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Preface

Rcpp is an R add-on package which facilitates extending R with C++ functions.
It is being used for anything from small and quickly constructed add-on functions

written either to fluidly experiment with something new or to accelerate comput-
ing by replacing an R function with its C++ equivalent to large-scale bindings
for existing libraries, or as a building block in entirely new research computing
environments.

While still relatively new as a project, Rcpp has already become widely deployed
among users and developers in the R community. Rcpp is now the most popular
language extension for the R system and used by over 100 CRAN packages as well
as ten BioConductor packages.

This books aims to provide a solid introduction to Rcpp.

Target Audience

This book is for R users who would like to extend R with C++ code. Some famil-
iarity with R is certainly helpful; a number of other books can provide refreshers or
specific introductions. C++ knowledge is also helpful, though not strictly required.
An appendix provides a very brief introduction for C++ to those familiar only with
the R language.

The book should also be helpful to those coming to R with more of a C++ pro-
gramming background. However, additional background reading may be required to
obtain a firmer grounding in R itself. Chambers (2008) is a good introduction to the
philosophy behind the R system and a helpful source in order to acquire a deeper
understanding.

There may also be some readers who would like to see how Rcpp works inter-
nally. Covering that aspect, however, requires a fairly substantial C++ content and
is not what this book is trying to provide. The focus of this book is clearly on how
to use Rcpp.
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Historical Context

Rcpp first appeared in 2005 as a (fairly small when compared to its current size)
contribution by Dominick Samperi to the RQuantLib package started by Eddel-
buettel in 2002 (Eddelbuettel and Nguyen 2012). Rcpp became a CRAN pack-
age in its own name in early 2006. Several releases (all provided by Samperi) fol-
lowed in quick succession under the name Rcpp. The package was then renamed to
RcppTemplate; several more releases followed during 2006 under the new name.
However, no new releases were made during 2007, 2008, or most of 2009. Follow-
ing a few updates in late 2009, the RcppTemplate package has since been archived
on CRAN for lack of active maintenance.

Given the continued use of the package, Eddelbuettel decided to revitalize it.
New releases, using the original name Rcpp, started in November 2008. These in-
cluded an improved build and distribution process, additional documentation, and
new functionality—while retaining the existing “classic Rcpp” interface. While not
described here, this API will continue to be provided and supported via the Rcpp-
Classic package (Eddelbuettel and François 2012c).

Reflecting evolving C++ coding standards (see Meyers 2005), Eddelbuettel and
François started a significant redesign of the code base in 2009. This added numer-
ous new features, many of which are described in the package via different vignettes.
This redesigned version of Rcpp (Eddelbuettel and François 2012a) has become
widely used with over ninety CRAN packages depending on it as of November
2012. It is also the version described in this book.

Rcpp continues to be under active development, and extensions are being added.
The content described here shall remain valid and supported.

Related Work

Integration of C++ and R has been addressed by several authors; the earliest pub-
lished reference is probably Bates and DebRoy (2001). The “Writing R Extensions”
manual (R Development Core Team 2012d) has also been mentioning C++ and R
integration since around that time. An unpublished paper by Java et al. (2007) ex-
presses several ideas that are close to some of our approaches, though not yet fully
fleshed out. The Rserve package (Urbanek 2003, 2012) acts as a socket server for
R. On the server side, Rserve translates R data structures into a binary serialization
format and uses TCP/IP for transfer. On the client side, objects are reconstructed as
instances of Java or C++ classes that emulate the structure of R objects.

The packages rcppbind (Liang 2008), RAbstraction (Armstrong 2009a), and
RObjects (Armstrong 2009b) are all implemented using C++ templates. None of
them have matured to the point of a CRAN release. CXXR (Runnalls 2009) ap-
proaches this topic from the other direction: its aim is to completely refactor R on
a stronger C++ foundation. CXXR is therefore concerned with all aspects of the
R interpreter, read-eval-print loop (REPL), and threading; object interchange be-
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tween R and C++ is but one part. A similar approach is discussed by Temple Lang
(2009a) who suggests making low-level internals extensible by package developers
in order to facilitate extending R. Temple Lang (2009b), using compiler output for
references on the code in order to add bindings and wrappers, offers a slightly dif-
ferent angle. Lastly, the rdyncall package (Adler 2012) provides a direct interface
from R into C language APIs. This can be of interest if R programmers want to ac-
cess lower-level programming interfaces directly. However, it does not aim for the
same object-level interchange that is possible via C++ interfaces, and which we
focus on with Rcpp.

Typographic Convention

The typesetting follows the usage exemplified both by the publisher, and by the
Journal of Statistical Software. We use

• Sans-serif for programming language such as R or C++
• Boldface for (CRAN or other) software packages such as Rcpp or inline
• Courier for short segments of code or variables such as x <- y + z

We make use of a specific environment for the short pieces of source code inter-
woven with the main text.

River Forest, IL, USA Dirk Eddelbuettel
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Chapter 1
A Gentle Introduction to Rcpp

Abstract This initial chapter provides a first introduction to Rcpp. It uses a
somewhat slower pace and generally more gentle approach than the rest of the
book in order to show key concepts which are revisited and discussed in more depth
throughout the remainder. So the aim of this chapter is to cover a fairly wide range of
material, but at a more introductory level for an initial overview. Two larger exam-
ples are studied in detail. We first compute the Fibonacci sequence in three different
ways in two languages. Second, we simulate from a multivariate dynamic model
provided by a vector autoregression.

1.1 Background: From R to C++

R is both a powerful interactive environment for data analysis, visualization, and
modeling and an expressive programming language designed and built to sup-
port these tasks. The interactive nature of working with data—through data dis-
plays, summaries, model estimation, simulation, and numerous other tasks—is a
key strength of the R environment. And, so is the R programming language which
permits use from interactive explorations to small scripts and all the way to com-
plete implementations of new functionality. This R programming language is in fact
a dialect of the S programming language initially developed by Bell Labs.

The dual nature of interactive analysis, as well as programming, is no accident.
As succinctly expressed in the title of one of the books on the S language (which
has provided the foundations upon which R is built), it is designed to support Pro-
gramming with Data (Chambers 1998). That is a rather unique proposition as far
as programming languages go. As a domain-specific language (DSL), R is tailored
specifically to support and enable data analysis work. Moreover, there is also a par-
ticular focus on research use for developing new and exciting approaches, as well
as solidifying existing approaches. R and its predecessor S are not static languages:
they have evolved since the first designs well over thirty years ago and continue to
evolve today.

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
DOI 10.1007/978-1-4614-6868-4 1, © The Author 2013
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To mention just one example of this evolution, object orientation in R is sup-
ported by the S3 and S4 class systems, as well as the newer Reference Classes. Of
course, such flexibility of having alternate approaches can also be seen as a weak-
ness. It may lead to yet more material which language beginners may find perplex-
ing, and it may lead to small inconsistencies which may confuse intermediate and
advanced users. Coincidentally, similar concerns are also sometimes raised about
the C++ language. These arguments have some merit, but on the margin more
useful and actually used languages are preferable to those that are very cleanly de-
signed, yet not used much.

Having a proper programming language is a key feature supporting rigorous and
reproducible research: by encoding all steps of a data analysis and estimation in a
script or program, the analyst makes every aspect of the process explicit and thereby
ensures full reproducibility.

Consider the first example which is presented below. It is a slightly altered ver-
sion of an example going back to a post by Greg Snow to the r-help mailing list.

1 xx <- faithful$eruptions
fit <- density(xx)

3 plot(fit)

Listing 1.1 Plotting a density in R

We assign a new variable xx by extracting the named component eruptions
of the (two-column) data.frame faithful included with the R system. The data
set contains waiting times between eruptions, as well as eruption duration times, at
the Old Faithful geyser in the Yellowstone National Park in the USA. To estimate the
density function of eruption duration based on this data, we then call the R function
density (which uses default arguments besides the data we pass in). This function
returns an object we named fit, and the plot function then visualizes it as shown
in the corresponding Fig. 1.1.

This is a nice example, and it illustrates some features of R such as the object-
oriented nature in which we can simply plot an object returned from a modeling
function. However, this example was introduced primarily to provide the basis for
an extension also provided by Greg Snow and shown in the next listing.

1 xx <- faithful$eruptions
fit1 <- density(xx)

3 fit2 <- replicate(10000, {
x <- sample(xx,replace=TRUE);

5 density(x, from=min(fit1$x), to=max(fit1$x))$y
})

7 fit3 <- apply(fit2, 1, quantile,c(0.025,0.975))
plot(fit1, ylim=range(fit3))

9 polygon(c(fit1$x,rev(fit1$x)),
c(fit3[1,], rev(fit3[2,])),

11 col=’grey’, border=F)
lines(fit1)

Listing 1.2 Plotting a density and bootstrapped confidence interval in R



1.1 Background: From R to C++ 5

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = xx)

N = 272   Bandwidth = 0.3348

D
en

si
ty

Fig. 1.1 Plotting a density in R

The first two lines are identical apart from now assigning to an object fit1
holding the estimated density. Lines three to six execute a minimal bootstrapping
exercise. The replicate() function repeats N (here 10,000) times the code sup-
plied in the second argument. Here, this argument is a code block delimited by
braces, containing two instructions. The first instruction creates a new data set by
resampling with replacement from the original data. The second instruction then es-
timates a density on this resampled data. This time the data range is limited to the
range of the initial estimated in fit1; this ensures that the bootstrapped density is
estimated on the same grid of x values as in fit1. For this data set, the grid con-
tains 512 points. We retain only the y coordinates of the fit—these will be collected
as the N columns in the resulting object fit2 making this a matrix of dimension
512×N.

The next command on line 7 then applies the quantile() function to each of
the 512 rows in fit2, returning the 2.5% and 97.5% quantiles, and creating a new
matrix of dimension 2× 512 where the two rows contains the quantile estimates at
each grid point for the x axis. We then plot the initial fit, adjusting the y-axis to the
range of quantile estimates. Next, we add a gray polygon defined by the x grid and
the quantile estimates which visualizes the bootstrapped 95% confidence interval
of the initial density estimate. Finally, we replot the fit1 density over the gray
polygon. The resulting plot is shown in Fig. 1.2.

The main takeaway of this second example is that with just a handful of lines of
code, we can deploy fairly sophisticated statistical modeling functions (such as the
density estimate) and even provide a complete resampling strategy. This uses the
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Fig. 1.2 Plotting a density and bootstrapped confidence interval in R

same estimation function in a nonparametric bootstrap to also provide a confidence
interval for the estimation, and finally plots both. Few languages besides R are this
expressive and powerful for working with data.

A key aspect of the internal implementation of R is that its own core interpreter
and extension mechanism are implemented in the C language. C is often used for
system programming as it is reasonably lean and fast, yet also very portable and
easily available on most hardware platforms. A key advantage of C is that it is
extensible via external libraries and modules. R takes full advantage of this, and so
does the Rcpp extension featured in this book. The principal goal of Rcpp is to
make writing these extensions easier and less error-prone. The aim of this book is to
show how this can be accomplished with what we consider relative ease compared
to the standard C interface.

The C language is also closely related to the C++ language which can be seen
as an extension and superset. There are some small quibbles about a few minor
aspects of C which do not carry over to C++ but we can safely ignore these for our
purposes. C++ has been called “a federation of [four] languages” (Meyers 2005).
This offers new and unique programming aspects and, in particular, provides a key
match to the object-model in R (even if the terminology and philosophy of object-
oriented programming differs between R and C++ ). Appendix A provides a very
brief introduction to the C++ language.
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1.2 A First Example

1.2.1 Problem Setting

Let us consider a concrete first example which requires only basic mathematics.
This particular problem was first suggested in a post1 at the StackOverflow site.

The Fibonacci sequence Fn is defined as a recursive sum of the two preceding
terms in the same sequence:

Fn = Fn−1 +Fn−2 (1.1)

with these two initial conditions

F0 = 0 and F1 = 1

so that the first ten numbers of the sequence F0 to F9 are seen to be

0,1,1,2,3,5,8,13,21,34.

Here, we follow the convention of starting the Fibonacci sequence at F0; there are
other discussions which begin the recursion with F1 which would require slightly
altered code in the examples shown below.

Fibonacci sequences have long been studied, and the corresponding Wikipedia
page2 provides additional resources. Fibonacci sequences can also be visualized:
Fig. 1.3 shows the so-called Fibonacci spiral built from the first 34 Fibonacci
numbers.

1.2.2 A First R Solution

The classic approach of implementing the computation of a Fibonacci number Fn

for a given value of n is to evaluate equation 1.1 directly. This commonly leads to a
simple recursive function.

