IP. It is used for flow control, detection of
unreachable destinations, redirecting routes, and checking remote hosts (the ping utility).

UDP

The User Datagram Protocol is a connectionless transport agent. It is used by applications such
as DNS and NFS.

TCP

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-7.htm (1 of 4) [3/9/2003 11:16:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

The Tranmission Control Protocol is a connection-oriented transport agent. It is used by
applications such as FTP and Telnet.

PPP

The Point-to-Point Protocol is used over serial lines, including modems.

24.7.1.3 TCP/IP services

● Inbound network requests to a host include a port number. Common port numbers are listed in
Table 24-4.

Table 24-4. Common Port Assignments

Port Number Assigned Use Description

20 FTP data

When an FTP session is opened, the binary or ASCII data flow to
the server is conducted using port 20, while control information
flows on port 21. During use, both ports are managed by an ftp
daemon, such as wu-ftpd or PROftpd.

21 FTP control

23 Telnet server
Inbound Telnet requests are sent to server port 23 and processed
by telnetd.

25 SMTP server
This port is used by mail transfer agents (MTAs), such as
sendmail.

53 DNS server This port is used by the Domain Name System server, named.

67 BOOTP/DHCP server
This port is used by BOOTP or the more commonly used DHCP
server.

68 BOOTP/DHCP client This port is used by the client side for BOOTP/DHCP.

80 HTTP server
Web servers, such as Apache (httpd), usually listen in on this
port.

110 POP3
The Post Office Protocol (POP) is used by mail client programs to
transfer mail from a server.

119 NNTP server This port is used by news servers for USENET news.

139 NetBIOS This port is reserved for Microsoft's LAN network manager.

143 IMAP An alternate to POP3, IMAP is another type of mail server.

161 SNMP
Agents running on monitored systems use this port for access to
the Simple Network Management Protocol.

● Ports are assigned to specific programs. Definitions are stored in /etc/services.

● Ports 1-1023 are privileged ports, owned by superuser processes.

24.7.1.4 TCP/IP utilities

● ftp implements the File Transfer Protocol client for the exchange of files to and from remote
hosts.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-7.htm (2 of 4) [3/9/2003 11:16:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

● The telnet client program implements a Telnet session to a remote host.

● ping sends ICMP echo requests to a remote host to verify functionality.

● dig obtains information from DNS servers.

● traceroute attempts to display the route over which packets must travel to a remote host.

● fwhois queries a whois database to determine the owner of a domain or IP address.

24.7.2 Objective 3: TCP/IP Troubleshooting and Configuration

24.7.2.1 Network interfaces

● Interfaces are configured through a number of configuration files.

● /etc/hostname contains the assigned hostname for the system.

● /etc/hosts contains static mappings between IP addresses and names.

● /etc/nsswitch.conf directs system library functions to specific name server methods such as local
files, DNS, and NIS.

● /etc/host.conf controls name resolution for older libraries.

● /etc/host.conf is only rarely used and is replaced by /etc/nsswitch.conf.

● /etc/resolv.conf contains information to direct the resolver to DNS servers.

● /etc/networks sets up equivalence between addresses and names for entire networks.

● The host command returns DNS information.

● The hostname, domainname, and dnsdomainname commands set or display the current
host, domain, or node name.

● The ifconfig command configures network interfaces. It is used to create and configure
interface parameters, usually at boot time. Parameters include the IP address and subnet mask.

● The netstat command displays network connections, routing tables, interface statistics,
masquerade connections, and multicast memberships.

● The route command displays the routing table and can add or delete routes from the table.

24.7.2.2 DHCP

● DHCP is the Dynamic Host Configuration Protocol. It is used to assign an IP address and other
information to a client system.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-7.htm (3 of 4) [3/9/2003 11:16:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

● The DHCP server is dhcpd.

● A DHCP server offers an address for a finite amount of time known as a lease.

24.7.3 Objective 4: Configure and Use PPP

● PPP is used to make a network connection over a serial interface. This could be a direct cable or
modem connection.

● PPP is a peer protocol; there are no clients or servers.

● pppd is the PPP daemon, called when a PPP interface is needed. It uses a chat script to send
configuration commands to a modem prior to dialing.

● Basic authentication for PPP can be done in clear text via the chat script. However, the PAP,
CHAP, and MSCHAP methods encode their authentication information into the PPP data stream.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-7.htm (4 of 4) [3/9/2003 11:16:38]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 24. Exam 102 Highlighter's Index

24.8 Networking Services

24.8.1 Objective 1: Configure and Manage inetd and Related Services

● inetd is the Internet super daemon; it listens on multiple inbound ports and launches the
appropriate child daemon to service the requests.

● inetd uses TCP Wrappers (tcpd) to add access security to services.

● inetd is configured in /etc/inetd.conf.

● You can eliminate an inbound service managed by inetd simply by commenting out its
declaration in /etc/inetd.conf and restarting or signaling inetd.

● TCP Wrappers allow the administrator to define access rules for hosts. The configuration files are
/etc/hosts.allow and /etc/hosts.deny.

24.8.2 Objective 2: Operate and Perform Basic Configuration of sendmail

● sendmail is a Mail Transfer Agent (MTA).

● sendmail is configured in /etc/sendmail.cf. This file is generally regarded as difficult to
configure.

● The "smart host" parameter is used to configure a local sendmail daemon to transfer mail to a
site's official mail system.

● /etc/aliases is a file that stores aliases for inbound mail addresses; it can redirect mail to one or
more users.

● Whenever /etc/aliases is modified, newaliases must be executed.

● Each user can forward her own mail using a .forward file, containing the forwarding email
address, in her home directory.

● Outbound mail that is trapped due to a network or other problem will remain queued; it can be
examined using the mailq command.

24.8.3 Objective 3: Operate and Perform Basic Configuration of Apache

● Apache is configured using httpd.conf, srm.conf, and access.conf. On some installations, these
may all be combined into httpd.conf.

● The configuration files contain configuration directives, one per line, consisting of a keyword and

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-8.htm (1 of 3) [3/9/2003 11:16:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

an argument list. For example:

DocumentRoot /home/httpd/html

sets the root directory for HTML files on the system.

● Apache is typically started at boot time using the system's startup methods.

24.8.4 Objective 4: Properly Manage the NFS, smb, and nmb Daemons

24.8.4.1 NFS

● Traditional Unix file sharing is done with NFS, originally developed by Sun Microsystems.

● NFS is a client-server package, and any system can hold both roles simultaneously.

● Exporting (sharing) a local filesystem with NFS is done by including a line in the /etc/exports
file, consisting of a directory and list of allowed systems, along with NFS options. For example:

/usr (ro) orion.mydomain.com(rw)
/home *.mydomain.com(rw)

● Remote NFS filesystems are mounted using the mount command:

mount -t nfs server1:/home /mnt/server1

● NFS is typically started at boot time using the system's startup methods.

24.8.4.2 Samba

● The Samba suite implements Server Message Block (SMB) protocols used on Microsoft and IBM
LANs.

● smbd handles file and printer sharing and authentication.

