
Perl version 5.10.0 documentation - Storable

Page 1http://perldoc.perl.org

NAME
Storable - persistence for Perl data structures

SYNOPSIS
 use Storable;
 store \%table, 'file';
 $hashref = retrieve('file');

 use Storable qw(nstore store_fd nstore_fd freeze thaw dclone);

 # Network order
 nstore \%table, 'file';
 $hashref = retrieve('file'); 	 # There is NO nretrieve()

 # Storing to and retrieving from an already opened file
 store_fd \@array, *STDOUT;
 nstore_fd \%table, *STDOUT;
 $aryref = fd_retrieve(*SOCKET);
 $hashref = fd_retrieve(*SOCKET);

 # Serializing to memory
 $serialized = freeze \%table;
 %table_clone = %{ thaw($serialized) };

 # Deep (recursive) cloning
 $cloneref = dclone($ref);

 # Advisory locking
 use Storable qw(lock_store lock_nstore lock_retrieve)
 lock_store \%table, 'file';
 lock_nstore \%table, 'file';
 $hashref = lock_retrieve('file');

DESCRIPTION
The Storable package brings persistence to your Perl data structures
 containing SCALAR, ARRAY,
HASH or REF objects, i.e. anything that can be
 conveniently stored to disk and retrieved at a later
time.

It can be used in the regular procedural way by calling store with
 a reference to the object to be
stored, along with the file name where
 the image should be written.

The routine returns undef for I/O problems or other internal error,
 a true value otherwise. Serious
errors are propagated as a die exception.

To retrieve data stored to disk, use retrieve with a file name.
 The objects stored into that file are
recreated into memory for you,
 and a reference to the root object is returned. In case an I/O error

occurs while reading, undef is returned instead. Other serious
 errors are propagated via die .

Since storage is performed recursively, you might want to stuff references
 to objects that share a lot
of common data into a single array or hash
 table, and then store that object. That way, when you
retrieve back the
 whole thing, the objects will continue to share what they originally shared.

At the cost of a slight header overhead, you may store to an already
 opened file descriptor using the
store_fd routine, and retrieve
 from a file via fd_retrieve . Those names aren't imported by
default,
 so you will have to do that explicitly if you need those routines.
 The file descriptor you supply