In R this could be written as follows:

fibR <- function(n) {
2 if (n == 0) return(0)

if (n == 1) return(1)
4 return (fibR(n - 1) + fibR(n - 2))
}

Listing 1.3 Fibonacci number in R via recursion

1 See http://stackoverflow.com/questions/6807068/.
2 See http://en.wikipedia.org/wiki/Fibonacci_number.

http://stackoverflow.com/questions/6807068/
http://en.wikipedia.org/wiki/Fibonacci_number
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Fig. 1.3 Fibonacci spiral based on first 34 Fibonacci numbers

Source: http://en.wikipedia.org/wiki/File:Fibonacci_spiral_34.svg,
released under Public Domain

This simple function has several key features:

• It is very short.
• It does not test for wrong input values less than zero.
• It is easy to comprehend.
• It is a very faithful rendition of the relationship in Eq. 1.1.

However, it also has a key disadvantage: it is very inefficient. Consider the cal-
culation of F5. Via the recursion in Eq. 1.1, this becomes the sum of F3 and F4.
But already when we compute F4 as the sum of F3 and F2, we note that we end up
recomputing F3. Similarly, F2 will be computed several times too. In fact, formal
analysis reveals that the algorithm is exponential in n—in other words its run-time
increases at an exponential rate relative to the argument n. This type of performance
is worst-in-class, leading to a search for alternative approaches.

Another concern specific to R is that function calls are not particularly light-
weight, which makes recursive function calls particularly unattractive. Naturally,
for both these reasons, many better algorithms have been suggested and we will
discuss two other approaches below.

1.2.3 A First C++ Solution

A simple solution to compute Fn much faster using the same simple and intuitive
algorithm is to switch to C or C++ . We can write a simple C++ version as follows:

1 int fibonacci(const int x) {
if (x == 0) return(0);

3 if (x == 1) return(1);
return (fibonacci(x - 1)) + fibonacci(x - 2);

5 }

Listing 1.4 Fibonacci number in C++ via recursion

http://en.wikipedia.org/wiki/File:Fibonacci_spiral_34.svg
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The function is recursive just like the preceding version. For simplicity, it also
operates without checking its input arguments.

In order to call it from R, we need to use a wrapper function as R prescribes a
very particular interface via its .Call() function: all variables used at the inter-
face have to be of pointer to S expression type, or SEXP. There are alternatives to
.Call(), but as we will discuss in Chap. 2, .Call() is our preferred interface as
we can transfer whole objects from R to C++ and back which is not possible with
the alternatives. So without going into details at this point, a suitable wrapper is

1 extern "C" SEXP fibWrapper(SEXP xs) {
int x = Rcpp::as<int>(xs);

3 int fib = fibonacci(x);
return (Rcpp::wrap(fib));

5 }

Listing 1.5 Fibonacci wrapper in C++

This uses two key Rcpp tools, the converter functions as and wrap. The first,
as, is used to convert the incoming argument xs from SEXP to integer. Similarly,
wrap converts the integer result in the integer variable fib to the SEXP type re-
turned by a function used with .Call().

1.2.4 Using Inline

The next steps are to compile these two functions, to link them into a so-called
shared library (which can be loaded at run-time by a system such as R), and to
actually load it. These three steps do sound a little tedious and labor-intensive, and
they are. So it is at this point that we introduce another very powerful helper: the
inline package (Sklyar et al. 2012).

inline, written mostly by Oleg Sklyar, brings an idea to R which has been used
with other dynamically extensible scripting languages. By providing a complete
wrapper around the compilation, linking, and loading steps, the programmer can
concentrate on the actual code (in either one of the supported languages C, C++,
or Fortran) and forget about the operating-system specific details of compilation,
linking, and loading. A single entry point, the function cxxfunction() can be
used to turn code supplied as a text variable into an executable function.

1 ## we need a pure C/C++ function as the generated function
## will have a random identifier at the C++ level preventing

3 ## us from direct recursive calls
incltxt <- ’

5 int fibonacci(const int x) {
if (x == 0) return(0);

7 if (x == 1) return(1);
return fibonacci(x - 1) + fibonacci(x - 2);

9 }’
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11 ## now use the snipped above as well as one argument conversion
## in as well as out to provide Fibonacci numbers via C++

13 fibRcpp <- cxxfunction(signature(xs="int"),
plugin="Rcpp",

15 incl=incltxt,
body=’

17 int x = Rcpp::as<int>(xs);
return Rcpp::wrap( fibonacci(x) );

19 ’)

Listing 1.6 Fibonacci number in C++ via recursion, using inline

We actually supply two arguments, the pure C++ function and the wrapper func-
tion. The pure C++ function is passed as an argument to the includes argument
which allows us to pass additional include directives, or even function or class def-
initions as seen here. This code passed to the includes variable is included un-
altered in the code prepared by inline. The main body of the function is supplied
as the argument to the argument body. The function cxxfunction writes the
function signature (i.e., its interface defining the variables going in) using the infor-
mation from the signature variable (here: a single argument named xs) and sets
up the code to also use Rcpp features by selecting its plugin. We also note that the
function body supplied here is identical to the wrapper functions detailed above.

Once cxxfunction has been run successfully, the resulting function created
as a result (here: fibRcpp()) can be called just like any other R function.

In particular, we can time the execution and compare it to the first solution
based on the initial R implementation. The results, obtained from running the
script fibonacci.r included as an example in the Rcpp package, are shown in
Table 1.1. The actual timing is undertaken by the package rbenchmark
(Kusnierczyk 2012).

Table 1.1 Run-time performance of the recursive Fibonacci examples

Function N Elapsed time Relative
(s) (ratio)

fibRcpp 1 0.092 1.00
fibR 1 62.288 677.04
(byte-compiled) fibR 1 62.711 681.64

The compiled version is over 600 times faster, showing that recursive function
calls do indeed exert a cost on R performance. We also notice that byte-compiling
the R function does not make a difference as the results are essentially unchanged.

The takeaway from this section is that there is obvious merit in replacing sim-
ple R code with simple C++ code. Writing the Fibonacci recurrence as a simple
three-line function is natural. Switching implementation languages to C++ very
significantly boosts run-time performance as we have seen with certain values of
the argument n. However, no matter what the chosen implementation language, an
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exponential algorithm will eventually be inapplicable provided the argument n is
large enough.

For those cases, better algorithms help, and we will look at two different imple-
mentations below. It should, however, be stressed that faster implementation lan-
guages and better algorithms are not exclusive as we can combine both as we will
do in the remainder of the chapter.

1.2.5 Using Rcpp Attributes

The inline package discussed in the previous section has become very widely used
due to both its versatility and its robustness from fairly wide testing. As we have
seen, it permits us to quickly extend R with compiled code directly from the R
session.

More recently, inline has been complemented by a new approach that arrived
with version 0.10.0 of the Rcpp package. This approach borrows from an upcoming
(but not yet widely available) feature in the new C++ standard—the “attributes”—
but implements it internally. The programmer simply declares certain “attributes,”
notably whether a function is to be exported for use from R or from another C++
function (or both). One can declare dependencies whose resolution still relies on the
plugin framework provided by inline. Used this way, the “Rcpp attribute” frame-
work can automate more aspects of the type conversion and marshaling of variables.

A simple example, once again on the Fibonacci sequence, follows:

1

#include <Rcpp.h>
3 using namespace Rcpp;

5 // [[Rcpp::export]]
int fibonacci(const int x) {

7 if (x < 2)
return x;

9 else
return (fibonacci(x - 1)) + fibonacci(x - 2);

11 }

Listing 1.7 Fibonacci number in C++ via recursion, using Rcpp attributes

The key element to note here is the [[Rcpp::export]] attribute preceding
the function definition.

This can be used as easily as shown in the following example:

1 R> sourceCpp("fibonacci.cpp")
R> fibonacci(20)

3 [1] 6765

Listing 1.8 Fibonacci number in C++ via recursion, via Rcpp attributes and sourceCpp
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The new function sourceCpp() reads the code from the given source file,
parses it for the relevant attributes, and creates the required wrappers before calling
R to compile and link just like inline does.

Note, however, that we did not have to specify a wrapper function, and that we
obtain a single function fibonacci() which can operate through recursion.

The new “Rcpp attributes” will be discussed more in Sect. 2.6 where we revisit
the same example using the cppFunction()which operates on a character string
containing the program, rather than a file.

1.2.6 A Second R Solution

One elegant solution to retain the basic recursive structure of the algorithm with-
out incurring the cost of repeated computation of the same value is provided by a
method called memoization. Here, the Fibonacci number N is computed for each
value between 1 and N − 1 and stored. On the next computation, the precomputed
value is recalled, as opposed to starting the full recursion. An R solution with mem-
oization can be written as follows (and is courtesy of Pat Burns)

1 ## memoization solution courtesy of Pat Burns
mfibR <- local({

3 memo <- c(1, 1, rep(NA, 1000))
f <- function(x) {

5 if (x == 0) return(0)
if (x < 0) return(NA)

7 if (x > length(memo))
stop("x too big for implementation")

9 if (!is.na(memo[x])) return(memo[x])
ans <- f(x-2) + f(x-1)

11 memo[x] <<- ans
ans

13 }
})

Listing 1.9 Fibonacci number in R via memoization

If a value for argument n has already been encountered, it is used. Otherwise, it
is computed and stored in vector memo. This ensures that the recursive function is
called exactly once for each possible value of n, which results in a dramatic speedup.

1.2.7 A Second C++ Solution

We can also use memoization in C++. A simple solution is provided by the following
piece of code:

## memoization using C++
2 mincltxt <- ’
#include <algorithm>
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4 #include <vector>
#include <stdexcept>

6 #include <cmath>
#include <iostream>

8

class Fib {
10 public:

Fib(unsigned int n = 1000) {
12 memo.resize(n); // reserve n elements

std::fill( memo.begin(), memo.end(), NAN ); // set to NaN
14 memo[0] = 0.0; // initialize for

memo[1] = 1.0; // n=0 and n=1
16 }

double fibonacci(int x) {
18 if (x < 0) // guard against bad input

return( (double) NAN );
20 if (x >= (int) memo.size())

throw std::range_error(\"x too large for implementation\");
22 if (! ::isnan(memo[x]))

return(memo[x]); // if exist, reuse values
24 // build precomputed value via recursion

memo[x] = fibonacci(x-2) + fibonacci(x-1);
26 return( memo[x] ); // and return

}
28 private:

std::vector< double > memo; // internal memory for precomp.
30 };
’

32

## now use the snippet above as well as one argument conversion
34 ## in as well as out to provide Fibonacci numbers via C++
mfibRcpp <- cxxfunction(signature(xs="int"),

36 plugin="Rcpp",
includes=mincltxt,

38 body=’
int x = Rcpp::as<int>(xs);

40 Fib f;
return Rcpp::wrap( f.fibonacci(x-1) );

42 ’)

Listing 1.10 Fibonacci number in C++ via memoization

We define a very simple C++ class Fib with three elements:

• A constructor which is called once upon initialization.
• A single public member function which computes Fn.
• A private data vector holding the memoization values.

So this example provides a first glance at using classes in C++ code.
In the actual wrapper function, we simply instantiate an object f of the class Fib

and then invoke the member function to compute the given Fibonacci number.
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1.2.8 A Third R Solution

Naturally, we can also compute Fn using an iterative approach. A number of solu-
tions are provided at the WikiBooks site3 so that setting up a simple R solution such
as the following is straightforward:

## linear / iterative solution
2 fibRiter <- function(n) {

first <- 0
4 second <- 1

third <- 0
6 for (i in seq_len(n)) {

third <- first + second
8 first <- second

second <- third
10 }

return(first)
12 }

Listing 1.11 Fibonacci number in R via iteration

The iterative solution improves further on the approach using memoization as it
requires neither stateful memory nor recursion.

1.2.9 A Third C++ Solution

Given the iterative solution in R , it is also straightforward to write as a C++ func-
tion as shown below.

## linear / iterative solution
2 fibRcppIter <- cxxfunction(signature(xs="int"),

plugin="Rcpp",
4 body=’

int n = Rcpp::as<int>(xs);
6 double first = 0;

double second = 1;
8 double third = 0;

for (int i=0; i<n; i++) {
10 third = first + second;

first = second;
12 second = third;

}
14 return Rcpp::wrap(first);
’)

Listing 1.12 Fibonacci number in C++ via iteration

3 http://en.wikibooks.org/wiki/Fibonacci_number_program.

http://en.wikibooks.org/wiki/Fibonacci_number_program
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For completeness, we also show a C++ solution that uses iterations. It is bound
to be the fastest version yet as compiled loops generally execute faster than those
from an interpreted language such as R.