● nmbd implements the WINS service.

● Samba is configured in /etc/smb.conf. The file consists of sections, each with a series of
keyword = value pairs.

● Samba 2.0 and later comes with a web-based configuration tool called SWAT; it is usually
configured to be monitored by inetd.

24.8.5 Objective 5: Set Up and Configure Basic DNS Services

● DNS is the distributed database of name-to-IP-address translations.

24.8.5.1 The resolver

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-8.htm (2 of 3) [3/9/2003 11:16:38]

InformIT Online Books > LPI Linux Certification in a Nutshell

● The resolver is a library used by networked applications when a domain name needs to be
translated into an IP address.

● The resolver uses local files, NIS, and DNS to resolve hostnames as directed by /etc/resolv.conf.

24.8.5.2 Domain registration

● Domain names are assigned through a registration process with one of the domain name
registrars on the Internet.

● The DNS server daemon is named, part of the BIND package.

● named can be configured to speed up a local system by acting as a non-authoritative caching-
only name server.

● named is configured using /etc/named.conf.

● The nslookup , host, and dig utilities can be used to retrieve information from DNS servers.

● BIND Version 4 and Version 8 have significantly different configuration file formats, although the
information contained in the files is similar.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-8.htm (3 of 3) [3/9/2003 11:16:38]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell
Section: Chapter 24. Exam 102 Highlighter's Index

24.9 Security

24.9.1 Objective 1: Perform Security Administration Tasks

24.9.1.1 TCP Wrappers

● Configuring TCP wrappers (tcpd) using /etc/hosts.allow and /etc/hosts.deny can enhance
security for daemons controlled by inetd.

● tcpd is often configured to deny access to all systems for all services (a blanket deny), then
specific systems are specified for legitimate access to services (limited allow).

● tcpd logs using syslog, commonly to /var/log/secure.

24.9.1.2 Finding executable SUID files

● find can perform searches for file attributes such as SUID using the -perm option.

24.9.1.3 Verifying packages

● RPM packages are verified using the Verify mode, enabled using the -V (capital) option.

● The output for each package contains a string of eight characters that are set to dots when the
attribute has not changed. The columns represent each of eight different attributes: MD5
checksum, file size, symlink attributes, the file's mtime, device file change, user/owner change,
group change, and mode change.

24.9.1.4 SGID workgroups

● The SGID bit can be applied to directories to enforce a policy whereby new files created within
the directory are assigned the same group ownership as the directory itself.

24.9.1.5 The Secure Shell

● The Secure Shell, or SSH, can be used as an alternative to Telnet for secure communications.

● SSH can also protect FTP and other data streams, including X sessions.

● The Secure Shell daemon is sshd.

24.9.2 Objective 2: Set Up Host Security

24.9.2.1 Shadow passwords

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-9.htm (1 of 2) [3/9/2003 11:16:39]

InformIT Online Books > LPI Linux Certification in a Nutshell

● Enabling the use of shadow passwords can enhance local security by making encrypted
passwords harder to steal.

● The use of shadow passwords causes the removal of password information from the publicly
readable passwd file and places it in shadow, readable only by root.

● A similar system is implemented for shadow groups, using the gshadow file.

24.9.3 Objective 3: Set Up User-Level Security

● Limits can be placed on users by using the ulimit command in the bash shell. This command
allows enforcement of limitations on soft and hard limits on processes and memory usage.

file:///C|/Arquivos%20de%20programas/eDonkey200...ux%20Certification%20in%20a%20Nutshell/24-9.htm (2 of 2) [3/9/2003 11:16:39]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

InformIT Online Books > LPI Linux Certification in a Nutshell

Book: LPI Linux Certification in a Nutshell

Glossary

This Glossary contains a complete list of terms that you should be familiar with before taking the LPI
exams. Knowledge of these terms will be important in preparing for LPI exams, but no exam question
should depend on knowledge gleaned solely from this list.

This Glossary is copyrighted by the Linux Professional Institute (http://www.lpi.org/) and is provided
under the terms of the LPI Open Content License (http://www.lpi.org/license.html#OCL). This list was
compiled by (in alphabetical order): Les Bell, David DeLano, Alan Mead, Tom Peters, Richard Rager,
with additions by Jeff Dean and editing by O'Reilly & Associates, Inc.

*nix

A term for any operating system resembling Unix, including Linux and a large number of free
and commercial systems; also Un*x.

100BaseT

Ethernet over UTP cables, using hubs to produce a star topology; supports a maximum
(theoretical) transmission of 100 MBps.

10Base2

So-called Thin Ethernet, using RG-58 coax cables and BNC connectors to construct a chain of
cables; supports a maximum (theoretical) transmission of 10 Mbps.

10Base5

The older Thick Ethernet, which used vampire taps into a single cable; supports a maximum
(theoretical) transmission of 10 Mbps.

10BaseT

Ethernet over UTP cables, using hubs to produce a star topology; supports a maximum
(theoretical) transmission of 10 Mbps.

access

To connect to and utilize a device (computer, printer) or file.

account

The symbol or number that refers to a user for accounting purposes.

address

file:///C|/Arquivos%20de%20programas/eDonkey200...0Certification%20in%20a%20Nutshell/Glossary.htm (1 of 37) [3/9/2003 11:16:44]

http://www.lpi.org/
http://www.lpi.org/license.html#OCL

InformIT Online Books > LPI Linux Certification in a Nutshell

1. A location in memory; specifically, the I/O port used by a device to communicate with the
processor.

2. A unique identifier assigned to an interface on a network-attached device such as a network
interface card. Notice: a host can have multiple interfaces, hence multiple addresses.

3. The name or number given to a computer, device, or resource so it can be identified, found,
and accessed on a network.

administer

To control the operation and use of a computer or other device; the task of a system
administrator.

algorithm

A formal description of a procedure that, when suitable input is entered, will generate output as
a result that satisfies specific requirements.

alias

1. Within a shell, a substitute word for a command string (e.g., alias dir = "ls -- color").

2. An additional IP address on an interface.

3. Refers to another name given to an email account, in order to accept mail for one email
address and forward it to another.

Alt

The Alternative key on a keyboard.

analog

Refers to a physical measure that can take any value within a continuous range (e.g., the
voltage used to encode loudness when transmitting a signal over a conventional copper
telephone line). See also digital.

ANSI

Short for American National Standards Institute (http://www.ansi.org/). A standards body
responsible for many protocols.

API

Short for Application Programming Interface. A specification that allows simple access to
functionality of a library or other system resources when writing a program; operating system
functionality is made available through an API.

file:///C|/Arquivos%20de%20programas/eDonkey200...0Certification%20in%20a%20Nutshell/Glossary.htm (2 of 37) [3/9/2003 11:16:45]

http://www.ansi.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

application

A program that runs on top of an operating system.

application layer

The top layer of the four-layer TCP/IP protocol model. Includes protocols such as Telnet, FTP,
HTTP, SMTP, and so on.

archive

1. A backup of data to be preserved.

2. A file that contains one or more components and an index (e.g., in tar, cpio, rpm, or deb
format).

argument

A piece of information passed to a command or function (usually typed in behind it) that
modifies its behavior or that is operated upon by the command or function (i.e., in cat motd,
motd is the argument). See also parameter.

