Data Structures and Algorithms: Table of Contents

Data Structures and Algorithms

Alfred V. Aho, Bell Laboratories, Murray Hill, New
Jersey

John E. Hopcroft, Cornell University, Ithaca, New York
Jeffrey D. Ullman, Stanford University, Stanford,
California

PREFACE

Chapter 1 Design and Analysis of Algorithms

Chapter 2 Basic Data Types

Chapter 3 Trees

Chapter 4 Basic Operations on Sets

Chapter 5 Advanced Set Representation Methods

Chapter 6 Directed Graphs

Chapter 7 Undirected Graphs

Chapter 8 Sorting

Chapter 9 Algorithm Analysis Techniques

Chapter 10 Algorithm Design Techniques

Chapter 11 Data Structures and Algorithms for External Storage

Chapter 12 Memory M anagement

Bibliography

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/toc.htm [1.7.2001 18:57:37]

Preface

Preface)

This book presents the data structures and algorithms that underpin much of today's
computer programming. The basis of this book isthe material contained in the first
six chapters of our earlier work, The Design and Analysis of Computer Algorithms.
We have expanded that coverage and have added material on algorithms for external
storage and memory management. As a consequence, this book should be suitable as
atext for afirst course on data structures and algorithms. The only prerequisite we
assume is familiarity with some high-level programming language such as Pascal.

We have attempted to cover data structures and algorithms in the broader context
of solving problems using computers. We use abstract data types informally in the
description and implementation of algorithms. Although abstract data types are only
starting to appear in widely available programming languages, we feel they area
useful tool in designing programs, no matter what the language.

We aso introduce the ideas of step counting and time complexity as an integral
part of the problem solving process. This decision reflects our longheld belief that
programmers are going to continue to tackle problems of progressively larger size as
machines get faster, and that consequently the time complexity of algorithms will
become of even greater importance, rather than of lessimportance, as new
generations of hardware become available.

The Presentation of Algorithms

We have used the conventions of Pascal to describe our algorithms and data
structures primarily because Pascal is so widely known. Initially we present several
of our algorithms both abstractly and as Pascal programs, because we fedl it is
important to run the gamut of the problem solving process from problem formulation
to arunning program. The algorithms we present, however, can be readily
implemented in any high-level programming language.

Use of the Book

Chapter 1 contains introductory remarks, including an explanation of our view of the
problem-to-program process and the role of abstract datatypesin that process. Also
appearing is an introduction to step counting and "big-oh" and "big-omega" notation.

Chapter 2 introduces the traditional list, stack and queue structures, and the
mapping, which is an abstract data type based on the mathematical notion of a

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/preface.htm (1 of 3) [1.7.2001 18:57:42]

Preface

function. The third chapter introduces trees and the basic data structures that can be
used to support various operations on trees efficiently.

Chapters 4 and 5 introduce a number of important abstract data types that are
based on the mathematical model of a set. Dictionaries and priority queues are
covered in depth. Standard implementations for these concepts, including hash
tables, binary search trees, partially ordered trees, tries, and 2-3 trees are covered,
with the more advanced material clustered in Chapter 5.

Chapters 6 and 7 cover graphs, with directed graphs in Chapter 6 and undirected
graphs in 7. These chapters begin a section of the book devoted more to issues of
algorithms than data structures, although we do discuss the basics of data structures
suitable for representing graphs. A number of important graph algorithms are
presented, including depth-first search, finding minimal spanning trees, shortest
paths, and maximal matchings.

Chapter 8 is devoted to the principal internal sorting algorithms: quicksort,
heapsort, binsort, and the simpler, less efficient methods such asinsertion sort. In
this chapter we also cover the linear-time algorithms for finding medians and other
order statistics.

Chapter 9 discusses the asymptotic analysis of recursive procedures, including,
of course, recurrence relations and techniques for solving them.

Chapter 10 outlines the important techniques for designing algorithms, including
divide-and-conquer, dynamic programming, local search algorithms, and various
forms of organized tree searching.