1.3 A Second Example

1.3.1 Problem Setting

Let us consider a second example. This example was motivated in a private commu-
nication with Lance Bachmeier who used it in an introductory econometrics class.
This example is also included in the RcppArmadillo package. RcppArmadillo
uses Rcpp to implement a very convenient and powerful interface between R and
the Armadillo library (Sanderson 2010) for linear algebra with C++. Chapter 10
provides a more in-depth discussion of RcppArmadillo.

The context of the example is a vector autoregressive process of order one for two
variables, or in formal notation a VAR(1). More generally, a VAR model consists
of a number K of endogenous variable xt . A VAR(p) process is then defined by a
series of coefficient matrices A j with j ∈ 1, . . . , p such that

xt = A1xt−1 + . . .+Apxt−p +ut

plus a possible non-time-series regressor matrix which is omitted here. We follow
typographic convention of using lowercase letters for scalars, bold lowercase letters
for vectors, and uppercase letters for matrices.

For the example, we are considering the simplest case of a two-dimensional VAR
of order one. At time t, it is comprised of two endogenous variables xt = (x1t ,x2t)
which are a function of their previous values at t − 1 via a coefficient matrix A. As
A is assumed to be constant, it no longer requires an index. This can be written as
follows:

xt = Axt−1 +ut (1.2)

where xt and ut are time-varying vectors of size two and A is a two-by-two matrix.

1.3.2 R Solution

When studying the properties of VAR systems, simulation is a tool that is frequently
used to assess these models. And, for the simulations, we need to generate suitable
data. A closer look at Eq. 1.2 reveals that we cannot easily vectorize the expression
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due to the interdependence between the two coefficients. As a result, we need to
loop explicitly.

1 ## parameter and error terms used throughout
a <- matrix(c(0.5,0.1,0.1,0.5),nrow=2)

3 u <- matrix(rnorm(10000),ncol=2)

5 ## Let’s start with the R version
rSim <- function(coeff, errors) {

7 simdata <- matrix(0, nrow(errors), ncol(errors))
for (row in 2:nrow(errors)) {

9 simdata[row,] = coeff %*% simdata[(row-1),] + errors[row,]
}

11 return(simdata)
}

13

rData <- rSim(a, u) # generated by R

Listing 1.13 VAR(1) of order 2 generation in R

This approach is pretty straightforward. The simulation function receives a 2×2
matrix a of parameters, and a vector u of size N ×2 of normally and independently
distributed random error terms. It then creates a vector y, also of dimension N × 2,
by looping from the second row to the last row. Each element of y is assigned the
product of the previous row times the coefficient matrix plus the error terms as
specified in equation 1.2.

1.3.3 C++ Solution

The same basic approach can be used with a C++ function to generate the simulated
VAR data. The next listing shows how to use RcppArmadillo via inline to compile,
link and load C++ code on the fly into your R session.

## Now load ’inline’ to compile C++ code on the fly
2 suppressMessages(require(inline))
code <- ’

4 arma::mat coeff = Rcpp::as<arma::mat>(a);
arma::mat errors = Rcpp::as<arma::mat>(u);

6 int m = errors.n_rows;
int n = errors.n_cols;

8 arma::mat simdata(m,n);
simdata.row(0) = arma::zeros<arma::mat>(1,n);

10 for (int row=1; row<m; row++) {
simdata.row(row) = simdata.row(row-1)*trans(coeff)

12 + errors.row(row);
}

14 return Rcpp::wrap(simdata);
’

16

## create the compiled function
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18 rcppSim <- cxxfunction(signature(a="numeric",u="numeric"),
code,plugin="RcppArmadillo")

20

rcppData <- rcppSim(a,u) # generated by C++ code
22

stopifnot(all.equal(rData, rcppData)) # checking results

Listing 1.14 VAR(1) of order 2 generation in C++

We initialize a matrix for the coefficients and a matrix of error terms from the
supplied function arguments. We then create a results matrix of the same dimension
as the error term matrix, and loop as before to fill this result matrix row-by-row, just
as we did in the preceding solution.

1.3.4 Comparison

We can run a comparison to determine the run-time of both approaches, as well as
the run-time of a third hybrid solution using byte-compiled code (using the compiler
package introduced with version 2.13.0 of the R system).

1 ## now load the rbenchmark package and compare all three
suppressMessages(library(rbenchmark))

3 res <- benchmark(rcppSim(a,e),
rSim(a,e),

5 compRsim(a,e),
columns=c("test", "replications", "elapsed",

7 "relative", "user.self", "sys.self"),
order="relative")

Listing 1.15 Comparison of VAR(1) run-time between R and C++

The results, obtained from running the script varSimulation.r included as
an example in the RcppArmadillo, are shown in Table 1.2.

Table 1.2 Run-time performance of the different VAR simulation implementations

Function N Elapsed Relative
(s) (ratio)

rcppSim 100 0.033 1.00
(byte-compiled) Rsim 100 2.229 67.55
rSim 100 4.256 128.97

The C++ solution takes only 33 ms whereas the R code takes 4.26 s, or almost
130 times as much. Byte-compilation improves the R performance by a factor of
almost two—yet the byte-compiled function still trails the C++ solution by a factor
of about 67.
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1.4 Summary

This introductory chapter illustrated the appeal of using Rcpp to extend R with short
and simple C++ routines. Code can be written in C++ which is very similar to the
R code first used to prototype a solution. Thanks to tools such as the inline package
and particularly the more recent Rcpp attributes, we can easily extend R with short
C++ functions—and reap substantial performance gains in the process.

The rest of the book will introduce Rcpp, as well as extension packages such as
RcppArmadillo, in much more detail. The next section starts with a fuller discus-
sion of the required tools.



Chapter 2
Tools and Setup

Abstract Chapter 1 provided a gentle introduction to Rcpp and some of its key
features. In this chapter, we look more closely at the required toolchain of compil-
ers and related R packages needed to deploy the Rcpp package. In particular, on
Windows, the Rtools collection is used and non-gcc compilers are not supported.
On Unix-alike systems such as Linux and OS X, gcc/g++ is the default.

2.1 Overall Setup

The Rcpp package provides a C++ Application Programming Interface (API) as
an extension to the R system. Because of these very close ties to R itself, it is both
bound by the choices made by the R build system and influenced by how R is
configured.

Some of the requirements for working with Rcpp and R are:

• The development environment has to comprise a suitable compiler (which is dis-
cussed more in the next section), as well as header files and libraries for a number
of required components (R Development Core Team 2012a).

• R should be built in a way that permits both dynamic linking and embedding; on
Unix-alike systems this is typically ensured by the --enable-shared-lib
option to configure (R Development Core Team 2012d, Chapter 8) and most
binary distributions of R are built this way.

• Common development tools such as make are needed which should be standard
on Unix-alike systems (though OS X requires installation of developer tools)
whereas Windows users will have to install the Rtools suite provided via the
CRAN mirror network (R Development Core Team 2012a, Appendix D).

In general, the standard environment for building a CRAN package from source
is required. The (even stronger) requirement of being able to build R itself is a
possible guideline as is documented in R Development Core Team (2012a,d).

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
DOI 10.1007/978-1-4614-6868-4 2, © The Author 2013
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There are a few additional CRAN packages that are very useful along with Rcpp,
and which the package itself depends upon. These are:

inline which is invaluable for direct compilation, linking and loading of short
code snippets, and used throughout this book too.

rbenchmark which is used to run simple timing comparisons and benchmarks; it
is also recommended by Rcpp but not required.

RUnit which is used for unit testing; the package is recommended and will only
be needed to rerun these tests but it is not strictly required.

We already saw two of these packages in use in the preceding chapter.
Lastly, users who want to build Rcpp from the repository source (rather than the

distributed tarfile) also need the highlight binary by André Simon which is used to
provide colored source code in several of the vignettes.

2.2 Compilers

2.2.1 General Setup

A basic requirement for extending a program with suitable loadable binary modules
relates to the compiler being used. But exactly what is suitable can depend on a
number of factors.

The choice of compilers generally matters, and more so for some languages than
for others. The C language has a simpler interface for callable functions which
makes it possible to have a program compiled with one compiler load a module built
with another compiler. In general, this is not an option for C++ due to a much more
complicated interface reflecting some of the richer structures in the C++ language.
For example, how function names, and member function names inside classes, are
represented is not standardized between compiler makers, and this generally pre-
vents mixing of object code between different compilers.

As Rcpp is of course a C++ application, this last restriction applies and we need
to stick with the compilers used to build R on the different platforms. The CRAN
repository generally employs the same approach of using one main compiler per
platform, and this approach is the one supported by the CRAN maintainers and the
R Core team.

In practice, this means that on almost all platforms, the GNU Compiler Collec-
tion (or gcc, which is also the name of its C language compiler) has to be used along
with the corresponding g++ compiler for the C++ language. One notable excep-
tion is Solaris where the Sun compiler can be used as well; however, this platform is
not as widely available and used, and we will not discuss its particular aspects any
further. Also, on Windows, the prescribed way to access the suitable compiler is via
the Rtools package contributed by the Windows R maintainers (R Development
Core Team 2012a, Appendix D). OS X is an exception as Apple will not ship gcc
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versions past 4.2.1. Its transition to the clang++ compiler of the LLVM project is
not yet complete as this book is being written. Users on the OS X platform may have
to download tools provided by Simon Urbanek, the R Core maintainer supporting
OS X.

So on Windows, OS X and Linux, the compiler of choice for Rcpp generally
is the g++ compiler. A minimum suitable version is a final 4.2.* release; releases
earlier than 4.2.* were lacking some C++ features used by Rcpp. Later versions
are preferred as version 4.2.1 has some known bugs. But generally speaking, as of
2013 the (current) default compilers on all the common platforms are suitable. As
of R version 2.12.0, the Windows platform has switched to version 4.5.1 of g++ in
order to support both 32- and 64-bit builds.

More advanced C++ features from the next C++ standard, C++11, which has
recently been approved by the standards committee will become available once the
compilers support them by default.

2.2.2 Platform-Specific Notes

Windows

Windows is both the most common platform for R use—yet quite possibly the hard-
est to develop on. The reason for this difficulty with R development on Windows
is that the build environment and tools do not come standard with the operating
system. However, due to the popularity of the platform, good support exists in the
form of a third-party package kindly provided by some of the R Core developers
who focus on Windows, namely Brian Ripley and Duncan Murdoch. The Rtools
package, initially distributed via a site maintained by Duncan Murdoch but now
available via the CRAN network, contains all the required tools in a single package.
Complete instructions specific to Windows are available in the “R Administration”
manual (R Development Core Team 2012a, Appendix D).

To stress again what was hinted at above: other compilers are not supported on
Windows. In particular, the popular series of compilers produced by Microsoft can-
not be used to build R from source (for reasons that are beyond the scope of this
discussion) as these compilers are simply not supported by R Core. While it may be
possible to compile some C++ extensions for R using these compilers, the Rcpp
package follows the recommendation of the R Core team and sticks to the officially
supported compilers. So for the last few years, and presumably for the next few
years too, this limits the choice on Windows to the version of g++ in the Rtools
bundle.
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OS X

OS X has become a popular choice of operating system among developers. As
noted in the “R Administration” manual (R Development Core Team 2012a, Ap-
pendix C.4), the Apple Developer Tools (e.g., Xcode) have to be installed (as well
as gfortran if R or Fortran-using packages are to be built). Some older versions
of OS X do not have a C++ compiler that is recent enough for some of the template
code in the Rcpp; releases starting from “Snow Leopard” should be sufficient.

Unfortunately, Apple and the Free Software Foundation (the organization back-
ing all the GNU software) are at an impasse over licensing. The GNU Compiler
Collection now uses version 3 of GNU General Public License which Apple deems
unsuitable for its operating system. As became cleat in 2011, it seems that g++
version 4.2.1 will be the last version available from Apple, which is unfortunate as
more current g++ releases have made great strides towards adding new features of
the upcoming C++ language standard. However, the clang++ compiler from the
LLVM should eventually provide a full-featured replacement.

Linux

On Linux, developers need to install the standard development packages. Some
distributions provide helper packages which pull in all the required packages; the
r-base-dev package on Debian and Ubuntu is an example.

In general, whatever tools are needed to build R itself will be sufficient to build
Rcpp from source, and to build packages utilizing Rcpp.

Other Platforms

Few other platforms appear to be in widespread use. The CRAN archive runs re-
gression tests against Solaris and its Sun compiler. However, as we do not have
direct access to the platform, development and debugging of Rcpp is somewhat
cumbersome on this platform. Moreover, we have not yet detected measurable in-
terest among the population of possible users. That said, Rcpp plugs into general R
facilities for building packages, and the clear intent is to have Rcpp install and work
on every platform supported by R itself.