ARP

Short for Address Resolution Protocol. A protocol that, given an IP address on the local network,
returns the Ethernet address of the corresponding interface.

ASCII

Short for American Standard Code for Information Interchange. A specification of characters
widely used in the Unix world and beyond.

aspect ratio

The ratio between the width and the height of a pixel on a computer display.

assembler

A program that compiles programs written in assembly language into object code.

assembly language

A low-level computer language that can be translated directly to the object code of the
computer processor.

background

A state of process execution that does not produce output to the terminal (execution may stop if
the process tries to write to the terminal); it is common to run system processes and long-
running user applications in the background. See also foreground.

file:///C|/Arquivos%20de%20programas/eDonkey200...0Certification%20in%20a%20Nutshell/Glossary.htm (3 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

backup

1. A copy of essential data stored on- or off-site as insurance against failures of system
hardware, software, or user.

2. To make a backup.

binary

1. Taking two discrete values (e.g., bits), as opposed to decimal (taking ten discrete values).

2. A file that is not intended to be read by applications or the operating system instead of by
humans; especially in plural ("binaries") for compiled sources. See also text.

BIOS

Short for Basic Input/Output System. A simple, low-level operating system that supplies a
uniform API to higher-level operating systems; BIOS is generally implemented in ROM of some
sort.

bit

The smallest entity of information; can have one of two states (0/1, on/off, open/closed, etc.).

bitplanes

The number of bits available for each display pixel to code for visual appearance (color,
proximity, etc.).

block device

A device that exchanges data with the operating system in sizable blocks (e.g., 512 bytes) at a
time.

boot

To cause the operating system to begin to function. Takes its name from "pulling oneself up by
the bootstraps," a whimsical analogy applied to the BIOS loading itself and then running the
boot loader. "Reboot" is the term for a repeat of the process.

boot loader

Software, usually installed on the MBR of Intel machines, which exists to load the operating
system kernel and begin its functioning.

BOOTP

Short for Boot Protocol. A protocol used to provide information to diskless workstations or
devices over a network. See also DHCP.

file:///C|/Arquivos%20de%20programas/eDonkey200...0Certification%20in%20a%20Nutshell/Glossary.htm (4 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

broadcast

A frame or datagram addressed to all interfaces on a network.

BSD

Short for Berkeley Software Design. A variant of Unix originally developed at the University of
California, Berkeley. The BSD TCP/IP stack is the model for most subsequent TCP/IP
implementations.

buffer

Temporary storage. See also cache.

BUGTRAQ

A mailing list for discussions regarding network security (daemons, programs, operating
systems, routers, etc.).

build

To run a sequence of compile and link steps to produce a new version of an executable program.

bus

A cable for transmitting signals between various components within one computer system.

byte

A datatype of 8 bits.

C

A compiled computer language closely associated with Unix.

C++

An object-oriented computer language derived from C that needs a compiler.

cache

Any readily accessible storage area used to keep handy data that is (somehow) indicated to be
needed again shortly; the purpose being to speed up the access of that data and improve
system performance. Specifically, the fast computer memory that is used as a buffer for data
and program instructions between the CPU and the slower main memory. See also RAM.

caching-only DNS

file:///C|/Arquivos%20de%20programas/eDonkey200...0Certification%20in%20a%20Nutshell/Glossary.htm (5 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

A domain name server that does not have any domains files.

Caldera OpenLinux

A commercial Linux distribution.

call

Execute a subprogram or library procedure in an executable program.

card

Any device that can be plugged into a computer expansion slot.

CD-ROM

A removable medium of considerable popularity that comes in several variations, the most
popular being ISO9660.

CERT/CC

A team of people that studies Internet security and provides incident response services; see
http://www.cert.org/.

CGI

Short for Common Gateway Interface. A standard for allowing server applications to be
executed as part of an HTTP request.

CHAP

Challenge Handshake Protocol, an authentication scheme used in PPP.

char

C datatype (usually 1 byte) used to store letters. See also character.

character

A letter or sign usually represented by 1 byte in ASCII code.

character device

A device that exchanges data with the operating system in one character (or byte or even word)
at a time.

child process

Any process created by another so-called parent process; usually used in reference to a

file:///C|/Arquivos%20de%20programas/eDonkey200...0Certification%20in%20a%20Nutshell/Glossary.htm (6 of 37) [3/9/2003 11:16:45]

http://www.cert.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

particular parent process.

CIDR

See variable length subnet mask.

CIFS

Short for Common Internet File System. Microsoft's successor to SMB, a suite of protocols for
sharing file and print services (among Windows machines or Un*x machines running CIFS
servers like Samba).

clean

In reference to a drive being mounted, "clean" means that the drive was unmounted properly
and thus (theoretically) does not need to be checked; otherwise, a drive is "dirty."

client

A computer or process that connects to and receives a service from a server computer or
process.

coax

Short for "coaxial." A type of cable with inner and outer conductors used for TV cables and for
Ethernet LANs, where the computers usually have T-joints to attach to a single chain of cables
that needs to be terminated by resistors.

colormap

A table used to encode a palette of colors for images.

command-line interface

An interactive user interface that allows commands to be given to a computer program or shell
through a text-based terminal (or terminal emulator in a window within a graphical user
interface).

compiler

A program that examines program source code and translates it into an equivalent object code
file. See also interpreter.

compression

Removal of redundant information from a file or data stream to reduce its size, the storage
space it needs, or the time needed for transmission. Lossy compression actually discards
information that is considered nonessential and is appropriate only for data such as images or
sound.

file:///C|/Arquivos%20de%20programas/eDonkey200...0Certification%20in%20a%20Nutshell/Glossary.htm (7 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

computer

A digital, electronic, general-purpose, programmable, information-processing automate.

console

The primary, directly attached, user interface of a computer. Some system administration
functions may be performed only at a console.

control panel

A collection of buttons, switches, lights, or displays used to configure and control a router,
printer, computer, or other device.

core dump

The content of memory written to a file on disk when a program crashes (usually called a
"core").

corrupted

Damaged (said of a file or disk contents).

CPU

Short for Central Processing Unit. The main component that makes a computer work; these
days, usually a "microprocessor" on a single silicon chip. See also processor.

crack

To gain access to a computer system without proper authorization (e.g., by guessing a
legitimate user's password) and possibly interfere with its normal operation or integrity.

cracker

1. Someone who tries to crack into another computer system. See also hacker.

2. A software program used to crack, for instance, by guessing passwords.

crash

A sudden stop of normal operation. Supposedly, the original hard drives would sometimes
experience a catastrophic failure in which the read/write heads would crash into the media,
possibly sending the media flying; hence, a crash is an unintentional termination of software or
hardware due to some failure or error -- especially a termination in a final, catastrophic, or
unpleasant way.