The last two chapters are devoted to external storage organization and memory
management. Chapter 11 covers external sorting and large-scale storage
organization, including B-trees and index structures.

Chapter 12 contains material on memory management, divided into four
subareas, depending on whether allocations involve fixed or varying sized blocks,
and whether the freeing of blocks takes place by explicit program action or implicitly
when garbage collection occurs.

Material from this book has been used by the authors in data structures and
algorithms courses at Columbia, Cornell, and Stanford, at both undergraduate and
graduate levels. For example, a preliminary version of this book was used at Stanford
in a 10-week course on data structures, taught to a population consisting primarily of
Juniors through first-year graduate students. The coverage was limited to Chapters 1-

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/preface.htm (2 of 3) [1.7.2001 18:57:42]

Preface

4,9, 10, and 12, with parts of 5-7.

Exercises

A number of exercises of varying degrees of difficulty are found at the end of each
chapter. Many of these are fairly straightforward tests of the mastery of the materia
of the chapter. Some exercises require more thought, and these have been singly
starred. Doubly starred exercises are harder still, and are suitable for more advanced
courses. The bibliographic notes at the end of each chapter provide references for
additional reading.

Acknowledgments

We wish to acknowledge Bell Laboratories for the use of its excellent UNIX™-
based text preparation and data communication facilities that significantly eased the
preparation of a manuscript by geographically separated authors. Many of our
colleagues have read various portions of the manuscript and have given us valuable
comments and advice. In particular, we would like to thank Ed Beckham, Jon
Bentley, Kenneth Chu, Janet Coursey, Hank Cox, Neil Immerman, Brian Kernighan,
Steve Mahaney, Craig McMurray, Alberto Mendelzon, Alistair Moffat, Jeff
Naughton, Kerry Nemovicher, Paul Niamkey, Y oshio Ohno, Rob Pike, Chris Rouen,
Maurice Schlumberger, Stanley Selkow, Chengya Shih, Bob Tarjan, W. Van Snyder,
Peter Weinberger, and Anthony Y eracaris for helpful suggestions. Finally, we would
like to give our warmest thanksto Mrs. Claire Metzger for her expert assistance in
hel ping prepare the manuscript for typesetting.

AV.A.
JE.H.
JD.U.

Table of Contents Go to Chapter 1

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/preface.htm (3 of 3) [1.7.2001 18:57:42]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms
4 | b

Design and Analysis of Algorithms

There are many steps involved in writing a computer program to solve a given problem.
The steps go from problem formulation and specification, to design of the solution, to
implementation, testing and documentation, and finally to evaluation of the solution. This
chapter outlines our approach to these steps. Subsequent chapters discuss the algorithms
and data structures that are the building blocks of most computer programs.

1.1 From Problems to Programs

Half the battle is knowing what problem to solve. When initially approached, most
problems have no simple, precise specification. In fact, certain problems, such as creating a
"gourmet" recipe or preserving world peace, may be impossible to formulate in terms that
admit of a computer solution. Even if we suspect our problem can be solved on a compuiter,
there is usually considerable latitude in several problem parameters. Often it isonly by
experimentation that reasonable values for these parameters can be found.

If certain aspects of a problem can be expressed in terms of aformal model, it isusually
beneficial to do so, for once a problem is formalized, we can look for solutions in terms of
aprecise model and determine whether a program already exists to solve that problem.
Even if there is no existing program, at least we can discover what is known about this
model and use the properties of the model to help construct a good solution.

Almost any branch of mathematics or science can be called into service to help model
some problem domain. Problems essentially numerical in nature can be modeled by such
common mathematical concepts as simultaneous linear equations (e.g., finding currentsin
electrical circuits, or finding stresses in frames made of connected beams) or differential
equations (e.g., predicting population growth or the rate at which chemicals will react).
Symbol and text processing problems can be modeled by character strings and formal
grammars. Problems of this nature include compilation (the translation of programs written
in a programming language into machine language) and information retrieval tasks such as
recognizing particular wordsin lists of titles owned by alibrary.