2.3 The R Application Programming Interface

The R language and environment supports an application programming interface,
or API for short. The API is described in the “Writing R Extensions” manual
(R Development Core Team 2012d), and defined in the header files provided with
every R installation. The R Core group usually stresses that only the public API
should be used as other (undocumented) functions could change without notice.
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Several books describe the API and its use. Venables and Ripley (2000) is an
important early source. Gentleman (2009) and Matloff (2011) are more recent addi-
tions, while Chambers (2008) is authoritative in the context of “Programming with
Data.”

There are two fundamental extension functions provided: .C() and .Call().
The first, .C() first appeared in an earlier version of the R language and is much
more restrictive. It only supports pointers to basic C types which is a very severe
restriction. More current code uses the richer .Call() interface exclusively. It can
operate on the so-called SEXP objects, which stands for pointers to S expression
objects. Essentially everything inside R is represented as such a SEXP object, and
by permitting exchange of such objects between the C and C++ languages on the
one hand, and R on the other hand, programmers have the ability to operate directly
on R objects. This is key for Rcpp as well—and the principal reason why Rcpp
works exclusively with .Call().

Rcpp essentially sits on top of this API offered by R itself and provides a com-
plementary interface to those aiming to extend R. By leveraging facilities available
to C++ programmers (but not in plain C), Rcpp can offer what we think is an eas-
ier to use and possibly even more consistent interface that is closer to the way R
programmers work with their data.

2.4 A First Compilation with Rcpp

Having discussed the required compiler and toolkit setup, and having seen introduc-
tory examples in Chap. 1, it is now appropriate to address how to use these tools on
an actual source file. In doing so, we will use the explicit commands to illustrate the
different steps required. Shorter and more convenient alternatives will be discussed
later.

We consider the first example from the introductory chapter and assume that both
the fibonacci function and the wrapper have been saved in a file fibonacci.cpp.
Then, on a 64-bit Linux computer with Rcpp installed in a standard location, we can
compile it via the example shown in Listing 2.1.

sh> PKG_CXXFLAGS="-I/usr/local/lib/R/site-library/Rcpp/include" \
2 PKG_LIBS="-L/usr/local/lib/R/site-library/Rcpp/lib -lRcpp" \

R CMD SHLIB fibonacci.cpp
4 g++ -I/usr/share/R/include -DNDEBUG \

-I/usr/local/lib/R/site-library/Rcpp/include \
6 -fpic -g -O3 -Wall -c fibonacci.cpp -o fibonacci.o
g++ -shared -o fibonacci.so fibonacci.o \

8 -L/usr/local/lib/R/site-library/Rcpp/lib -lRcpp
-Wl,-rpath,/usr/local/lib/R/site-library/Rcpp/lib \

10 -L/usr/lib/R/lib -lR

Listing 2.1 A first manual compilation with Rcpp
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Execution of R CMD SHLIB triggers two distinct g++ invocations. The first
command (on line four) corresponds to R CMD COMPILE to turn a given source
file into an object file. The second command (on line eight) corresponds to R CMD
LINK and uses the g++ compiler a second time to link the object file into a shared
library. This creates the file fibonacci.so which we can load into R. Also note
how two environment variables are defined on lines 1 and 2 to let R know where to
find the header files and libraries required for use with Rcpp.

But before we get to that step, let us review a few of the issues with the approach
described here:

1. On line one, we have to set two environment variables, one each for the header
file location (via PKG_CXXFLAGS) and one for the library location and name
(via PKG_LIBS).

2. Both these variables use explicit path settings which are not portable across com-
puters, let alone operating systems.

3. File extensions are operating-system dependent, the shared library ends on .so
on Linux but .dylib under OS X.

To address some of these concerns, Rcpp offers two helper functions which can
be invoked using the scripting front-end Rscript.

sh> PKG_CXXFLAGS=‘Rscript -e ’Rcpp:::CxxFlags()’‘ \
2 PKG_LIBS=‘Rscript -e ’Rcpp:::LdFlags()’‘ \

R CMD SHLIB fibonacci.cpp

Listing 2.2 A first manual compilation with Rcpp using Rscript

Running the example in Listing 2.2 results in the same two commands as above.
But this approach improves over the previous one:

1. By using commands to request information which is returned in a portable fash-
ion freeing the user from having to specify these details.

2. The helper functions are part of the Rcpp package and can therefore impute the
relevant locations in a portable manner.

3. Moreover, the helper functions also know the operating system details and there-
fore are able to supply the required per-operating system details such as file
extensions.

The end result is that we have a single command that works across platforms,1

including portably in a Makefile. So we can now use this file in R.

1 R> dyn.load("fibonacci.so")
R> .Call("fibWrapper", 10)

3 [1] 55

Listing 2.3 Using the first manual compilation from R

1 Well, Windows user may have to set the two environment variables differently but that is a shell
limitation in Windows and not an issue with Rcpp.
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We can load the shared library via the dyn.load() function. It uses the full
filename, including the explicit platform-dependent extension which is .so on
Unix, .dll on Windows, and .dylib on OS X. Once the shared library is loaded
into the R session, we can then call the function fibWrapper using the standard
.Call() interface. We supply the argument n to compute the corresponding Fi-
bonacci number and obtain the requested result.

So this example proves the point we were trying to make in this section: we can
extend R with simple C++ functions, even though the process of doing so may
seem somewhat involved and intimidating at first. The inline package discussed in
the next section and the Rcpp attributes extension discussed in the following section
make the build process a lot more seamless to use.

2.5 The Inline Package

We saw in the previous chapter how to compile, link, and load a new function for use
by R. We will now look more closely at a tool first mentioned in that introductory
chapter which greatly simplifies this process.

2.5.1 Overview

Extending R with compiled code requires a mechanism for reliably compiling, link-
ing, and loading the code. Doing this in the context of a package is preferable in
the long run, but it may well be too involved for quick explorations. Undertaking
the compilation manually is certainly possible. But, as the previous section showed,
also somewhat laborious.

A better alternative is provided by the inline package (Sklyar et al. 2012) which
compiles, links, and loads a C, C++ , or Fortran function—directly from the R
prompt using simple functions cfunction and cxxfunction. The latter pro-
vides an extension which works particularly well with Rcpp via the so-called plug-
ins which provide information about additional header file and library locations; and
a third function, rcpp, which defaults to selecting that plugin for use with Rcpp.

The use of inline is possible as Rcpp itself can be installed and updated just like
any other R package using, for example, the install.packages() function for
initial installation as well as update.packages() for upgrades. So even though
R / C++ interfacing would otherwise require source code, the Rcpp library is
always provided ready for use as a pre-built library through the CRAN package
mechanism.2

2 This presumes a platform for which pre-built binaries are provided. Rcpp is available in binary
form for Windows and OS X users from CRAN, and as a .deb package for Debian and Ubuntu
users. For other systems, the Rcpp library is automatically built from source during installation or
upgrades.
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The library and header files provided by Rcpp for use by other packages are in-
stalled along with the Rcpp package. When building a package, the LinkingTo:
Rcpp directive in the DESCRIPTION file lets R properly reference the header
files automatically. That makes usage easier than for direct compilation via R
CMD COMPILE or R CMD SHLIB (as in the previous section) where the func-
tion Rcpp:::CxxFlags() can be used to export the header file location and the
appropriate -I switch. The Rcpp package also provides appropriate information
for the -L switch needed for linking via the function Rcpp:::LdFlags(). It
can be used by Makevars files of other packages, or to directly set the variables
PKG_CXXFLAGS and PKG_LIBS, respectively.

The inline package makes use of both these facilities. All of this is done behind
the scenes without the need for explicitly setting compiler or linker options. More-
over, by specifying the desired outcome rather to explicitly encode it, we provide a
suitable level of indirection that permits the Rcpp package to completely abstract
away the operating system-specific components. Usage of Rcpp via inline is there-
fore as portable as R itself: the same code will run on Windows, OS X, and Linux
(provided the required tools are present as discussed earlier).

A standard example for a function extending R is a convolution of two vectors;
this example is used throughout the “Writing R Extensions” manual (R Develop-
ment Core Team 2012d). This convolution example can also be rewritten for use by
inline as shown below. The function body is provided by the R character variable
src, the function header (and its variables and their names) is defined by the ar-
gument signature, and we only need to enable plugin=="Rcpp" to obtain a
new R function fun based on the C++ code in src:

1 R> src <- ’
+ Rcpp::NumericVector xa(a);

3 + Rcpp::NumericVector xb(b);
+ int n_xa = xa.size(), n_xb = xb.size();

5 +
+ Rcpp::NumericVector xab(n_xa + n_xb - 1);

7 + for (int i = 0; i < n_xa; i++)
+ for (int j = 0; j < n_xb; j++)

9 + xab[i + j] += xa[i] * xb[j];
+ return xab;

11 + ’
R> fun <- cxxfunction(signature(a="numeric", b="numeric"),

13 + src, plugin="Rcpp")
R> fun( 1:4, 2:5 )

15 [1] 2 7 16 30 34 31 20

Listing 2.4 Convolution example using inline

With one assignment—albeit spanning lines one to eleven—to the R variable
src, and one call of the R function cxxfunction (provided by the inline pack-
age), we have created a new R function fun that uses the C++ code we assigned
to src—and all this functionality can be used directly from the R prompt making
prototyping with C++ functions straightforward.
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Note that with version 0.3.10 or later of inline, a convenience wrapper rcpp
is available which automatically adds the plugin="Rcpp" argument so that the
invocation in Listing 2.4 could also have been written as

fun <- rcpp(signature(a="numeric", b="numeric"), src)

but we will generally use the cxxfunction() form.
A few further options are noteworthy at this stage. Adding verbose=TRUE

shows both the temporary file created by cxxfunction() and the invocations by
R CMD SHLIB. This can be useful for debugging if needed. Listing 2. 5 shows
the generated file. Noteworthy aspects include the function declaration with the
randomized function name, and the signature with the two variable names implied
from the signature() argument to cxxfunction. Also shown are the macros
BEGIN_RCPP and END_RCPP discussed in Sect. 2.7.

Other options permit us to set additional compiler flags as well as additional
include directories as shown in the next section.

2.5.2 Using Includes

As mentioned in the previous section, cxxfunction offers a number of other
options. One aspect that we would like to focus on now is includes. As seen
in Sect. 1.2.7, it allows us to include another block of code to, say, define a new
struct or class type.

An example is provided by the following code sample from the Rcpp FAQ which
was created after a user question on the Rcpp mailing list. A simple templated class
which squares its argument is created in a code snippet supplied via include. The
main function then uses this templated class on two different types:

1 R> inc <- ’
+ template <typename T>

3 + class square : public std::unary_function<T,T> {
+ public:

5 + T operator()( T t) const { return t*t ;}
+ };

7 ’
R> src <- ’

9 + double x = Rcpp::as<double>(xs);
+ int i = Rcpp::as<int>(is);

11 + square<double> sqdbl;
+ square<int> sqint;

13 + Rcpp::DataFrame df =
+ Rcpp::DataFrame::create(Rcpp::Named("x", sqdbl(x)),

15 + Rcpp::Named("i", sqint(i)));
+ return df;

17 ’
R> fun <- cxxfunction(signature(xs="numeric", is="integer"),

19 + body=src, include=inc, plugin="Rcpp")
R> fun(2.2, 3L)
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1 >> Program source :

3 1 :
2 : // includes from the plugin

5 3 :
4 : #include <Rcpp.h>

7 5 :
6 :

9 7 : #ifndef BEGIN_RCPP
8 : #define BEGIN_RCPP

11 9 : #endif
10 :

13 11 : #ifndef END_RCPP
12 : #define END_RCPP

15 13 : #endif
14 :

17 15 : using namespace Rcpp;
16 :

19 17 :
18 :

21 19 : // user includes
20 :

23 21 :
22 : // declarations

25 23 : extern "C" {
24 : SEXP file2370678f8cfe( SEXP a, SEXP b) ;

27 25 : }
26 :

29 27 : // definition
28 :

31 29 : SEXP file2370678f8cfe( SEXP a, SEXP b ){
30 : BEGIN_RCPP

33 31 :
32 : Rcpp::NumericVector xa(a);

35 33 : Rcpp::NumericVector xb(b);
34 : int n_xa = xa.size(), n_xb = xb.size();

37 35 : Rcpp::NumericVector xab(n_xa + n_xb - 1);
36 : for (int i = 0; i < n_xa; i++)

39 37 : for (int j = 0; j < n_xb; j++)
38 : xab[i + j] += xa[i] * xb[j];

41 39 : return xab;
40 :

43 41 : END_RCPP
42 : }

45 43 :
44 :

Listing 2.5 Program source from convolution example using inline in verbose mode
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21 x i
1 4.84 9

Listing 2.6 Using inline with include=

This code example uses a few Rcpp items we have not yet encountered such as
the DataFrame class or the static create method (and these will be discussed
later). We again see the explicit converter Rcpp::as<>() used to access scalar
types integer and double passed to C++ from R.