CSLIP

Short for Compressed SLIP. SLIP with added VJ compression of IP headers.

file:///C|/Arquivos%20de%20programas/eDonkey200...0Certification%20in%20a%20Nutshell/Glossary.htm (8 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

Ctrl

The Control key on a keyboard.

current working directory

The location within a filesystem where a program works. This is the default location for many
commands unless another directory is explicitly defined.

cylinder

A number of tracks located at the same radius on the several surfaces of a hard disk. A hard
disk with four platters has eight surfaces, so that at each position of the read/write heads, eight
tracks can be read without head movement; these eight tracks form a cylinder.

daemon

A program that runs in the background to offer system services.

data

"That which is given," for instance, as input to a computer. See also information.

data link layer

Layer two of the ISO/OSI seven-layer model. Responsible for establishing an error-free
communications path between network nodes over the physical link layer, frames messages for
transmission, checks the integrity of received messages, manages access to and use of the
media, and ensures proper sequencing of transmitted data. These functions are generally
provided by a network card driver.

database

1. A usually large collection of ordered and readily accessible data.

2. A program to manage a database and extract information from it.

datagram packet

Especially as used in UDP. Not IP-specific; other protocols use the term "datagram" in their
documentation.

Debian

A GNU/Linux distribution built by a volunteer organization.

default

The value of a parameter that a program uses if it is not explicitly given a value.

file:///C|/Arquivos%20de%20programas/eDonkey200...0Certification%20in%20a%20Nutshell/Glossary.htm (9 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

Del

The Delete key on a keyboard.

delete

Remove or erase a file, character, directory, and so on.

dependency

A state in which other libraries, programs, or packages are required to make a program work.

DES

Short for Data Encryption Standard. A U.S. government-sanctioned standard for the encryption
of data now considered insecure to high-end brute force attacks.

desktop

The screen from which all programs are started and run on X.

device

1. A "peripheral" piece of hardware that is an optional part of or can be attached to a
computer (even one that is actually housed within the computer's casing): interface
cards, drives, printers, and so on.

2. The software interface used within Unix (Linux) to represent a computer peripheral:
interface cards, drives, printers, and so on; see /dev directory.

DHCP

Short for Dynamic Host Configuration Protocol. Provides for automatic downloading of IP
address and other configuration data from a server to a client. Allows for reuse of IP addresses
so that the number of hosts can exceed the number of available IP addresses. DHCP is an
upgrade to the BOOTP protocol.

dial-in, dial-up, or dial-out

Refers to a connection made over the Public Switched Telephone Network (PSTN), as opposed to
a permanent, or leased-line, connection.

die

To cease execution, especially in a final or complete manner.

digital

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (10 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

Refers to an entity that can assume only a limited number of discrete states and not any value
(e.g., binary). See also analog.

directory

A special type of file that contains information about other files, such as filename, location,
permissions, size, and so on.

dirty

A filesystem that was not cleanly unmounted. See also clean.

disk

Rotating magnetic media that support direct or random access. See also floppy disk, hard disk.

display

A human-readable device to display text, graphics, or other data.

distribution

A (usually) complete collection of software needed to operate a computer including the Linux
kernel and various utilities and applications.

DMA

Short for Direct Memory Access. A hardware protocol that allows a special controller circuit
(DMA controller) to transfer a block of data from a peripheral device's buffer memory directly to
main memory without CPU involvement. See also PIO.

DNS

Short for Domain Name System. A hierarchically structured distributed directory service that
translates human-intelligible names like http://www.lpi.org/ into the corresponding IP
addresses.

domain

1. One or more computer networks that serve an organizational group.

2. The name assigned to a network domain.

domain name server

A system running BIND serving DNS-name-to-IP-address translations.

drive

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (11 of 37) [3/9/2003 11:16:45]

http://www.lpi.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

Any device that can store and retrieve data in a relatively permanent fashion on media (which
may be removable or built into the device).

EIDE

Short for Enhanced Integrated Device Electronics. An improved version of the IDE interface,
used to connect hard drives and CD-ROMS to a PC.

email

Electronic mail.

emulate

To simulate the actions of a device or program so that the simulation can actually perform the
same functions as the original.

emulator

A program that emulates the functions of some device or other program.

environment

A collection of variables associated with a process so that it knows about the user preferences
and configuration of the system; they are inherited by a child process.

environment variables

The variables that define an environment.

ergonomic

Easy to use by humans.

Esc

The Escape key on a keyboard.

Ethernet

A type of LAN computer interface using coax (10Base2 or 10Base5) or UTP cables (10BaseT or
100BaseT).

execute

To set to work (a program). See also run.

execute permission

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (12 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

Permission set on a file on a Unix filesystem so that it may be run as a program by the
"operating system."

executable

A file that is a binary or a script that can be run as a program (may assume execute
permission).

export

To share, as in a filesystem or volume.

FAT

Short for File Allocation Table. A simple filesystem that uses a table to index files on a block
device (floppy or hard disk). It comes in the varieties of FAT-12 (MS-DOS), FAT-16 (MS-DOS,
Microsoft Windows 3.x) and FAT-32 (Microsoft Windows 9x).

FHS

Short for Filesystem Hierarchy Standard. A proposed standard for the location of files on a Unix
system. See http://www.pathname.com/fhs/.

file

A named sequence or stream of bytes at a known location in storage.

filesystem

The data structures placed on a logical disk or partition (by mkfs) that allow the operating
system to record information about files stored there.

filter

To remove unwanted data.

floating-point

Used with numbers that may represent a fraction. See also integer.

floppy disk

A magnetic storage medium with a flexible disk inside. See also hard disk.

floppy drive

A device that can read and write floppy disks.

font

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (13 of 37) [3/9/2003 11:16:45]

http://www.pathname.com/fhs/

InformIT Online Books > LPI Linux Certification in a Nutshell

The shape of each of the letters in a character set.

foreground

1. The context in which a process is having access to a terminal for output (i.e., is not
running in the background).

2. The color of text on a computer display (as opposed to the text's background).

3. Refers to the window "in front of " all others and with which the user is interacting.

fork

When an executing process creates an exact executing duplicate (except for the different PID) of
itself. See also child process, spawn.

format

1. Specification regarding how data is stored.

2. To apply the requisite format to storage media in preparation to making a filesystem.

forwarding

The act of receiving an email and then resending it to another destination.

frame

A packet as assembled and transmitted over the physical layer of a network (e.g., Ethernet,
Token Ring, etc.).

free

1. Not costing anything.

2. Not inhibited. As applied to source code, it allows modification, study, and adaptation,
not inhibited by excessively restrictive commercial license terms. See also FSF, GPL.

FSF

Short for Free Software Foundation. The FSF is a tax-exempt charity that raises funds for work
on the GNU Project; see http://www.fsf.org/.

FSSTND

Short for Filesystem Standard. A standard for the location of files on a Linux system; replaced
by the FHS.