Algorithms

Once we have a suitable mathematical model for our problem, we can attempt to find a
solution in terms of that model. Our initial goal isto find a solution in the form of an
algorithm, which is afinite sequence of instructions, each of which has a clear meaning and
can be performed with afinite amount of effort in afinite length of time. An integer
assignment statement such asx :=y + zis an example of an instruction that can be executed

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (1 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

in afinite amount of effort. In an algorithm instructions can be executed any number of
times, provided the instructions themsel ves indicate the repetition. However, we require
that, no matter what the input values may be, an algorithm terminate after executing afinite
number of instructions. Thus, a program is an algorithm aslong asit never enters an
infinite loop on any input.

There is one aspect of this definition of an algorithm that needs some clarification. We
said each instruction of an algorithm must have a " clear meaning” and must be executable
with a"finite amount of effort." Now what is clear to one person may not be clear to
another, and it is often difficult to prove rigorously that an instruction can be carried out in
afinite amount of time. It is often difficult as well to prove that on any input, a sequence of
instructions terminates, even if we understand clearly what each instruction means. By
argument and counterargument, however, agreement can usually be reached as to whether a
sequence of instructions constitutes an algorithm. The burden of proof lies with the person
claiming to have an agorithm. In Section 1.5 we discuss how to estimate the running time
of common programming language constructs that can be shown to require a finite amount
of time for their execution.

In addition to using Pascal programs as algorithms, we shall often present algorithms
using a pseudo-language that is a combination of the constructs of a programming language
together with informal English statements. We shall use Pascal as the programming
language, but almost any common programming language could be used in place of Pascal
for the algorithms we shall discuss. The following example illustrates many of the stepsin
our approach to writing a computer program.

Example 1.1. A mathematical model can be used to help design atraffic light for a
complicated intersection of roads. To construct the pattern of lights, we shall create a
program that takes as input a set of permitted turns at an intersection (continuing straight on
aroad isa"turn") and partitions this set into as few groups as possible such that al turnsin
agroup are simultaneously permissible without collisions. We shall then associate a phase
of the traffic light with each group in the partition. By finding a partition with the smallest
number of groups, we can construct atraffic light with the smallest number of phases.

For example, the intersection shown in Fig. 1.1 occurs by awatering hole called JoJo's
near Princeton University, and it has been known to cause some navigational difficulty,
especially on the return trip. Roads C and E are oneway, the others two way. There are 13
turns one might make at this intersection. Some pairs of turns, like AB (from A to B) and
EC, can be carried out simultaneously, while others, like AD and EB, cause lines of traffic
to cross and therefore cannot be carried out ssmultaneously. The light at the intersection
must permit turnsin such an order that AD and EB are never permitted at the same time,
while the light might permit AB and EC to be made simultaneoudly.

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (2 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

Fig. 1.1. Anintersection.

We can model this problem with a mathematical structure known as a graph. A graph
consists of a set of points called vertices, and lines connecting the points, called edges. For
the traffic intersection problem we can draw a graph whose vertices represent turns and
whose edges connect pairs of vertices whose turns cannot be performed simultaneously.
For the intersection of Fig. 1.1, thisgraph isshownin Fig. 1.2, and in Fig. 1.3 we see
another representation of this graph asatablewithal inrow i and column j whenever
there is an edge between verticesi and j.

The graph can aid us in solving the traffic light design problem. A coloring of agraphis
an assignment of a color to each vertex of the graph so that no two vertices connected by an
edge have the same color. It is not hard to see that our problem is one of coloring the graph
of incompatible turns using as few colors as possible.

The problem of coloring graphs has been studied for many decades, and the theory of
algorithmstells us alot about this problem. Unfortunately, coloring an arbitrary graph with
asfew colors as possible is one of alarge class of problems called "NP-complete
problems," for which all known solutions are essentially of the type "try al possibilities."
In the case of the coloring problem, "try all possibilities® meansto try all assignments of
colorsto vertices using at first one color, then two colors, then three, and so on, until alegal
coloring isfound. With care, we can be alittle speedier than this, but it is generally
believed that no algorithm to solve this problem can be substantially more efficient than
this most obvious approach.

