
Perl version 5.10.0 documentation - Safe

Page 1http://perldoc.perl.org

NAME
Safe - Compile and execute code in restricted compartments

SYNOPSIS
 use Safe;

 $compartment = new Safe;

 $compartment->permit(qw(time sort :browse));

 $result = $compartment->reval($unsafe_code);

DESCRIPTION
The Safe extension module allows the creation of compartments
 in which perl code can be evaluated.
Each compartment has

a new namespace

The "root" of the namespace (i.e. "main::") is changed to a
 different package and code
evaluated in the compartment cannot
 refer to variables outside this namespace, even
with run-time
 glob lookups and other tricks.

Code which is compiled outside the compartment can choose to place
 variables into
(or share variables with) the compartment's namespace
 and only that data will be
visible to code evaluated in the
 compartment.

By default, the only variables shared with compartments are the
 "underscore"
variables $_ and @_ (and, technically, the less frequently
 used %_, the _ filehandle
and so on). This is because otherwise perl
 operators which default to $_ will not work
and neither will the
 assignment of arguments to @_ on subroutine entry.

an operator mask

Each compartment has an associated "operator mask". Recall that
 perl code is
compiled into an internal format before execution.
 Evaluating perl code (e.g. via "eval"
or "do 'file'") causes
 the code to be compiled into an internal format and then,
 provided
there was no error in the compilation, executed.
 Code evaluated in a compartment
compiles subject to the
 compartment's operator mask. Attempting to evaluate code in
a
 compartment which contains a masked operator will cause the
 compilation to fail
with an error. The code will not be executed.

The default operator mask for a newly created compartment is
 the ':default' optag.

It is important that you read the Opcode module documentation
 for more information,
especially for detailed definitions of opnames,
 optags and opsets.

Since it is only at the compilation stage that the operator mask
 applies, controlled
access to potentially unsafe operations can
 be achieved by having a handle to a
wrapper subroutine (written
 outside the compartment) placed into the compartment.
For example,

 $cpt = new Safe;
 sub wrapper {
 # vet arguments and perform potentially unsafe
operations
 }
 $cpt->share('&wrapper');