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (14 of 37) [3/9/2003 11:16:45]

http://www.fsf.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

FTP

Short for File Transfer Protocol. A protocol for transferring files over the Internet and the
software to accomplish the transfer.

gateway

A device that routes IP datagrams between networks in an Internet; a router. (In common
usage today, a gateway is a general-purpose computer with a general-purpose operating system
-- e.g., Linux -- that may be performing other functions, although security considerations may
render this inadvisable. A router is a special-purpose computer with a special-purpose operating
system -- e.g., IOS -- generally from a specialist supplier -- e.g., Cisco.) Gateways do not
perform protocol translation.

GB

An abbreviation for gigabyte, or 1000 MB.

GID

Group ID. See also UID.

global

A variable, configuration section, procedure, and so forth having a scope that is unlimited (i.e.,
applies everywhere unless contradicted locally).

GNU

Short for "GNU's Not Unix." An FSF Project to build Unix-compatible utilities and programs
exclusively based on free program source code.

GPL

Short for GNU Public License. The GPL is a license that permits the copying, modification, and
redistribution of free software. It was created by the FSF for software developed by the GNU
Project and has been applied to Linux as well. See http://www.gnu.org/copyleft/gpl.html.

graphical user interface (GUI)

An interactive interface using a graphics display. Refer to a "graphical user interface" only if
there actually is a graphical interface (like X); do not use the term for interactive programs on
text terminals (based on ncurses or slang). Use "interactive interface" as a catchall. See also
command-line interface.

graphics

Images, pictures; in contrast to text.

group

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (15 of 37) [3/9/2003 11:16:45]

http://www.gnu.org/copyleft/gpl.html

InformIT Online Books > LPI Linux Certification in a Nutshell

Refers to a list of one or more users having the same access rights. See also /etc/groups.

hack

To accomplish a result in an unorthodox way.

hacker

Someone who hacks; a title assigned to people with remarkable computing skills. See also
cracker.

hang

See crash.

hard disk

A computer device that uses solid disks as magnetic media to store data. See also floppy disk.

hard link

In Unix filesystems, an entry in a directory that points to a file in another directory on the same
disk or partition and shares the inode of that file. See also symlink.

hardware

All physical parts making up the computer.

high-level

Refers to a computer language with a higher level of abstraction from the computer architecture
than a low-level language.

host

Any computer attached to an IP-based Internet, especially computers that can act as a server to
a client program or computer.

HOWTO

A series of documents, each on a particular topic, that form a significant portion of the
documentation for Linux. HOWTOs originated with, and are generally published by, the Linux
Documentation Project (LDP).

HTML

An abbreviation for HyperText Markup Language, a term coined by Tim Berners Lee. A standard
for specifying the structure of a document indicated by tags in the document text; used on the
World Wide Web with HTTP. HTML has been replaced with XHTML, an XML-like version of HTML.

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (16 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

HTTP

Short for HyperText Transfer Protocol. The succession of application layer protocols used for
communication between a WWW browser and a WWW server.

I/O

Input/output.

ICMP

Short for Internet Control Message Protocol. A required protocol for the notification of errors
between gateways and hosts on IP-based Internets.

ID

Short for "identifier" or "identity."

IDE

Short for Integrated Device Electronics. A popular interface on PCs to attach hard drives,
constructed in such a way that much of the interface circuitry is integrated into the disk drive.
See also EIDE.

idle

Inactive; waiting for a task or a wake-up call.

IMAP

Short for Internet Message Access Protocol. Protocol permitting access to electronic mail or
bulletin board messages that are kept on a mail server.

implement

To create an actual object (program, device) that conforms to abstract specifications.

include file

A file that contains constants and parameters, possibly shared between two or more programs
and included into the source code when these programs are compiled.

information

Something worth knowing, in contrast to just plain data.

inode

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (17 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

In Unix filesystems, a single block of administrative data defining a file on a disk partition.

input

Any data entered into a running program or into a file.

install

Transferring a new program to a computer's permanent storage (e.g., hard disk) and
performing any necessary configuration or administration.

integer

A data type used to represent a whole (integer, nonfraction) number within a limited range.

integrity

In filesystems, a stable and noncorrupt state.

interactive

Adjective meaning having the property to be able to interact (i.e., respond to stimulation from
the outside). Used in the context of programs or interfaces.

interactive interface

An interface between a computer and a user that allows them to interact and exchange input
and output (commands and data).

interface

A connection (through a hardware device or through a software program) between different
components of a computer system (usually performing some kind of translation between
protocols internal to the components); used especially in the contexts of network
communication or communication between computer systems and their users.

Internet

The worldwide distributed network of computers linked by the Internet Protocol.

interpreter

A program that examines a script or program source code and executes it, line by line. See also
compiler.

interrupt

An electronic or software signal sent to a CPU to initiate a high-priority service, interrupting that
which was in process.

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (18 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

intranet

A network (usually a LAN) based on IP, but unlike the Internet, allowing only restricted access.

invoke

Induce execution of. See also call.

IO port

The memory address peripheral devices use to communicate with the CPU.

IP

Short for Internet Protocol. The network layer protocol used on IP-based networks, including the
Internet.

IRQ

Interrupt request. See also interrupt.

ISA

Short for Industry Standard Architecture. An increasingly obsolete PC bus standard for
peripheral devices.

ISDN

Short for Integrated Services Digital Network. A technology for sending voice, video, and data
over digital telephone lines or normal telephone wires. ISDN supports data transfer rates of 64
Kbps (64,000 bits per second). Most ISDN lines offered by telephone companies give you two
lines, called B channels, at once. You can use one line for voice and the other for data, or you
can use both lines for data to give you data rates of 128 Kbps.

ISO

Short for International Standards Organization. One of several bodies that exist to promote
standards, including computer standards.

ISP

Short for Internet Service Provider. A company that provides connections to the Internet.

job

A task that has been sent to the background or has been submitted for later execution.

k or K

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (19 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

A factor of 1000, but with computers usually 1024 (210).

KB

Kilobyte; 1024 bytes.

Kbps

Data transfer rate in units of 1000 bits per second.

KBps

Data transfer rate in units of 1024 bytes per second.

kernel

The core of an operating system, which provides multitasking (process creation, interprocess
protection, interprocess communication), memory management, and basic I/O management.

key

1. A token that is used to encrypt plain text or decrypt cipher text in an encryption system.

2. A database field that may be used as the basis of a query.

3. A marked switch on a keyboard that used to be a common computer input device.

keyboard

An input device having many keys marked with letters and other symbols.

LAN

Short for Local Area Network. A small network, usually with one or a few segments, which
supports broadcasting and direct connections between hosts (e.g., Ethernet, Token Ring,
AppleTalk, and ARCNet). See also WAN.

LDP

Short for Linux Documentation Project. A project intended to create free, high-quality
documentation for GNU/Linux. See http://www.linuxdoc.org/.

library

A collection of (often-related) subroutines to be linked to a program.

LILO

The Linux boot loader; a program that loads the kernel so Linux can boot. LILO can also be used

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (20 of 37) [3/9/2003 11:16:45]

http://www.linuxdoc.org/

InformIT Online Books > LPI Linux Certification in a Nutshell

to boot other operating systems.

link

To bind a program to the subroutines it references (calls). These are typically located in object
modules or libraries.