We are now confronted with the possibility that finding an optimal solution for the
problem at hand is computationally very expensive. We can adopt

Fig. 1.2. Graph showing incompatible turns.

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (3 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

Fig. 1.3. Table of incompatible turns.

one of three approaches. If the graph is small, we might attempt to find an optimal solution
exhaustively, trying al possibilities. This approach, however, becomes prohibitively
expensive for large graphs, no matter how efficient we try to make the program. A second
approach would be to look for additional information about the problem at hand. It may
turn out that the graph has some special properties, which make it unnecessary to try all
possibilities in finding an optimal solution. The third approach is to change the problem a
little and look for a good but not necessarily optimal solution. We might be happy with a
solution that gets close to the minimum number of colors on small graphs, and works
quickly, since most intersections are not even as complex as Fig. 1.1. An agorithm that
quickly produces good but not necessarily optimal solutionsis called a heuristic.

One reasonable heuristic for graph coloring is the following "greedy" algorithm. Initially
we try to color as many vertices as possible with the first color, then as many as possible of
the uncolored vertices with the second color, and so on. To color vertices with a new color,
we perform the following steps.

1. Sealect some uncolored vertex and color it with the new color.

2. Scan thelist of uncolored vertices. For each uncolored vertex, determine whether it
has an edge to any vertex already colored with the new color. If thereisno such
edge, color the present vertex with the new color.

This approach is called "greedy" because it colors a vertex whenever it can, without
considering the potential drawbacks inherent in making such a move. There are situations
where we could color more vertices with one color if we were less "greedy" and skipped
some vertex we could legally color. For example, consider the graph of Fig. 1.4, where
having colored vertex 1 red, we can color vertices 3 and 4 red a so, provided we do not
color 2 first. The greedy algorithm would tell usto color 1 and 2 red, assuming we
considered vertices in numerical order.

Fig. 1.4. A graph.

As an example of the greedy approach applied to Fig. 1.2, suppose we start by coloring
AB blue. We can color AC, AD, and BA blue, because none of these four vertices has an
edge in common. We cannot color BC blue because there is an edge between AB and BC.

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (4 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

Similarly, we cannot color BD, DA, or DB blue because each of these verticesis connected
by an edge to one or more vertices already colored blue. However, we can color DC blue.
Then EA, EB, and EC cannot be colored blue, but ED can.

Now we start a second color, say by coloring BC red. BD can be colored red, but DA
cannot, because of the edge between BD and DA. Similarly, DB cannot be colored red, and
DC isaready blue, but EA can be colored red. Each other uncolored vertex has an edge to a
red vertex, so no other vertex can be colored red.

The remaining uncolored vertices are DA, DB, EB, and EC. If we color DA green, then
DB can be colored green, but EB and EC cannot. These two may be colored with afourth
color, say yellow. The colors are summarized in Fig. 1.5. The "extra" turns are determined
by the greedy approach to be compatible with the turns aready given that color, aswell as
with each other. When the traffic light allows turns of one color, it can also allow the extra
turns safely.

Fig. 1.5. A coloring of the graph of Fig. 1.2.

The greedy approach does not always use the minimum possible number of colors. We
can use the theory of algorithms again to evaluate the goodness of the solution produced. In
graph theory, ak-cliqueis aset of k vertices, every pair of which is connected by an edge.
Obvioudly, k colors are needed to color a k-clique, since no two verticesin a clique may be
given the same color.

In the graph of Fig. 1.2 the set of four vertices AC, DA, BD, EB isa4-clique. Therefore,
no coloring with three or fewer colors exists, and the solution of Fig. 1.5 isoptimal in the
sense that it uses the fewest colors possible. In terms of our original problem, no traffic
light for the intersection of Fig. 1.1 can have fewer than four phases.