More important is the definition of the sample helper class square. It derives
from a public class std::unary_function templated to the same argument
and return type. It also defines just one operator() which, unsurprisingly for a
class called square, returns its argument squared.

The example demonstrates that while cxxfunctionmay be of primary use for
short and simple test applications, it can also be used to test in more complicated
setups. In fact, the plugin structure discussed in the next section allows for even
more customization, should it be needed. The RcppArmadillo, RcppEigen, and
RcppGSL packages discussed in the final part of the book all use this facility via a
plugin generator.

2.5.3 Using Plugins

We have seen the use of the options plugin="Rcpp" in the previous examples.
Plugins provide a general mechanism for packages using Rcpp to supply additional
information which may be needed to compile and link the particular package. Ex-
amples may include additional header files and directories, as well as additional
library names to link against as well as their locations.

Without going into too much detail about how to write a plugin, we can eas-
ily illustrate the use of a plugin. Below is a example which shows the code un-
derlying the fastLm() example from RcppArmadillo. We will rebuild it using
cxxfunction from inline:

R> src <- ’
2 + Rcpp::NumericVector yr(ys);
+ Rcpp::NumericMatrix Xr(Xs);

4 + int n = Xr.nrow(), k = Xr.ncol();
+

6 + arma::mat X(Xr.begin(), n, k, false);
+ arma::colvec y(yr.begin(), yr.size(), false);

8 +
+ arma::colvec coef = arma::solve(X, y); // fit y ˜ X

10 + arma::colvec res = y - X*coef; // residuals
+

12 + double s2 = std::inner_product(res.begin(),res.end(),
+ res.begin(),double())

14 + / (n - k);
+ arma::colvec se = arma::sqrt(s2 *
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16 + arma::diagvec(arma::inv(arma::trans(X)*X)));
+

18 + return Rcpp::List::create(Rcpp::Named("coef")= coef,
+ Rcpp::Named("se") = se,

20 + Rcpp::Named("df") = n-k);
+ ’

22 R> fun <- cxxfunction(signature(ys="numeric", Xs="numeric"),
+ src, plugin="RcppArmadillo")

24 R> ## could now run fun(y, X) to regress y ˜ X

Listing 2.7 A first RcppArmadillo example for inline

This illustrates nicely how inline can be used to compile, link, and load packages
on the fly, even when these packages depend on several other R packages. In the case
of RcppArmadillo, which integrates the Armadillo C++ library, the dependency is
on both RcppArmadillo and Rcpp. The plugin provides the necessary information
to compile and link this example.

2.5.4 Creating Plugins

A simple example of how to modify a plugin is provided in the Rcpp-FAQ vignette.
This example is centered around using the GNU Scientific Library (or GNU GSL,
or just GSL for short) along with R. The GSL is described in Galassi et al. (2010).
The example here illustrates how to set a fixed header location. A more compre-
hensive example might also attempt to determine the location, possibly by query-
ing the gsl-config helper script as done in the RcppGSL package discusses in
Chap. 11.

R> gslrng <- ’
2 + int seed = Rcpp::as<int>(par) ;
+ gsl_rng_env_setup();

4 + gsl_rng *r = gsl_rng_alloc (gsl_rng_default);
+ gsl_rng_set (r, (unsigned long) seed);

6 + double v = gsl_rng_get (r);
+ gsl_rng_free(r);

8 + return Rcpp::wrap(v);
+ ’

10 R> plug <- Rcpp:::Rcpp.plugin.maker(
+ include.before = "#include <gsl/gsl_rng.h>",

12 + libs = paste("-L/usr/local/lib/R/site-library/Rcpp/lib "
+ "-lRcpp -Wl,-rpath,"

14 + "/usr/local/lib/R/site-library/Rcpp/lib ",
+ "-L/usr/lib -lgsl -lgslcblas -lm", sep=""))

16 R> registerPlugin("gslDemo", plug )
R> fun <- cxxfunction(signature(par="numeric"),

18 + gslrng, plugin="gslDemo")
R> fun(0)

20 [1] 4293858116
R> fun(42)

22 [1] 1608637542
R>

Listing 2.8 Creating a plugin for use with inline
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Here the Rcpp function Rcpp.plugin.maker is used to create a plugin
named plug. We specify the inclusion of the GSL header file declaring the ran-
dom number generator functions. We also specify the required libraries for linking
against the GSL (with values suitable for a Linux system). Subsequently, the plugin
is registered and deployed in a call to cxxfunction(). Finally, we test the new
function and generate two random draws for two different initial seeds.

2.6 Rcpp Attributes

A recent addition to Rcpp provides an even more direct connection between C++
and R. This feature is called “attributes” as it is inspired by a C++ extension of
the same name in the new C++11 standard (which will be available to R users only
when CRAN permits use of these extension, which may be years away).

Simply put, “Rcpp attributes” internalizes key features of the inline package
while at the same time reusing some of the infrastructure built for use by inline
such as the plugins.

“Rcpp attributes” adds new functions sourceCpp to source a C++ function
(similar to how source is used for R code), cppFunction for a similar creation
of a function from a character argument,evalCpp for a direct evaluation of a C++
expression and more.

Behind the scenes, these functions make use of the existing wrappers as<> and
wrap and do in fact rely heavily on them: any arguments with existing convert-
ers to or from SEXP types can be used. The standard build commands such as R
RMD COMPILE and R CMD SHLIB are executed behind the scenes, and template
programming is used to provide compile-time bindings and conversion.

An example may illustrate this:

1 cpptxt <- ’
int fibonacci(const int x) {

3 if (x < 2) return(x);
return (fibonacci(x - 1)) + fibonacci(x - 2);

5 }’

7 fibCpp <- cppFunction(cpptxt) # compiles, load, links, ...

Listing 2.9 Example of new cppFunction

cppFunction returns an R function which calls a wrapper, also created by
cppFunction in a temporary file which it also builds. The wrapper function in
turn calls the C++ function we passed as a character string. The build process
administered by cppFunction uses a caching mechanism which ensures that
only one compilation is needed per session (as long as the source code used is un-
changed).

Alternatively, we could pass the name of a file containing the code to the function
sourceCpp which would compile, link, and load the corresponding C++ code
and assign it to the R function on the left-hand side of the assignment.



32 2 Tools and Setup

These new attributes can also use inline plugins. The following simple exam-
ple uses the plugin for the RcppGSL package (which is discussed more fully in
Chap. 11). The program itself is not that interesting: we merely use the definitions
of five physical constants.

1 R>code <- ’
+ #include <gsl/gsl_const_mksa.h> // decl of constants

3 +
+ std::vector<double> volumes() {

5 + std::vector<double> v(5);
+ v[0] = GSL_CONST_MKSA_US_GALLON; // 1 US gallon

7 + v[1] = GSL_CONST_MKSA_CANADIAN_GALLON; // 1 Canadian gallon
+ v[2] = GSL_CONST_MKSA_UK_GALLON; // 1 UK gallon

9 + v[3] = GSL_CONST_MKSA_QUART; // 1 quart
+ v[4] = GSL_CONST_MKSA_PINT; // 1 pint

11 + return v;
+ }’

13 R>
R> gslVolumes <- cppFunction(code, depends="RcppGSL")

15 R> gslVolumes()
[1] 0.003785412 0.004546090 0.004546092 0.000946353 0.000473176

17 R>

Listing 2.10 Example of new cppFunction with plugin

But as inline is very mature and tested, and as the attributes functions are at
this point not of comparable maturity, the remainder of the book will continue to
use inline and its slightly more verbose expression. Going forward more new docu-
mentation will probably be written using the new functions once the interface stabi-
lizes. Transitioning from one system to the other is seamless as the examples above
indicated.

2.7 Exception Handling

C++ has a mechanism for handling exceptions. At a conceptual level, this is sim-
ilar to what R programmers may already be familiar with via the tryCatch()
function, or its simpler version try().

In essence, inside a segment of code preceded by the keyword try, an exception
can be thrown via the keywordthrow followed by an appropriately typed exception
object which is typically inherited from the std::exceptions type.

The following example may illustrate this.

1 extern "C" SEXP fun( SEXP x ) {
try {

3 int dx = Rcpp::as<int>(x);
if (dx > 10)

5 throw std::range_error("too big");
return Rcpp::wrap(dx * dx);

7 } catch( std::exception& __ex__) {
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forward_exception_to_r(__ex__);
9 } catch(...) {

::Rf_error( "c++ exception (unknown reason)" );
11 }

return R_NilValue; // not reached
13 }

Listing 2.11 C++ example of throwing and catching an exception

For reasons that will become apparent in a moment, we are showing a complete
function rather than a just short snippet used with cxxfunction() from the in-
line package.

If this function is compiled and linked (with appropriate flags to find the Rcpp
headers and library), we can call it as

1 R> .Call("fun", 4)
[1] 16

3 R> .Call("fun", -4)
[1] 16

5 R> .Call("fun", 11)
Error in cpp_exception(message = "too big",

7 class = "std::range_error") : too big
R>

Listing 2.12 Using C++ example of throwing and catching an exception

As the code tests only whether the argument is larger than 10, both 4 and −4
are properly squared by this (not very interesting) function. For the argument 11,
however, the exception is triggered via the throw followed by exception of type
std::range_error with a short text indicating that the argument is too large
for the assumed parameter limitation.

What happens after the throw is that a suitable catch() segment is identified.
Here, as the exception was typed with a type inherited from the standard exception,
the first branch is the one the code enters. The exception is then passed to an internal
Rcpp function which converts it into an R error message. And indeed, at the R level,
we see both that an exception was caught and what its type was.

This is a very useful mechanism that permits the programmer to return control to
the calling instance (here the R program) with a clearly defined message.

We can illustrate this last point with a second example. What happens when we
call the function with a non-numeric argument?

R> .Call("fun", "ABC")
2 Error in cpp_exception(message = "not compatible with INTSXP",

class = "Rcpp::not_compatible") :
not compatible with INTSXP

4 R>

Listing 2.13 C++ example of example from Rcpp-type checks

Here the function is called with a character variable which cannot be used in the
assignment to the integer variable dx. So an exception is thrown by the templated
Rcpp function as which is templated to an integer type (written as as<int>)
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here. The exception that is thrown is of type Rcpp::not_compatible which
also inherits from the standard exception and a proper R error message is generated.
Similar messages will be shown if the Rcpp types discussed in the next two chapters
are instantiated with inappropriate types.

If no matching type is found, the default catch branch is executed. Here, it
simply calls the error function of the R API with a constant text message.

Because the framework of the try statement (preceding the actual code block)
and the catch clauses at the end are in fact invariant, they can also be expressed as
a simple unconditional macro. Such macros are provided by Rcpp. Their definitions
are shown in Listing 2.14.

#ifndef BEGIN_RCPP
2 #define BEGIN_RCPP try{
#endif

4

#ifndef VOID_END_RCPP
6 #define VOID_END_RCPP } \

catch (std::exception& __ex__) { \
8 forward_exception_to_r(__ex__); \

} \
10 catch(...) { \

::Rf_error("c++ exception (unknown reason)"); \
12 }
#endif

14

#ifndef END_RCPP
16 #define END_RCPP VOID_END_RCPP return R_NilValue;
#endif

Listing 2.14 C++ macros for Rcpp exception handling

These macros are also used by cxxfunction() so that the following function
is fully equivalent to Listing 2.11.

1 src <- ’int dx = Rcpp::as<int>(x);
if( dx > 10 )

3 throw std::range_error("too big");
return Rcpp::wrap( dx * dx);

5 ’)
fun <- cxxfunction(x="integer", body=src, plugin="Rcpp")

7 fun(3)
[1] 9

9 fun(13)
Error: too big

Listing 2.15 inline version of C++ example of throwing and catching an exception

Thanks to inline, this version is much easier to compile, link, and load. And of
course, an Rcpp attributes version can be written just as easily:

cppFunction(’
2 int fun2(int dx) {

if ( dx > 10 )
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4 throw std::range_error("too big");
return dx * dx;

6 }
’)

8 fun2(3)
[1] 9

10 fun2(13)
Error: too big

Listing 2.16 Rcpp attributes version of C++ example of throwing and catching an exception

The proper exception handling framework by Rcpp is provided automatically in
both cases by adding the required code to the generated files.
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Chapter 3
Data Structures: Part One

Abstract This chapter first discusses the RObject class at the heart of the Rcpp
class system. While RObject is not meant to be used directly, it provides the foun-
dation upon which many important and frequently-used classes are built. We then
introduce the two core vector types NumericVector and IntegerVector.
Other related vector types are briefly discussed at the end of the chapter.