Linux

A Unix-like operating system first developed, still maintained by, and named after Linus
Torvalds. It is freely available under the General Public License.

load

To transfer from disk into memory.

local

Within easy reach, on the local area network, not remote.

log file

Record of activities.

low-level

Refers to a computer language in which statements are similar to instructions for the processor
(or in which statements are more like object code than in a high-level language).

Mail User Agent

An end-user program used to access, process, read, archive, compose, and send email
messages. Such email programs often include some MTA functionality, in particular the ability to
use SMTP to send email to an outgoing mail server, and POP3 or IMAP to download mail from an
inbound mail server. See also MTA.

manpage

Standard Unix manual page (usually available on the computer system in nroff format, called
with the man command).

manual

1. A document, often of book length, discussing the design or operation of a software
package or device.

2. By hand (as opposed to some more automated means).

masquerade

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (21 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

To pretend to be another host for the purposes of sharing one IP address among several local
hosts hidden to the outside world for reasons of resource shortages or security. See also NAT.

MB

An abbreviation for Megabyte; 1000 KB (or sometimes 1024).

Mbps

Data transfer rate in units of 1 million bits per second.

MBR

Short for Master Boot Record. An area of the outermost cylinder of a hard disk that contains the
partition table. The MBR contains four entries identifying the types, starting cylinder, and sizes
of up to four partitions on the hard disk. One of the entries is flagged as active; this entry marks
the partition from which the machine will boot. Floppy disks don't have an MBR, since they don't
have a partition table. Instead, they just have a boot sector (same as a logical disk), which
contains a Media Descriptor Table (MDT) and bootstrap loader. The MDT describes the format of
a floppy disk or logical disk.

media

The physical device by which data is transmitted or (more commonly) stored.

memory

The place where a computer stores data and/or programs for direct access by the CPU. RAM or
ROM (and also cache memory), not disks.

mini-HOWTO

A slimmer, more focused document; otherwise like a HOWTO.

modem

A device that converts between digital signals from the computer and analog signals for
communication over a telephone line.

mouse

An input device that allows pointing to, selecting, and activating objects displayed in a graphical
user interface.

MTA

Short for Message Transfer Agent. A program that routes email based on the header and
invokes the correct delivery agent, especially SMTP, in order to route the mail toward its
ultimate destination. For example: exim, qmail, sendmail, and smail are all MTAs. The term
"Mail Transport Agent" is used in the online "Network Administrator's Guide" to refer to rmail,

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (22 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

which is used to process incoming mail from UUCP before passing it on to sendmail. This usage
is at least confusing, if not incorrect.

MTU

Short for Maximum Transfer Unit. Maximum size of an IP packet that will be accepted for
transmission without fragmenting it into smaller datagrams. An optimal size is usually
determined automatically; typical sizes are 296 bytes (40 header + 256 data for phone lines)
and 1500 bytes (the maximum for an Ethernet connection).

NAT

Short for Network Address Translation. A generic description of the process whereby the IP
address of a host on a private Internet is translated into an IANA-assigned unique address on
the wider public Internet. This can be accomplished by several techniques: masquerading,
circuit-level gateways such as SOCKS, transparent proxying, or application-level gateways.

NetBEUI

The current implementation of the NetBIOS protocol used in MS-DOS, MS-Windows, and OS/2.

NetBIOS

A lightweight transport protocol developed by Sytek, IBM, and Microsoft for use on personal
computers. NetBIOS defines the protocol on the wire (datagram formats), the code that
implements the protocol, and the API used to employ the protocol. An example of an application
that uses the NetBIOS API is Microsoft Networks, the workstation and server code implemented
in MS-DOS 3.0 and later, OS/2, and various Windows incarnations, though other applications do
exist. NetBIOS employs name registration and broadcast discovery rather than addressing and
is consequently a nonroutable protocol. See also NetBIOS over TCP/IP, SMB.

NetBIOS over TCP/IP

A layer of code that implements the NetBIOS API, but utilizing TCP and UDP datagrams, which
are encapsulated in IP datagrams. Since IP is routable, this overcomes the most significant
limitation of NetBIOS.

netmask

Short for network mask; the network part of an IP address. See also variable length subnet
mask.

network

An interconnected set of hosts and other network devices that share a common physical layer
such as Ethernet, X.25 and so on. See also LAN, WAN.

network interface card

An expansion board allowing a computer to access a network.

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (23 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

network layer

The layer of a network protocol stack that is concerned with addressing and delivery of
datagrams across a network or Internet. In the TCP/IP protocol stack, the main network layer
protocol is IP.

NFS

Short for Network File System. A protocol (developed by Sun Microsystems) enabling a *nix
machine to mount a remote disk area as part of its local filesystem; widely considered of
questionable security.

NIS

Short for Network Information Service (formerly "yellow pages"). Protocols to provide network
services (such as authentication) for NFS.

object code

Instructions that can be executed by the computer processor.

offline

Not connected to a computer system or network. See also online.

online

1. Connected to a computer system or network. See also offline.

2. Stored on and accessible through a computer system or network.

operating system

Central set of programs that manages the various components and devices of the computer and
its interaction with application programs and users (e.g., MS-DOS, Windows 95/98/NT/2000,
Mac OS, Unix, Linux, etc.).

OSI

Short for Open System Interconnection. A layered suite of protocols for network
communications. The concept of a "stack" of protocols (hence "TCP/IP stack") is due to the OSI
seven-layer model, even though TCP/IP has only four distinct layers (certain OSI layer concepts
are combined in TCP/IP).

output

Any data generated by a process.

owner

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (24 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

The account that has its user ID (UID) number associated with a file.

package

A set of related files and programs, especially a single-archive file (tar, rpm) that contains them.

packet

A quantum of data transmitted over a network. Specifically, a unit of TCP traffic carrying the
information necessary to deliver itself, especially using the UDP protocol (datagram).

parallel

Several bits at the same time, over time (over multiple wires).

parameter

A variable with a specific value that has a meaning or function, which belongs to a program
function or command. See also argument.

parent process

A process that started one or more other, so-called child processes.

partition

An arbitrary region of a storage device (almost always a hard drive) created by partitioning
software before data was stored. Specifically on IBM PC compatibles: one of up to four distinct
areas on a hard drive that can be dedicated to different operating systems. One of the partition
types, extended, supports further partitioning into a maximum of four logical disks.

password

A token that authenticates a user at login time.

PC

Short for Personal Computer. A computer designed to be used by one individual at a time. Often
associated with computers compatible with the architecture of the original IBM microcomputer.

PCI

Short for Peripheral Component Interface. A PC bus to connect peripheral devices to the
processor, PCI is thought of as a replacement for the original ISA bus.

peripheral

A device that is an optional attachment to the core components of a computer (CPU and
memory).

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (25 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

physical layer

The lowest layer of both the ISO/OSI and TCP/IP protocol stacks. Consists of the cables,
connectors, and associated hardware such as driver chips to implement a network such as
Ethernet or Token Ring.

PID

Short for Process ID. A numerical identifier used to track processes by the kernel.