Therefore, consider atraffic light controller based on Fig. 1.5, where each phase of the
controller corresponds to acolor. At each phase the turnsindicated by the row of the table
corresponding to that color are permitted, and the other turns are forbidden. This pattern
uses as few phases as possible.

Pseudo-Language and Stepwise Refinement

Once we have an appropriate mathematical model for a problem, we can formulate an
algorithm in terms of that model. The initial versions of the algorithm are often couched in
general statements that will have to be refined subsequently into smaller, more definite
instructions. For example, we described the greedy graph coloring algorithm in terms such
as "select some uncolored vertex." These instructions are, we hope, sufficiently clear that

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (5 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

the reader grasps our intent. To convert such an informal algorithm to a program, however,
we must go through several stages of formalization (called stepwise refinement) until we
arrive at a program the meaning of whose steps are formally defined by a language manual.

Example 1.2. Let us take the greedy algorithm for graph coloring part of the way towards a
Pascal program. In what follows, we assume there is a graph G, some of whose vertices
may be colored. The following program greedy determines a set of vertices called newclr,
al of which can be colored with a new color. The program is called repeatedly, until all
vertices are colored. At acoarse level, we might specify greedy in pseudo-language asin
Fig. 1.6.

procedure greedy (var G: GRAPH; var newclr: SET);
{ greedy assignsto newclr a set of vertices of G that may be
given the same color }

begin
D newclr :=@; T
2 for each uncolored vertex v of G do
3 If visnot adjacent to any vertex in newclr then begin
4 mark v colored,;
5) add v to newclr

end
end; { greedy }

Fig. 1.6. First refinement of greedy algorithm.

We notice from Fig. 1.6 certain salient features of our pseudo-language. First, we use
boldface lower case keywords corresponding to Pascal reserved words, with the same
meaning as in standard Pascal. Upper case types such as GRAPH and SET1 are the names
of "abstract datatypes." They will be defined by Pascal type definitions and the operations
associated with these abstract data types will be defined by Pascal procedures when we
create the final program. We shall discuss abstract data types in more detail in the next two
sections.

The flow-of-control constructs of Pascal, likeif, for, and while, are available for pseudo-
language statements, but conditionals, asin line (3), may be informal statements rather than
Pascal conditional expressions. Note that the assignment at line (1) uses an informal
expression on theright. Also, the for-loop at line (2) iterates over a set.

To be executed, the pseudo-language program of Fig. 1.6 must be refined into a
conventional Pascal program. We shall not proceed all the way to such a program in this
example, but let us give one example of refinement, transforming the if-statement in line
(3) of Fig. 1.6 into more conventional code.

To test whether vertex v is adjacent to some vertex in newclr, we consider each member

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (6 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

w of newclr and examine the graph G to see whether there is an edge between v and w. An
organized way to make thistest is to use found, a boolean variable to indicate whether an
edge has been found. We can replace lines (3)-(5) of Fig. 1.6 by the code in Fig. 1.7.

procedure greedy (var G: GRAPH; var newclr: SET);

begin
D newclr : = &,
2 for each uncolored vertex v of G do begin
(3.1 found :=falseg;
(3.2 for each vertex win newclr do
(3.3 if thereis an edge between vand win G then
(3.9 found :=true;
(3.5 if found = false then begin

{ visadjacent to no vertex in newclr }
(4) mark v colored;
5) add v to newclr
end
end
end; { greedy }

Fig. 1.7. Refinement of part of Fig. 1.6.

We have now reduced our algorithm to a collection of operations on two sets of vertices.
The outer loop, lines (2)-(5), iterates over the set of uncolored vertices of G. The inner
loop, lines (3.2)-(3.4), iterates over the vertices currently in the set newclr. Line (5) adds
newly colored vertices to newclr.