3.1 The RObject Class

The RObject class occupies a central role in the implementation of the Rcpp class
hierarchy. While it is not directly user-facing, it provides the common structure used
by all the classes detailed below. It is the basic class underlying the Rcpp API. We
will therefore discuss aspects of this class before we turn to the key classes de-
rived from it. An instance of the RObject class encapsulates an R object. Every
R object itself is internally represented by a SEXP: a pointer to a so-called S ex-
pression object, or SEXPREC for short. The “R Internals” manual (R Development
Core Team 2012b, Section 1.1) provides a fuller treatment of the SEXP pointers
to SEXPREC types, as well as of the related VECSXP or vectors of S expression
pointers. One key aspect is that S expression objects are union types (which are
sometimes called variant types). This means that depending on the particular value
in a control field, different types can be represented. One could think of this as being
similar to a switch statement where, conditional on the value of the expression,
one out of a set of given branches is executed. With a union type, depending on the
value of the control field, the remaining bits will be interpreted as forming the type
implied by the control field. Consequently, this implies that an object pointed to by
a SEXP could, for example, hold an integer vector, whereas another object could
hold a character string, or another type including one of the several internal types.

An important aspect of this representation is that SEXP objects should be consid-
ered opaque. In programming, this term usually refers to something which should

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
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be accessed and viewed only indirectly using helper functions. Such functions are
provided by the R API for those using the C language. In particular, macros (in
fact, two different sets of macros) are provided to access the SEXP types. Our Rcpp
package extends this C language API with a higher-level abstraction provided via
the C++ language.

Similar to the C API, the Rcpp API contains a set of consistent functions which
are appropriate for all types. Key among these functions are those that manage
memory allocation and de-allocation. As a general rule, users of the Rcpp API
never need to manually allocate memory, or free it after use. This is an extremely
important point as memory management has been vilified as a common source of
programming mistakes. For example, the C language is described by critics as too
error-prone due to the explicit and manual memory management it requires. Lan-
guages such as Java or C# aim to improve upon C by managing the memory for the
users. C++ occupies a middle ground: programmers can manually control memory
management (which is important for performance-critical application), yet language
constructs such as the Standard Template Library (see Sect. A.5 for a brief introduc-
tion) also provide control structures (such as vectors and lists) which—by providing
a higher-level abstraction—free the programmer from the manual and error-prone
aspects of memory allocation and de-allocation. Rcpp follows this philosophy, and
the RObject class is a key piece in the implementation as it transparently manages
memory allocation and de-allocation for the users.

As for the actual implementation, the key aspect of the RObject class is that
it is only a very thin layer around the SEXP type it encapsulates. This extends the
opaque view approach of the R API by fully wrapping the underlying SEXP and
providing the class member functions to access or modify it. One can think of the
API provided by Rcpp as providing a richer, more complete means of accessing
the underlying SEXP data representation which remains unaltered from the way R
represents an object.

In fact, the SEXP is indeed the only data member of an RObject.1 Hence, the
RObject class does not interfere with the way R manages its memory. Nor does
it not perform copies of the object into a different and possibly suboptimal C++
representation. Rather, it acts as a proxy to the object it encapsulates. With this,
methods applied to the RObject instance are relayed back to the SEXP in terms of
the standard R API functionality invoked by the proxy classes.

The RObject class also takes advantage of the explicit life cycle of C++ ob-
jects: objects which are dynamically allocated (“on the heap” in C or C++ par-
lance) using a so-called constructor member function are then automatically de-
allocated at the end of local scope by the deconstructor. This lets the underlying
R object (represented by the SEXP) be transparently managed by the R garbage
collector. The RObject effectively treats its underlying SEXP as a resource. The
constructor of the RObject class takes the necessary measures to guarantee that
the underlying SEXP is protected from the garbage collector, and the destructor
assumes the responsibility to withdraw that protection. Together, these two steps

1 See the header file include/Rcpp/RObject.h for details.
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provide transparent and automatic memory management for the user. And, by as-
suming the entire responsibility of garbage collection, Rcpp relieves the program-
mer from having to write repetitive code to manage the protection stack with the
familiar PROTECT and UNPROTECT macros provided by the R API.

Aside from the memory management functionality, a number of helper functions
are applicable to instances of the RObject class. As the underlying SEXP may be
of different types, these member functions have to be applicable to any R object that
can be represented by a SEXP, irrespective of its type.

Several member functions are available for all classes that are deriving from the
RObject class. The isNULL, isObject, and isS4 functions are used to query
object properties. The explicit naming of these functions provides a first description;
these functions return a true or false value depending on the object they are being
applied to. Similarly, the member function inherits can be used to test for inher-
itance from a specified class. Attributes of R objects can be queried or set with the
functions attributeNames, hasAttribute, or attr. For S4 objects,2 the
hasSlot and slot functions permit the handling of the data slots that are a key
feature of the S4 object system.

A large number of user-visible classes derive from the RObject class:

IntegerVector for vectors of type integer.
NumericVector for vectors of type numeric.
LogicalVector for vectors of type logical.
CharacterVector for vectors of type character.
GenericVector for generic vectors which implement List types.
ExpressionVector for vectors of expression types.
RawVector for vectors of type raw.

For the integer and numeric types, we also have IntegerMatrix and
NumericMatrix corresponding to the equivalent R types, and similarly imple-
mented as vectors with associated dimension attributes specifying row and column
sizes.

We will discuss the integer and numeric vectors in some detail— including
examples—in the next two sections.

3.2 The IntegerVector Class

The IntegerVector class provides a natural mapping from and to the standard
R integer vectors. We can assign existing R vectors to C++ objects, and we can
create new integer vectors directly in C++ and return them to R. In both cases, the
corresponding converter function—the templated as<>() function in the case of
converting from R to C++ and the wrap() function for the inverse direction—are
automatically called thanks to C++ template logic.

2 Member functions dealing with slots are only applicable to S4 objects; otherwise an exception is
thrown.
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3.2.1 A First Example: Returning Perfect Numbers

Suppose we wanted to write a function that provides a vector with the first four
perfect (and even) numbers. A perfect number is a positive integer that is equal to
the sum of its divisors. The first one is six, as it is the sum of its divisors one, two,
and three. The second perfect number is 28:

28 = 1+ 2+ 4+ 7+14

and two more even perfect numbers—496 and 8182—were already known by the
ancient Greeks.3

With the help of the inline package introduced initially in Sect. 1.2.4 and more
fully in Sect. 2.5, one can quickly create functions in R which are based on C++
code. The inline package takes the C++ source code as a character variable, and
then compiles, links, and loads this code making it directly accessible via a function
it returns. So here we assign five statements, separated by semicolons, to a single R
character variable src. This variable is then passed to the cxxfunction() with
additional arguments for a functions signature—empty in our case—and selection
of the “Rcpp” plugin which will instruct cxxfunction() to look for the header
files and library from the Rcpp package:

1 R> src <- ’
+ Rcpp::IntegerVector epn(4);

3 + epn[0] = 6;
+ epn[1] = 14;

5 + epn[2] = 496;
+ epn[3] = 8182;

7 + return epn;
+ ’

9 R> fun <- cxxfunction(signature(), src, plugin="Rcpp")
R> fun()

11 [1] 6 14 496 8182

Listing 3.1 A function to return four perfect numbers

The example is of course not very meaningful—we could have created the same
R vector in a single R statement. Yet the short program already highlights a few key
points about the vector types:

• Creating a new vector is as easy as selecting an initial size (and there are other
creation methods).

• Elements of the vector can be set one-by-one (and the new C++ standard C++11
will allow array-style assignments in one statement).

• Returning the vector requires no additional code as the implicit version of wrap
is being called.

We will build upon this example in the next section.

3 More details are at http://en.wikipedia.org/wiki/Perfect_number.

http://en.wikipedia.org/wiki/Perfect_number
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3.2.2 A Second Example: Using Inputs

The previous example showed how to create a new vector at the C++ level. Re-
ceiving a vector from R is also straightforward. Consider the next simple example
which reimplements the prod() function for a given integer vector. Note that the
use of the colon operator (:) creates as integer-valued sequence even though we do
not use explicit integer instantiation via the L suffix (e.g., 10L).

1 R> src <- ’
+ Rcpp::IntegerVector vec(vx);

3 + int prod = 1;
+ for (int i=0; i<vec.size(); i++) {

5 + prod *= vec[i];
+ }

7 + return Rcpp::wrap(prod);
’

9 R> fun <- cxxfunction(signature(vx="integer"), src,
+ plugin="Rcpp")

11 R> fun(1:10) # creates integer vector
[1] 3628800

Listing 3.2 A function to reimplement prod()

The example shows a second possibility for instantiation of an IntegerVector
object. In this case, through implicit use of the as<>() template function, the
SEXP-typed argument vx is used. This variable is defined in the function signa-
ture via the first argument to cxxfunction. Through vx, the vector vec has
been instantiated: It contains a copy of the pointer to the original SEXP object from
R. It is important to stress that only the pointer to the underlying data is copied, not
the underlying data itself.

And given vec, it is straightforward to compute the product. We can also solve
this problem using tools from the Standard Template Library (STL) as shown in the
next example.

R> src <- ’
2 + Rcpp::IntegerVector vec(vx);
+ int prod = std::accumulate(vec.begin(),vec.end(),

4 + 1, std::multiplies<int>());
+ return Rcpp::wrap(prod);

6 + ’
R> fun <- cxxfunction(signature(vx="integer"), src,

8 + plugin="Rcpp")
R> fun(1:10) # creates integer vector

10 [1] 3628800

Listing 3.3 A second function to reimplement prod()

This approach employs the accumulate() function, which is in the std
namespace like the rest of the STL. It is called with iterators—which we can think
of as functions which safely generalize the notion of a pointer—to the beginning
and the end of the vector. This allows the function to operate on the thereby chosen
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range of elements. The next two arguments are an initial value of one, just like in
the previous example, and a binary function, in this case the predefined function
multiplies which is templated to the integer type to correspond to our vector
type. Usage of STL may appear a little more complicated at first. But just how func-
tional programming in R tends to become more natural with use, extended use of
the STL is certainly a recommended programming habit for C++.

These two code examples, though simple to understand and hence suitable for
exposition, still have few flaws we would not use in more serious code. First, no
test is made for NA or zero values in the vector. Second, the code is likely to do
poorly on larger values due to integer overflow: even the sequence 1L:13L returns
a result that is already different from what prod returns, so switching to computing
the product as a sum of logarithms may be preferable, while possibly being more
expensive to compute (yet this could be provided as an option). Third, and on a more
cosmetic note, we could even have omitted the assignment to the temporary variable
and returned the result from accumulate directly in wrap.

3.2.3 A Third Example: Using Wrong Inputs

An important feature of the class hierarchy is the ability to test for conforming input
types. Consider a function written for an integer vector (as above). What behavior
shall we expect with types that are different? This could be a floating-point vector
where an integer vector is expected: automatic conversion would be nice. But what
behavior would be expected for clearly inappropriate types?

It so happens that we can illustrate this behavior using some of the example pro-
grams shown above. Let us revisit the prod-replacement expecting an integer
vector.

R> fun(1:10)
2 [1] 3628800
R> fun(seq(1.0, 1.9, by=0.1))

4 [1] 1

Listing 3.4 Testing the prod() function with floating-point inputs

The first result restates what we had seen before: floating-point number (which
happen to be whole numbers) can be converted without a problem to the correspond-
ing integers. The second example is more interesting: The product of ten floating-
point number over the interval from 1.0 to 1.9 yields 1? How?

The answers lie in the typical behavior of computers when confronted with
floating-point and integer numbers. Here, we assigned a vector of floating-point
numbers—all greater or equal to one—to an integer vector. Standard behavior in
this case is truncation (rather than rounding). So the value 1.5 simply becomes 1.
And consequently, the integer product of ten floating-point values between 1.0 and
1.9 is indeed 1 as the calculation reduces to 110.

But what happens when we use clearly inappropriate types?



3.3 The NumericVector Class 45

R> fun(LETTERS[1:10])
2 Error in fun(LETTERS[1:10]) : not compatible with INTSXP

Listing 3.5 Testing the prod() function with inappropriate inputs

An exception is thrown when the integer vector object is instantiated as no con-
version from character to integer is possible. This exception is caught and then trans-
formed into an R error message, while control (in the interactive session) resumes—
as we discussed above in Sect. 2.7. In other words, the type-conversion code behind
the Rcpp object hierarchy both tests for appropriate types and safely returns control
to the R session in case an inadmissible type is used as input.