PIO

Short for Programmed Input/Output. A technique whereby the CPU executes a tightly coded
loop in which it copies data from a peripheral device's buffer memory and writes it back out to
main memory. See also DMA.

pipe

A data structure that connects a file handle in one process to a file handle in another; by
convention, stdout of one process to stdin of the next. Established on the shell command line
with the | symbol.

pixel

A "picture element"; the smallest addressable portion of a computer display. Screen resolution is
usually cited in pixels.

PLIP

Short for Parallel Line Internet Protocol. IP protocol over a parallel cable (between two machines
physically connected and not too distant).

PnP

Short for Plug 'n' Play. A specification intended to automate configuration of ISA peripherals in
PCs.

POP

Short for Post Office Protocol. Protocol to retrieve mail from a mail server. Various software
servers typically have names derived from "pop" such as ipop3d, ipop2d, and popper.

port

1. The name given to an individual, numbered "slot" that is available to Internetworking
software. For example, HTTP servers generally listen to port 80. See also /etc/services,
IO port.

2. To adapt a computer program to operate in a new computing environment and/or in a
new programming language.

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (26 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

PostScript

A page description language developed and marketed by Adobe Systems, Inc., widely
implemented in laser printers, especially where high-quality output is required (e.g.,
phototypesetters), and under Linux, widely emulated in software for non-PostScript printers.

PPID

Short for Parent PID. The PID of a process' parent process. See also child process, parent
process, PID.

PPP

Short for Point-to-Point Protocol. A physical layer protocol that can be used to encapsulate IP
and other network protocols, making it an excellent way of extending LAN protocols to dialup
users. PPP comprises an HDLC-like framing protocol, a link control protocol, and a family of
network control protocols, each of which corresponds to a network protocol that PPP can
encapsulate. PPP can also use PAP or CHAP for authentication.

presentation layer

The top layer of the ISO/OSI seven-layer model, which specifies character representation (e.g.,
ASCII) and graphics formats, such as NAPLPS (North American Presentation Layer Protocols). In
TCP/IP, the presentation layer is subsumed into the application layer, but perhaps the closest
equivalent standards are ASN.1, ANSI, and HTML/XML.

process

A running program; an instance of program execution.

processor

The main component that makes a computer work; these days, usually a "microprocessor" on a
single silicon chip. See also CPU.

program

A sequence of instructions for the computer that implements an algorithm, especially when
stored in a file in the form of either directly executable object code or source code for an
interpreter or compiler. When loaded into memory and executed, the object-code program
typically becomes a process.

prompt

An indication produced by a shell or application program that it is ready for further user
commands or input.

protocol

A definition of data structures and formats to be exchanged by two programs over a network.

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (27 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

queue

A data structure that implements a first-in, first-out list (e.g., a print queue, which contains a
list of jobs to be printed in order).

RAM

Short for Random Access Memory. Volatile, writable memory that a computer uses as its main
memory. Comes in flavors such as EDO, ECC, SDRAM, and so on, which are not equivalent but
from the perspective of a system administrator are very similar under normal use. See also
ROM.

read permission

Authorization within a filesystem to display the contents of files and directories.

README

An important document that usually comes with a software package to call attention to
important issues. README files usually have their name in uppercase letters, so that it appears
at the top of a directory listing.

reboot

See boot.

Red Hat

A commercial Linux distribution offered by Red Hat Software, Inc.

redundant

Superfluous; said of information in the contexts of compression or the preservation of data
integrity.

regular expression

A formal expression of a string pattern that can be searched for and processed by a pattern-
matching program such as vi, grep, awk, or Perl.

RFC

Short for Request For Comments. Despite the name, a de facto specification of Internet
protocols and standards. See http://www.cis.ohio-state.edu/hypertext/information/rfc.html.

ROM

Short for Read-Only Memory. Computer memory, usually involving some enduring medium,
such as a silicon chip or a burnt laser disc, which can be read but not altered. This is

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (28 of 37) [3/9/2003 11:16:45]

http://www.cis.ohio-state.edu/hypertext/information/rfc.html

InformIT Online Books > LPI Linux Certification in a Nutshell

inconvenient when the data can change, and just to be confusing, some special ROMs can be
modified under certain circumstances. See also RAM.

root

1. The administrative account (UID 0) on a *nix system that has all privileges. See also

superuser.

2. The topmost, first, or originating node or object (e.g., root directory, /).

route

1. The path across one or more networks from one host to another.

2. To examine the destination network IP address in a datagram, and by consulting a table,
direct the datagram to the next router along the path to the destination or to the
destination itself.

router

A device that routes IP datagrams between networks in an Internet; a gateway.

RPM

Short for Red Hat Package Manager. A system that eases installation, verification, upgrading,
and uninstalling of Linux packages. See the RPM HOWTO for more information.

run

To let it work (a program). See also execute.

runlevel

Mode of operation of a Unix system, offering different services on each level.

Samba

An open source project to implement the SMB protocol and its network functions, including file
and printer sharing.

script

A computer program that is written in an interpreted programming language and therefore stays
in human-readable text format. See also binary, executable.

SCSI

Short for Small Computer System Interface. A multidrop bus cable architecture particularly
suitable for both internal and external attachment of mass storage devices such as hard drives,
tape drives, and CD-ROMs.

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (29 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

segment

A (limited) length of cable. Segments can be joined by repeaters (rare), bridges (common),
routers, or switches (which are hardware logic bridges and routers).

serial

One bit after another, over time (over a single wire).

server

A process, or a host computer, that provides a particular service to client processes (e.g., web
server, print server).

service

A process that accepts requests and returns responses in an almost endless loop; a daemon.

session layer

The ISO/OSI session control layer establishes and controls system-dependent aspects of
communications sessions between specific nodes in the network. It bridges the gap between the
services provided by the transport layer and the logical functions running on the operating
system in a participating node. In the TCP/IP network stack, there is no session control layer; its
functions are implemented partially in the transport layer and partially in the application layer.

shell

A program that mediates between the user and the operating system, typically accepting
commands and invoking the corresponding programs.

signal

A logical interrupt to a process, which the process must generally deal with synchronously. A
form of interprocess communications.

single mode

Single-user mode, runlevel 1.

SLIP

Short for Serial Line Internet Protocol. A way of encapsulating IP datagrams for transmission
over asynchronous modem connections. See also PPP.

SMB

Short for Server Message Block. A Microsoft protocol developed originally to transport MS-DOS,
and later OS/2 and Microsoft Windows, API calls, and their arguments across a NetBIOS LAN.

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (30 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

Primarily used under Linux as a protocol for file and print sharing with Windows machines. See
also Samba.

SMTP

Short for Simple Mail Transport Protocol. A conversational protocol used by mail servers for
delivery of email via the Internet.