There are avariety of waysto represent setsin a programming language like Pascal. In
Chapters 4 and 5 we shall study several such representations. In this example we can
simply represent each set of vertices by another abstract data type LIST, which here can be
implemented by alist of integers terminated by a specia value null (for which we might
use the value 0). These integers might, for example, be stored in an array, but there are
many other ways to represent LIST's, as we shall seein Chapter 2.

We can now replace the for -statement of line (3.2) in Fig. 1.7 by aloop, wherew is
initialized to be the first member of newclr and changed to be the next member, each time
around the loop. We can also perform the same refinement for the for-loop of line (2) in
Fig. 1.6. Therevised procedure greedy is shown in Fig. 1.8. Thereis still more refinement
to be done after Fig. 1.8, but we shall stop here to take stock of what we have done.

procedure greedy (var G: GRAPH; var newclr: LIST);
{ greedy assigns to newclr those vertices that may be
given the same color }

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (7 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

var
found: boolean;
Vv, W: integer;
begin
newclr ;= @;
v := first uncolored vertex in G;
whilev <> null do begin
found := false;
w = first vertex in newclr;
whilew < > null do begin
if thereis an edge between vand win G then
found := true;
W ;= next vertex in newclr
end;
if found = false do begin
mark v colored,;
add v to newclr

end;
v := next uncolored vertex in G
end
end; { greedy }
Fig. 1.8. Refined greedy procedure.
Summary

In Fig. 1.9 we see the programming process as it will be treated in this book. Thefirst stage
ismodeling using an appropriate mathematical model such as a graph. At this stage, the
solution to the problem is an algorithm expressed very informally.

At the next stage, the algorithm is written in pseudo-language, that is, a mixture of
Pascal constructs and less formal English statements. To reach that stage, the informal
English isreplaced by progressively more detailed sequences of statements, in the process
known as stepwise refinement. At some point the pseudo-language program is sufficiently
detailed that the

Fig. 1.9. The problem solving process.

operations to be performed on the various types of data become fixed. We then create
abstract data types for each type of data (except for the elementary types such as integers,
reals and character strings) by giving a procedure name for each operation and replacing

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (8 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

uses of each operation by an invocation of the corresponding procedure.

In the third stage we choose an implementation for each abstract data type and write the
procedures for the various operations on that type. We also replace any remaining informal
statements in the pseudo-language algorithm by Pascal code. The result isarunning
program. After debugging it will be aworking program, and we hope that by using the
stepwise devel opment approach outlined in Fig. 1.9, little debugging will be necessary.

1.2 Abstract Data Types

Most of the concepts introduced in the previous section should be familiar ideas from a
beginning course in programming. The one possibly new notion is that of an abstract data
type, and before proceeding it would be useful to discuss the role of abstract data typesin
the overall program design process. To begin, it is useful to compare an abstract datatype
with the more familiar notion of a procedure.

Procedures, an essential tool in programming, generalize the notion of an operator.
Instead of being limited to the built-in operators of a programming language (addition,
subtraction, etc.), by using procedures a programmer is free to define his own operators and
apply them to operands that need not be basic types. An example of a procedure used in
thisway isamatrix multiplication routine.

Another advantage of proceduresis that they can be used to encapsulate parts of an
algorithm by localizing in one section of a program all the statements relevant to a certain
aspect of aprogram. An example of encapsulation isthe use of one procedure to read all
input and to check for its validity. The advantage of encapsulation is that we know where to
go to make changes to the encapsul ated aspect of the problem. For example, if we decide to
check that inputs are nonnegative, we need to change only afew lines of code, and we
know just where those lines are.

Definition of Abstract Data Type

We can think of an abstract data type (ADT) as a mathematical model with a collection of
operations defined on that model. Sets of integers, together with the operations of union,
intersection, and set difference, form a simple example of an ADT. Inan ADT, the
operations can take as operands not only instances of the ADT being defined but other
types of operands, e.g., integers or instances of another ADT, and the result of an operation
can be other than an instance of that ADT. However, we assume that at |east one operand,
or the result, of any operation is of the ADT in question.

