
Perl version 5.10.0 documentation - Switch

Page 1http://perldoc.perl.org

NAME
Switch - A switch statement for Perl

VERSION
This document describes version 2.11 of Switch,
 released Nov 22, 2006.

SYNOPSIS
    use Switch;

    switch ($val) {
	 case 1		 { print "number 1" }
	 case "a"	 { print "string a" }
	 case [1..10,42]	 { print "number in list" }
	 case (@array)	 { print "number in list" }
	 case /\w+/	 { print "pattern" }
	 case qr/\w+/	 { print "pattern" }
	 case (%hash)	 { print "entry in hash" }
	 case (\%hash)	 { print "entry in hash" }
	 case (\&sub)	 { print "arg to subroutine" }
	 else		 { print "previous case not true" }
    }

BACKGROUND
[Skip ahead to DESCRIPTION if you don't care about the whys
 and wherefores of this control 
structure]

In seeking to devise a "Swiss Army" case mechanism suitable for Perl,
 it is useful to generalize this 
notion of distributed conditional
 testing as far as possible. Specifically, the concept of "matching"

between the switch value and the various case values need not be
 restricted to numeric (or string or 
referential) equality, as it is in other languages. Indeed, as Table 1 illustrates, Perl
 offers at least 
eighteen different ways in which two values could
 generate a match.

	 Table 1: Matching a switch value ($s) with a case value ($c)

        Switch  Case    Type of Match Implied   Matching Code
        Value   Value
        ======  =====   =====================   =============

        number  same    numeric or referential  match if $s == $c;
        or ref          equality

	 object  method	 result of method call   match if $s->$c();
	 ref     name 				 match if defined $s->$c();
		 or ref

        other   other   string equality         match if $s eq $c;
        non-ref non-ref
        scalar  scalar

        string  regexp  pattern match           match if $s =~ /$c/;

        array   scalar  array entry existence   match if 0<=$c && $c<@$s;
        ref             array entry definition  match if defined $s->[$c];



Perl version 5.10.0 documentation - Switch

Page 2http://perldoc.perl.org

                        array entry truth       match if $s->[$c];

        array   array   array intersection      match if intersects(@$s, 
@$c);
        ref     ref     (apply this table to
                         all pairs of elements
                         $s->[$i] and
                         $c->[$j])

        array   regexp  array grep              match if grep /$c/, @$s;
        ref

        hash    scalar  hash entry existence    match if exists $s->{$c};
        ref             hash entry definition   match if defined $s->{$c};
                        hash entry truth        match if $s->{$c};

        hash    regexp  hash grep               match if grep /$c/, keys 
%$s;
        ref

        sub     scalar  return value defn       match if defined $s->($c);
        ref             return value truth      match if $s->($c);

        sub     array   return value defn       match if defined $s->(@$c);
        ref     ref     return value truth      match if $s->(@$c);

In reality, Table 1 covers 31 alternatives, because only the equality and
 intersection tests are 
commutative; in all other cases, the roles of
 the $s and $c variables could be reversed to produce a

different test. For example, instead of testing a single hash for
 the existence of a series of keys (
match if exists $s->{$c}),
 one could test for the existence of a single key in a series of 
hashes
 (match if exists $c->{$s}).

DESCRIPTION
The Switch.pm module implements a generalized case mechanism that covers
 most (but not all) of 
the numerous possible combinations of switch and case
 values described above.

The module augments the standard Perl syntax with two new control
 statements: switch and case. 
The switch statement takes a
 single scalar argument of any type, specified in parentheses. switch 
stores this value as the
 current switch value in a (localized) control variable.
 The value is followed by 
a block which may contain one or more
 Perl statements (including the case statement described 
below).
 The block is unconditionally executed once the switch value has
 been cached.

A case statement takes a single scalar argument (in mandatory
 parentheses if it's a variable; 
otherwise the parens are optional) and
 selects the appropriate type of matching between that 
argument and the
 current switch value. The type of matching used is determined by the
 respective 
types of the switch value and the case argument, as
 specified in Table 1. If the match is successful, 
the mandatory
 block associated with the case statement is executed.

In most other respects, the case statement is semantically identical
 to an if statement. For example,
it can be followed by an else
 clause, and can be used as a postfix statement qualifier.

However, when a case block has been executed control is automatically
 transferred to the statement 
after the immediately enclosing switch
 block, rather than to the next statement within the block. In 
other
 words, the success of any case statement prevents other cases in the
 same scope from 
executing. But see Allowing fall-through below.