Last but not least, we note that R integer vectors can be converted as easily
into std::vector<int>. Similarly, the NumericVector type discussed in
the next section can be converted in std::vector<double>.

3.3 The NumericVector Class

3.3.1 A First Example: Using Two Inputs

NumericVector is quite possibly the most commonly used vector type among
the Rcpp classes. It corresponds to the basic R type of a numeric vector and can hold
real-valued floating-point variables. Its storage type is double, and all computation
will be in double precision just as in R itself.

As a first example, consider a simple generalization of a sum of squares calcu-
lation. Instead of always squaring the elements, we also pass an argument for the
exponent.

R> src <- ’
2 + Rcpp::NumericVector vec(vx);
+ double p = Rcpp::as<double>(dd);

4 + double sum = 0.0;
+ for (int i=0; i<vec.size(); i++) {

6 + sum += pow(vec[i], p);
+ }

8 + return Rcpp::wrap(sum);
+ ’

10 R> fun <- cxxfunction(signature(vx="numeric", dd="numeric"),
+ src, plugin="Rcpp")

12 R> fun(1:4,2)
[1] 30

14 R> fun(1:4,2.2)
[1] 37.9185

Listing 3.6 A function to return a generalized sum of powers

This example could also be rewritten using an STL algorithm. But using a
custom-written transformation function would be a little more involved due to its
C++ focus and detract us from examining the C++ and R integration.
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3.3.2 A Second Example: Introducing clone

One important aspect of the proxy model implementation mentioned above is that
the C++ object contains a pointer to the underlying SEXP object from R, which is
itself a pointer. This implies that code trying to transform a vector—say by taking
logarithms—and wanting to return a modified copy along with the original vec-
tor cannot be written as follows where both vectors are constructed from the input
argument:

1 R> src <- ’
+ Rcpp::NumericVector invec(vx);

3 + Rcpp::NumericVector outvec(vx);
+ for (int i=0; i<invec.size(); i++) {

5 + outvec[i] = log(invec[i]);
+ }

7 + return outvec;
+ ’

9 R> fun <- cxxfunction(signature(vx="numeric"),
+ src, plugin="Rcpp")

11 R> x <- seq(1.0, 3.0, by=1)
R> cbind(x, fun(x))

13 x
[1,] 0.0000000 0.0000000

15 [2,] 0.6931472 0.6931472
[3,] 1.0986123 1.0986123

Listing 3.7 Declaring two vectors from the same SEXP type

Modifications in outvec do, due to its underlying pointer sharing with the same
underlying R object, also affect invec. Changes will therefore also affect the R
object passed in as an argument. So while this lightweight proxy model makes for
efficient code, we need different operations to create an independent second vector.
The clone method is a suitable alternative as it allocates memory for a new object.
Hence, changes do not propagate to the original vector:

R> src <- ’
2 + Rcpp::NumericVector invec(vx);
+ Rcpp::NumericVector outvec = Rcpp::clone(vx);

4 + for (int i=0; i<invec.size(); i++) {
+ outvec[i] = log(invec[i]);

6 + }
+ return outvec;

8 + ’
R> fun <- cxxfunction(signature(vx="numeric"),

10 + src, plugin="Rcpp")
R> x <- seq(1.0, 3.0, by=1)

12 R> cbind(x, fun(x))
x

14 [1,] 1 0.0000000
[2,] 2 0.6931472

16 [3,] 3 1.0986123
R>

Listing 3.8 Declaring two vectors from the same SEXP type using clone
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We should note thatclone is a generic feature of vectors derived from RObject
objects and applies to all objects instantiated from a SEXP.

To close this point, we should also note that an even simpler form uses Rcpp
sugar (discussed more fully in Chap. 8) to directly assign the result via a single
vectorized call of the log() function:

1 R> src <- ’
+ Rcpp::NumericVector invec(vx);

3 + Rcpp::NumericVector outvec = log(invec);
+ return outvec;

5 + ’
R> fun <- cxxfunction(signature(vx="numeric"),

7 + src, plugin="Rcpp")
R> x <- seq(1.0, 3.0, by=1)

9 R> cbind(x, fun(x))
x

11 [1,] 1 0.0000000
[2,] 2 0.6931472

13 [3,] 3 1.0986123
R>

Listing 3.9 Using Rcpp sugar to compute a second vector

We could even have omitted the declaration of, and assignment to, outvec and
computed the result directly in the return statement thanks to the implicit use of
wrap().

3.3.3 A Third Example: Matrices

Besides vectors, matrices play an equally important role in modeling, as they do in
the underlying linear algebra derivations. Internally, matrices are implemented as
vectors with an associated dimension attribute, just as they are in R itself. Simi-
larly, the more general form is actually a multidimensional array—and the matrix is
merely a special case where the dimension attribute has size two for both a row and
column count.

For example, a numeric vector of dimension three can be created as

Rcpp::NumericVector vec3 =
2 Rcpp::NumericVector( Rcpp::Dimension(4, 5, 6));

Listing 3.10 Declaring a three-dimensional vector

These multidimensional arrays can be useful for particular applications. How-
ever, we will focus more on matrices for their more common use in linear algebra
and modeling.

A first example illustrates the use of matrices and also shows the clone method
discussed in the previous section.
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R> src <- ’
2 + Rcpp::NumericMatrix mat =
+ Rcpp::clone<Rcpp::NumericMatrix>(mx);

4 + std::transform(mat.begin(), mat.end(),
+ mat.begin(), ::sqrt);

6 + return mat;
+ ’

8 R> fun <- cxxfunction(signature(mx="numeric"), src,
+ plugin="Rcpp")

10 R> orig <- matrix(1:9, 3, 3)
R> fun(orig)

12 [,1] [,2] [,3]
[1,] 1.00000 2.00000 2.64575

14 [2,] 1.41421 2.23607 2.82843
[3,] 1.73205 2.44949 3.00000

16 R>

Listing 3.11 A function to take square roots of matrix elements

This also illustrates how the two-dimensional matrix is treated as a one-dimen-
sional continuous vector (just like in R) in memory as the sqrt() function is being
swept across all elements.

Many of the “Rcpp sugar” extensions discussed more fully in Chap. 8 are also
directly applicable to vectors and matrices.

3.4 Other Vector Classes

3.4.1 LogicalVector

The LogicalVector class is very similar in behavior to IntegerVector as it
represents the two possible values of a logical, or boolean, type. These values—True
and False—can also be mapped to one and zero (or more generally to “not zero” and
zero).

However, as R generally supports missing values in its data structures, the
LogicalVector has to support this—and is, in fact, seen as supporting three
rather than two possible values. Listing 3. 12 illustrates this as it shows how the
other nonfinite values NaN, Inf, and NA all collapse into NA in the context of a
logical vector.

R> fun <- cxxfunction(signature(), plugin="Rcpp",
2 + body=’
+ Rcpp::LogicalVector v(6);

4 + v[0] = v[1] = false;
+ v[1] = true;

6 + v[3] = R_NaN;
+ v[4] = R_PosInf;

8 + v[5] = NA_REAL;
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+ return v;
10 + ’)
R> fun()

12 [1] FALSE TRUE FALSE NA NA NA
R> identical(fun(), c(FALSE, TRUE, FALSE, rep(NA, 3)))

14 [1] TRUE
R>

Listing 3.12 A function to assign a logical vector

The example shows that assigning any of three possible nonfinite values NaN,
Inf (which can be positive or negative), or NA (which is commonly defined for
real-valued variables only) results in NA value in the logical vector.

The example also illustrates, by means of using the R function identical,
that the values returned from an Rcpp-created function are indistinguishable from
those created directly in R itself.

3.4.2 CharacterVector

The class CharacterVector can be used for vectors of R character vectors
(“strings”).

1 R> fun <- cxxfunction(signature(), plugin="Rcpp",
+ body=’

3 + Rcpp::CharacterVector v(3);
+ v[0] = "The quick brown";

5 + v[1] = "fox";
+ v[2] = R_NaString;

7 + return v;
+ ’)

9 R> fun()
[1] "The quick brown" "fox" NA

11 R>

Listing 3.13 A function to assign a character vector

And similar to the other vectors, CharacterVector can hold its primary
type, here strings, as well as NA value. Character vectors can also be converted
to std::vector<std::string>.

3.4.3 RawVector

The RawVector can be very useful when “raw” bytes have to be used, for example
in a networked application that transmits them to another application or program
running on another machine. As such a use case is somewhat more specialized, we
are not showing a full example here.



Chapter 4
Data Structures: Part Two

Abstract This chapter introduces several other important classes such as List,
DataFrame, Function, and Environment which both correspond to key R
language objects and have an underlying SEXP representation.

The previous chapter discussed fundamental Rcpp classes centered around the
basic Vector classes, covering anything from integers and numeric to raw types,
logicals vector and string vectors. It also touched upon multidimensional vectors
and the important special case of matrices.

In this chapter, we extend the analysis to more data types. After introducing a
useful helper class, we continue with what seems like yet another vector, but is really
the all-important List type. This is followed by the DataFrame class, before we
turn to different types of classes with Function and Environment, respectively.
We then briefly discuss S4 and Reference Classes before ending the chapter
with the R mathematics functions.

4.1 The Named Class

The Named class is a helper class used for setting the key side of key/value pairs. It
corresponds to standard R use. Consider this simple example

1 R> someVec <- c(mean=1.23, dim=42.0, cnt=12)
R> someVec

3 mean dim cnt
1.23 42.00 12.00

5 R>

Listing 4.1 A named vector in R

where three elements are assigned in a vector, and each is also assigned a specific
identifier or label. The Named class permits us to do the same thing for objects
created in C++ which we want to return to the calling R function with such labels.

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
DOI 10.1007/978-1-4614-6868-4 4, © The Author 2013
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Several examples of this class will follow in the next sections. As a first illustra-
tion, consider the vector shown above which could be created at the C++ level as
follows:

1 R> src <- ’
+ Rcpp::NumericVector x =

3 + Rcpp::NumericVector::create(
+ Rcpp::Named("mean") = 1.23,

5 + Rcpp::Named("dim") = 42,
+ Rcpp::Named("cnt") = 12);

7 + return x; ’
R> fun <- cxxfunction(signature(), src, plugin="Rcpp")

9 R> fun()
mean dim cnt

11 1.23 42.00 12.00

Listing 4.2 A named vector in C++

We can shorten the somewhat verbose coding style by

• Declaring using namespace Rcpp; to import the Rcpp namespace (and
we should note that the cxxfunction() function from the inline package
also does that when the “Rcpp” plugin is selected)

• Employing the shortcut form _["key"]

which allows us to rewrite the example as

1 R> src <- ’
+ NumericVector x = NumericVector::create(

3 + _["mean"] = 1.23,
+ _["dim"] = 42,

5 + _["cnt"] = 12);
+ return x; ’

7 R> fun <- cxxfunction(signature(), src, plugin="Rcpp")
R> fun()

9 mean dim cnt
1.23 42.00 12.00

Listing 4.3 A named vector in C++ , second approach

We may switch between the more explicit and the shortened style for some of the
following examples.

4.2 The List aka GenericVector Class

The GenericVector is equivalent to the List type. This is the most general
data type which can contain other types—and corresponds to how a list() in R
can contain objects of different types. Objects of type List can also contain other
objects of different lengths (and, this is sometimes called a “ragged array” if vectors
of different length are parts of the same object). Furthermore, List objects can
contain other List objects, which allow for arbitrary nesting of data structures.
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Being able to hold different types of objects makes the List type suitable for
parameter exchanges in either direction between R and C++ .

4.2.1 List to Retrieve Parameters from R

Consider the following example, taken from the general-purpose optimization pack-
age RcppDE (Eddelbuettel 2012b). It has been somewhat simplified by removing
a number of similar argument types, and by removing a second layer dealing with
exception handling.

RcppExport SEXP DEoptim(SEXP lowerS, SEXP upperS,
2 SEXP fnS, SEXP controlS, SEXP rhoS) {

4 Rcpp::NumericVector f_lower(lowerS), f_upper(upperS);
Rcpp::List control(controlS);

6 double VTR = Rcpp::as<double>(control["VTR"]);
int i_strategy = Rcpp::as<int>(control["strategy"]);

8 int i_itermax = Rcpp::as<int>(control["itermax"]);
int i_D = Rcpp::as<int>(control["npar"]);

10 int i_NP = Rcpp::as<int>(control["NP"]);
int i_storepopfrom = Rcpp::as<int>(control["storepopfrom"])-1;

12 int i_storepopfreq = Rcpp::as<int>(control["storepopfreq"]);
int i_specinitialpop = Rcpp::as<int>(control["specinitialpop"]);

14 Rcpp::NumericMatrix initialpopm =
Rcpp::as<Rcpp::NumericMatrix>(control["initialpop"]);

16 double f_weight = Rcpp::as<double>(control["F"]);
double f_cross = Rcpp::as<double>(control["CR"]);

18 [...]
}

Listing 4.4 Using the List class for parameters

Here two vectors for upper and lower parameter bounds are directly initialized
from one SEXP each as we have seen in the previous chapter. The SEXP variable
controlS is assigned to a Rcpp::List variable named control. This object
contains a large set of user-supplied parameters to control the optimization.