The two properties of procedures mentioned above -- generalization and encapsulation --
apply equally well to abstract datatypes. ADT's are generalizations of primitive datatypes
(integer, real, and so on), just as procedures are generalizations of primitive operations (+, -

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (9 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

, and so on). The ADT encapsulates a data type in the sense that the definition of the type
and all operations on that type can be localized to one section of the program. If we wish to
change the implementation of an ADT, we know where to look, and by revising one small
section we can be sure that there is no subtlety elsewhere in the program that will cause
errors concerning this data type. Moreover, outside the section in which the ADT's
operations are defined, we can treat the ADT as a primitive type; we have no concern with
the underlying implementation. One pitfall isthat certain operations may involve more than
one ADT, and references to these operations must appear in the sections for both ADT's.

To illustrate the basic ideas, consider the procedure greedy of the previous section
which, in Fig. 1.8, was implemented using primitive operations on an abstract data type
LIST (of integers). The operations performed on the LIST newclr were:

1. makealist empty,
2. get the first member of the list and return null if the list is empty,
3. get the next member of the list and return null if there is no next member, and

4. insert an integer into the list.

There are many data structures that can be used to implement such lists efficiently, and
we shall consider the subject in depth in Chapter 2. In Fig. 1.8, if we replace these
operations by the statements

1. MAKENULL (newclr);
2. W= FIRST (newclr);
3. w:= NEXT(newclr);

4. INSERT (v, newclr);

then we see an important aspect of abstract data types. We can implement a type any way
we like, and the programs, such as Fig. 1.8, that use objects of that type do not change; only
the procedures implementing the operations on the type need to change.

Turning to the abstract data type GRAPH we see need for the following operations:

1. get thefirst uncolored vertex,
2. test whether there is an edge between two vertices,
3. mark avertex colored, and

4. get the next uncolored vertex.

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (10 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

There are clearly other operations needed outside the procedure greedy, such asinserting
vertices and edges into the graph and making all vertices uncolored. There are many data
structures that can be used to support graphs with these operations, and we shall study the
subject of graphsin Chapters 6 and 7.

It should be emphasized that there is no limit to the number of operations that can be
applied to instances of a given mathematical model. Each set of operations defines a
distinct ADT. Some examples of operations that might be defined on an abstract data type
SET are:

1. MAKENULL(A). This procedure makes the null set be the value for set A.

2. UNION(A, B, C). This procedure takes two set-valued arguments A and B, and
assigns the union of A and B to be the value of set C.

3. SIZE(A). Thisfunction takes a set-valued argument A and returns an object of type
integer whose value is the number of elements in the set A.

An implementation of an ADT isatrandation, into statements of a programming
language, of the declaration that defines a variable to be of that abstract datatype, plusa
procedure in that language for each operation of the ADT. An implementation chooses a
data structure to represent the ADT; each data structure is built up from the basic data
types of the underlying programming language using the available data structuring
facilities. Arrays and record structures are two important data structuring facilities that are
available in Pascal. For example, one possible implementation for variable Sof type SET
would be an array that contained the members of S

One important reason for defining two ADT'sto be different if they have the same
underlying model but different operations is that the appropriateness of an implementation
depends very much on the operations to be performed. Much of this book is devoted to
examining some basic mathematical models such as sets and graphs, and developing the
preferred implementations for various collections of operations.

Ideally, we would like to write our programs in languages whose primitive data types
and operations are much closer to the models and operations of our ADT's. In many ways
Pascal is not well suited to the implementation of various common ADT's but none of the
programming languages in which ADT's can be declared more directly is as well known.
See the bibliographic notes for information about some of these languages.

1.3 Data Types, Data Structures and Abstract
Data Types

Although the terms "data type" (or just “type"), "data structure" and "abstract data type"

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (11 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

sound alike, they have different meanings. In a programming language, the data type of a
variable is the set of values that the variable may assume. For example, a variable of type
boolean can assume either the value true or the value false, but no other value. The basic
data types vary from language to language; in Pascal they are integer, real, boolean, and
character. The rules for constructing composite data types out of basic ones also vary from
language to language; we shall mention how Pascal builds such types momentarily.