SNR

Short for Signal-to-Noise Ratio. The relative amount of useful information in a signal, as
compared to the noise it carries.

socket

A TCP application layer connection.

software

A computer program.

source code

The plain text code written in a programming language that specifies the detailed operation of a
program. Source code needs to be processed by a compiler to produce a program that can be
run (i.e., be executed) by the computer.

sources

The files containing the source code for a program or program system, from which the
executable program or library can be built or ported to another computer platform.

spawn

To create a child process by means of a fork() and an exec().

stderr

The standard Unix error output device (by default to the terminal display).

stdin

The standard Unix input device (by default, the terminal keyboard).

stdout

The standard Unix output device (by default, the terminal display).

sticky bit

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (31 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

A permission bit on an executable file that causes the kernel to keep the memory image of the
process after it has terminated, in order to avoid the overhead of reloading it when it is re-
invoked.

stream

A sequence of data bytes with sequencing and flow control, such as that implemented by the
TCP protocol within TCP/IP.

subnet mask

A value used in configuring the TCP/IP stack that specifies which part of a 32-bit IP address is
the network address and which part is the host address.

SUID

Short for Set User ID. A permission bit for files in Unix-compatible filesystems based on the UID
of the user who owns the file, rather than the user who created the process.

superuser

The user of the root account.

SuSE

A commercial Linux distribution.

swap space

Virtual memory; called swap space because processes swap location between fast RAM and slow
virtual memory if their priority changes.

symlink

Symbolic link. In Unix filesystems, a symlink is an entry in a directory that points to another
filename in the filesystem. See also hard link.

synchronize

1. To make the events in two separate sequences happen at the same time (used in
communications).

2. To make the content and state of data stored in two separate locations identical (e.g.,
cache, FTP sites).

syntax

The formal rules that determine how keywords or commands and their components need to be
combined when writing the source code of a computer program or forming shell commands.

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (32 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

sysadmin

System administrator. A person who administers a computer system and keeps it working.

system

A computer system; a term loosely used to refer to hardware and/or software. See also
operating system.

TCP

Short for Transmission Control Protocol. A session-oriented streaming transport protocol that
provides sequencing, error detection and correction, flow control, congestion control, and
multiplexing. See also UDP.

TCP/IP

A suite of protocols basic to Internet transmissions, which includes TCP and IP.

terminal

The outlet of a computer, usually consisting of a display for output of text (or possibly graphics)
and a keyboard (and possibly a mouse) for input, used as a device for interaction between the
computer and a user. See also workstation.

terminate

To disconnect, end, finish, quit, stop, and so on.

terminator

A resistive load to indicate the end a chain of devices, usually a SCSI chain or a coax network
chain.

text

A series of characters that can be displayed on a terminal display or printed on paper for human
reading.

TFTP

Short for Tiny FTP. A protocol similar to FTP, but much simpler and even less secure. Used
mainly for cracking computers and booting diskless network clients.

third-party

A company or organization not directly involved in developing an original product. For example,
a software company (such as Red Hat Software) that offers new products to an existing piece of
software (such as Linux).

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (33 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

tools

Programs or utilities that provide administrative functionality, such as a compiler or language
interpreter.

transport layer

The ISO/OSI seven-layer model transport layer provides end-to-end control of a communication
session once the path has been established, allowing processes to exchange data reliably and
sequentially, independent of which systems are communicating and their locations in the
network. The transport layer in TCP/IP is not defined in the same way, although TCP provides
sequencing and error correction. UDP, which is also a transport layer protocol, does not have a
session concept and is unreliable. The TCP/IP transport layer primarily provides multiplexing
through the use of ports.

troubleshoot

The process of finding the reason(s) or problem(s) with networking, programming or hardware.

tune

To make small changes to configuration in order to produce more efficient operation.

TurboLinux

A commercial Linux distribution.

UDP

Short for User Datagram Protocol. A connectionless, unreliable transport protocol that provides
multiplexing and error detection for applications that require a low-cost protocol for one-shot
transactions. See also datagram packet, TCP.

UID

Short for User ID, the numeric identifier used on Linux and Unix systems to specify users.

uninstall

Remove hardware or software from a computer system.

unload

Remove services or software from a server so that more resources (CPU time, disk space, etc.)
become available.

unreliable

In the TCP/IP sense of the term, a protocol that does not perform error correction (relying on
"upper" layers to detect and correct errors, usually through retransmission).

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (34 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

upgrade

To update hardware or software to a better state.

URL

Short for Uniform Resource Locator. An identifier for an address on the Internet, preceded by
the name of the protocol that must be used to reach that address (e.g., ftp://ftp.kernel.org/ or
http://www.oreilly.com/).

USB

Short for Universal Serial Bus. A recently developed bus standard for connecting peripheral
devices in a chain.

user

1. The person that is using the resources of a computer.

2. A person's account or process; identification listed in /etc/passwd.

user interface

See interactive interface.

UTC

Short for Coordinated Universal Time. Official world time, formerly Greenwich Mean Time.

utility

A program to help you do a task easier.

UTP

Short for Untwisted Pair. Network cables with several parallel wires used for Ethernet. The
network usually has a star topology with hubs and does not need terminators.

variable length subnet mask

See CIDR.

vendor

A company that provides a service or a product.

virtual

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (35 of 37) [3/9/2003 11:16:45]

ftp://ftp.kernel.org/
http://www.oreilly.com/

InformIT Online Books > LPI Linux Certification in a Nutshell

Functionality provided without additional hardware or software, often without the user needing
to realize this economy (e.g., virtual memory, virtual console, or virtual web server).

virtual memory

Extra memory made available on a system by using space on a hard disk. Usually referred to as
swap space.

WAN

Short for Wide Area Network. A network that links geographically widespread facilities (and
often LANs at those locations) using point-to-point (leased-line, SLIP, or PPP) or packet-
switched network (X.25, frame relay) links that does not support the broadcast and direct
connection capabilities of LANs.

wildcard

A placeholder used to represent any character or group of characters.

window

A region on a graphical desktop; the user interface for I/O with a child process of the desktop.

Windows NT

A 32-bit operating system available from Microsoft.

WinModem

A modem that has only a Digital Signal Processor and uses MS Windows-specific software to
encode and decode data.

WINS

Short for Windows Internet Naming Service. An automatic NetBIOS name database to resolve
NetBIOS names to IP addresses.

word

A datatype consisting of 2 or 4 bytes; on i386 architectures, a word is 4 bytes (32 bits) in size.

workspace

Computer resources that are assigned to a computer user.

workstation

A computer, usually with a graphical display, for interactive use by an individual. See also
server.

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (36 of 37) [3/9/2003 11:16:45]

InformIT Online Books > LPI Linux Certification in a Nutshell

write permission

Authorization within a filesystem to modify the contents of files and directories.

WWW

Short for World Wide Web. Global distributed archive of HTML documents linked via HTTP.

X Window System

Also known as "X," the X Window System is a graphical windowing environment, originally
created at MIT.

yellow pages

See NIS.

file:///C|/Arquivos%20de%20programas/eDonkey20...Certification%20in%20a%20Nutshell/Glossary.htm (37 of 37) [3/9/2003 11:16:45]

http://safari.informit.com/?xmlid=1-56592-748-6/4071532

	Local Disk
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell
	InformIT Online Books > LPI Linux Certification in a Nutshell