An abstract data type is a mathematical model, together with various operations defined
on the model. Aswe have indicated, we shall design algorithmsin terms of ADT's, but to
implement an algorithm in a given programming language we must find some way of
representing the ADT's in terms of the data types and operators supported by the
programming language itself. To represent the mathematical model underlying an ADT we
use data structures, which are collections of variables, possibly of several different data
types, connected in various ways.

The cell isthe basic building block of data structures. We can picture a cell as a box that
is capable of holding a value drawn from some basic or composite data type. Data
structures are created by giving names to aggregates of cells and (optionally) interpreting
the values of some cells as representing connections (e.g., pointers) among cells.

The simplest aggregating mechanism in Pascal and most other programming languages
isthe (one-dimensional) array, which is a sequence of cells of a given type, which we shall
often refer to as the celltype. We can think of an array as a mapping from an index set (such
astheintegersy, 2, ..., n) into the celltype. A cell within an array can be referenced by
giving the array name together with a value from the index set of the array. In Pascal the
index set may be an enumerated type, such as (north, east, south, west), or a subrange type,
such as 1..10. The valuesin the cells of an array can be of any one type. Thus, the
declaration

name: ar r ay[indextype] of celltype;

declares name to be a sequence of cells, one for each value of type indextype; the contents
of the cells can be any member of type celltype.

Incidentally, Pascal is somewhat unusual in its richness of index types. Many languages
allow only subrange types (finite sets of consecutive integers) as index types. For example,
to index an array by lettersin Fortran, one must simulate the effect by using integer indices,
such as by using index 1 to stand for 'A’, 2 to stand for 'B', and so on.

Another common mechanism for grouping cells in programming languagesis the record
structure. A recordisacell that is made up of a collection of cells, called fields, of possibly
dissimilar types. Records are often grouped into arrays; the type defined by the aggregation
of the fields of arecord becomes the "celltype" of the array. For example, the Pascal
declaration

http://www.ourstillwaters.org/stillwaters/csteaching/DataStructuresAndAlgorithms/mf1201.htm (12 of 37) [1.7.2001 18:58:22]

Data Structures and Algorithms: CHAPTER 1: Design and Analysis of Algorithms

var
reclist: array|l..4] of record
data: redl;
next: integer
end

declares reclist to be a four-element array, whose cells are records with two fields, data and
next.

A third grouping method found in Pascal and some other languagesisthefile. Thefile,
like the one-dimensional array, is a sequence of values of some particular type. However, a
file has no index type; elements can be accessed only in the order of their appearance in the
file. In contrast, both the array and the record are "random-access" structures, meaning that
the time needed to access a component of an array or record is independent of the value of
the array index or field selector. The compensating benefit of grouping by file, rather than
by array, isthat the number of elementsin afile can be time-varying and unlimited.

Pointers and Cursors

In addition to the cell-grouping features of a programming language, we can represent

rel ationships between cells using pointers and cursors. A pointer isacell whose value
indicates another cell. When we draw pictures of data structures, we indicate the fact that
cell Aisapointer to cell B by drawing an arrow from A to B.

In Pascal, we can create a pointer variable ptr that will point to cells of agiven type, say
celltype, by the declaration

var
ptr: 1 celltype

A postfix up-arrow is used in Pascal as the dereferencing operator, so the expression ptr t
denotes the value (of type celltype) in the cell pointed to by ptr.

A cursor isan integer-valued cell, used as a pointer to an array. As a method of
connection, the cursor is essentially the same as a pointer, but a cursor can be used in
languages like Fortran that do not have explicit pointer types as Pascal does. By treating a
cell of type integer as an index value for some array, we effectively make that cell point to
one cell of the array. This technique, unfortunately, works only when cells of arrays are
pointed to; there is no reasonable way to interpret an integer as a"pointer” to acell that is
not part of an array.