The List type allows for access by named string “key,” similar to how we would
extract a named entry from a list in R using the [["key"]] operator. Here in C++,
we obtain an element of the list which will generally be of SEXP type—and we can
use the explicit conversion function as<>() along with a template type to assign
the value.

For example, the first parameter is a floating-point variable keyed to the name
“VTR” which we assign to a double. Similarly, several count variables denoting
sizes, dimensions, numbers of iterations, etc. are assigned to more integer-valued
variable. However, the list also contains a genuine numeric matrix under the key
“initialpop.” RcppDE performs differential optimization, an evolutionary algorithm
related to genetic algorithms but particularly suitable for floating-point represen-
tations. These types of optimization algorithms operate on populations of poten-
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tial solutions—and the matrix indexed by “initialpop” can be used to initialize the
algorithm with an initial set of potential solutions. Finally, two more floating-point
control parameters are assigned.

4.2.2 List to Return Parameters to R

We can use an example from the same package, RcppDE, to illustrate how to return
values to C++ as well.

1 return Rcpp::List::create(Rcpp::Named("bestmem") = t_bestP,
Rcpp::Named("bestval") = t_bestC,

3 Rcpp::Named("nfeval") = l_nfeval,
Rcpp::Named("iter") = i_iter,

5 Rcpp::Named("bestmemit") =
t(d_bestmemit),

7 Rcpp::Named("bestvalit") = d_bestvalit,
Rcpp::Named("pop") = t(d_pop),

9 Rcpp::Named("storepop") = d_storepop);

Listing 4.5 Using a List to return objects to R

Because we do not show the declaration of the variables, we cannot tell im-
mediately what their types are. But the beauty of the List type is that all types
that can be converted to a SEXP are admissible! Here we have Armadillo vectors
(t_bestP) and matrices (d_bestmemit, d_pop) thanks to RcppArmadillo,
as well as standard long (_nfeval), double (t_bestC) and int (i_iter)
scalars.

The use of Rcpp::List::create() is fairly idiomatic. It permits us to cre-
ate a list on the fly, with its size determined at compile-time by the number of name
= value pairs we have supplied. However, as we have seen in earlier examples,
an alternate method of setting elements is also available by first reserving a suffi-
ciently dimensioned list (and the same is of course true for vectors). This can be
done directly using the constructor as in Rcpp::List ll(4), where four ele-
ments would be reserved. A second possibility is to use the reserve() member
function to specify a size. Once sufficient space has been reserved, we can then as-
sign these using the standard square bracket operator []. Needless to say, the square
bracket operator cannot assign elements beyond the pre-reserved size range.

An alternative insertion method is provided by two functions modeled after
equivalent STL functions: push_back() which insert the given element at the
back—and, thereby, extends the vector or list by one element—andpush_front()
which inserts at the front and similarly extends the size by one. It should, however,
be noted that these may alter the vectors. And as vectors are implemented in contigu-
ous memory, this will in most cases result in a complete copy of the whole vector.
In other words, the operations push_back and push_front operations can be
relatively inefficient (due to the underlying memory model of SEXP types) and are
provided mainly for convenience.
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4.3 The DataFrame Class

Data frames are an essential object type in R and are used by almost all modeling
functions, so naturally Rcpp supports this type too. Internally, data frames are rep-
resented as lists. This permits the data frame to contain data of different types. For
example, a data frame may contain time stamps, real-valued measurements as well
as, say, group identifications encoded as a factor. The different columns will always
be recycled to have common length. To take an example, if we insert a vector of
length four into a data frame followed by a vector of length two, the latter vector
will be repeated a second time to also have length four (and this recycling at con-
struction is done only for integer multiples). Having common length is an important
feature, as other functions can always assume that data frames are rectangular. Rows
are commonly seen as observations with columns representing variables.

We have already seen one example of a data frame creation earlier in Sect. 2.5.2
where the static create function was used. A similar example, taken from one of
the unit tests, is

1 R> src <- ’
+ Rcpp::IntegerVector v =

3 + Rcpp::IntegerVector::create(7,8,9);
+ std::vector<std::string> s(3);

5 + s[0] = "x";
+ s[1] = "y";

7 + s[2] = "z";
+ return Rcpp::DataFrame::create(Rcpp::Named("a")=v,

9 + Rcpp::Named("b")=s);
+ ’

11 R> fun <- cxxfunction(signature(), src, plugin="Rcpp")
R> fun()

13 a b
1 7 x

15 2 8 y
3 9 z

Listing 4.6 Using the DataFrame class

Otherwise, the data frame type can really be seen as a specialization of the list
type, with the added restrictions of excluding nesting types and of imposing com-
mon length. While the latter is achieved via recycling in R, in C++ we have to
ensure that each component of a data.frame is of the same length.

Data frames are very useful to concisely organize return data for further use by
R, as well as a standard data representation for many modeling functions.
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4.4 The Function Class

4.4.1 A First Example: Using a Supplied Function

A function object is needed whenever an R function—either supplied by the user
or by accessing an R function—is employed. Consider this simple first example
which uses the sort() function (passed as an argument from R ) and applies it to
a user-supplied vector:

R> src <- ’
2 + Function sort(x) ;
+ return sort( y, Named("decreasing", true));

4 + ’
R> fun <- cxxfunction(signature(x="function",

6 + y="ANY"),
+ src, plugin="Rcpp")

8 R> fun(sort, sample(1:5, 10, TRUE))
[1] 5 5 5 3 3 3 2 2 2 1

10 R> fun(sort, sample(LETTERS[1:5], 10, TRUE))
[1] "E" "E" "C" "B" "B" "B" "B" "B" "A" "A"

Listing 4.7 Using a Function passed as argument

On line two a C++ variable named sort is initialized from the object x that is
of type function. The object named y is passed through as is; we never instantiate
a C++ object with it. After compiling and loading this function, we pass the R
function sort() as the first argument. Other suitable functions such as order()
could also be used.

Another useful point to note is that because the second argument is never instan-
tiated, we can pass different types of a suitable nature. In the example above, both
integer and character vectors are passed in as randomized permutations, and both
are being returned in decreasing sort order. This works because no Rcpp object is
instantiated and hence no particular type is encoded (or even enforced via static typ-
ing). So no tests for matching types are executed and no exceptions are thrown—as
was the case in Sect. 3.2.3—because no mismatched type is encountered. This ex-
ample shows that passing the original SEXP type through can have its uses too.

4.4.2 A Second Example: Accessing an R Function

The function class can also be used to access R functions directly. In the exam-
ple below, we draw five random numbers from a t-distribution with three degrees of
freedom. As we are accessing the random number generators, we need to ensure that
it is in a proper state. The RNGScope class ensures this by initializing the random
number generator by calling the GetRNGState() function from the class con-
structor, and by restoring the initial state via PutRNGState() via its destructor
(R Development Core Team 2012d, Section 6.3).



4.5 The Environment Class 57

1 R> src <- ’
+ RNGScope scp;

3 + Rcpp::Function rt("rt");
+ return rt(5, 3);

5 + ’
R> fun <- cxxfunction(signature(),

7 + src, plugin="Rcpp")
R> set.seed(42)

9 R> fun()
[1] 2.339681 0.130995 -0.074028 -0.057701 -0.046482

11 R> fun()
[1] 9.16504 1.08153 0.87017 1.99557 -0.22438

Listing 4.8 Using a Function accessed from R

We first instantiate a function object by giving it a string with the name of the R
function we want to access. If the function is not globally accessible, we may need
to access the corresponding namespace first.

Regarding the random number generation, it is also important to note that ex-
ecuting the equivalent commands in R itself, that is, set.seed(42) followed
by rt(10,3) to generate ten random numbers from the t-distribution with three
degrees of freedom, generates exactly the same ten numbers. This is key for repro-
ducibility and also helps with debugging.

4.5 The Environment Class

The environment provides access to environments, a type of object which may
be familiar to R programmers. Environments are defined in Section 2.1.10 of the
“R Language” manual (R Development Core Team 2012c). Their role in variable
lookup and their relationship to namespaces are described in Section 1.2 of the “R
Internals” manual (R Development Core Team 2012b).

As a first example of using an environment, we consider the following example
where we instantiated the stats namespace of R to access the rnorm() function:

Rcpp::Environment stats("package:stats");
2 Rcpp::Function rnorm = stats["rnorm"];

return rnorm(10, Rcpp::Named("sd", 100.0));

Listing 4.9 Using a Function via an Environment

As the preceding section showed, such a two-step approach may not be needed
as we can also use the Function class in Rcpp to search for an identifier.

However, it is useful to create and initialize environments, or to use environments
to access variables in the current R session. A second example interfaces the global
environment in R:
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1 Rcpp::Environment global =
Rcpp::Environment::global_env();

3 std::vector<double> vx = global["x"];

5 std::map<std::string,std::string> map;
map["foo"] = "oof";

7 map["bar"] = "rab";

9 global["y"] = map;

Listing 4.10 Assigning in the global environment

Here an instance of the global environment is created using the variable name
global. It is used to access a variable x in R via direct lookup. Similarly, we
create a map from string to string of size two and assign it to a symbol y in
the global environment.

4.6 The S4 Class

R as a programming language has evolved over several decades. The first big step
towards object-oriented programming was provided by what is known as the “White
Book” (Chambers and Hastie 1992) which introduced S3 classes and methods.
While particular to R and the underlying S programming language, and thus dif-
ferent from object-oriented programming notions in C++ or Java, S3 methods pro-
vide a simple approach that is still supported and is widely used. The basic feature
is called method dispatch, implemented via what is known as a “generic function”
which invokes corresponding methods driven by the class of the data type. A useful
introduction to this approach is provided byVenables and Ripley (2000, Chapter 4).

A more ambitious approach to object-oriented programming was then added with
the introduction of S4 classes in the “Green Book” (Chambers 1998); a more recent
treatment is provided by Chambers (2008, Chapters 9 and 10). These classes have
also been in R for well over a decade and provide a significant extension to the
preceding object-oriented programming framework available to the R programmer.
S4 classes offer a rich structure with a more rigid formalism, at the cost of some of
the flexibility of the earlier and somewhat more ad hoc S3 class types. However, S4
offers more structure which may be needed for larger programming tasks.

As indicated towards the end of Sect. 3.1, Rcpp can access and modify S4 objects
using the Rcpp::S4 class type. Getting and setting slot types of S4 objects is
supported, as are various tests for object properties such S4 objects.

Listing 4.11 shows how to test if RObject object is in fact an S4 object, how
to test for presence of a slot, and how to access a slot.

1 f1 <- cxxfunction(signature(x="any"), plugin="Rcpp", body=’
RObject y(x) ;

3 List res(3) ;
res[0] = y.isS4();
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5 res[1] = y.hasSlot("z");
res[2] = y.slot("z");

7 return res;
’)

Listing 4.11 A simple example for accessing S4 class elements

Similarly, Listing 4.12 shows how to create an S4 object at the C++ level

f2 <- cxxfunction(signature(x="any"), plugin="Rcpp", body=’
2 S4 foo(x);

foo.slot(".Data") = "foooo";
4 return foo;
’)

Listing 4.12 A simple example for accessing S4 class elements

So while the basic facilities to access, alter, or create S4 objects exist, it may
often remain easier to do so at the R code level. So a more common paradigm may
be to compute and create the core C++ aspects of an object at the C++ level and
to complement the objects at the R language level. Given that Rcpp functionality is
often accessed from R functions, additional R code can then be executed at the R
level after returning from a C++ function.

S4 classes have been used extensively in a number of CRAN packages. The Bio-
Conductor Project uses them throughout a large number of its packages as well.

4.7 ReferenceClasses

ReferenceClasses appeared with R version 2.12.0 and complete the set of object-
oriented programming paradigms in R by adding a style more similar to what is
found in C++ or Java. As of late 2012, the best documentation for Reference-
Classes is provided by invoking help(ReferenceClasses) in R; the topic is
still undergoing changes.

ReferenceClasses are implemented using S4 methods and classes and are there-
fore related to S4 at least in the sense of some of the implementation details. Ref-
erenceClasses are also related to “Rcpp modules” (covered later in Chap. 7) which
use them as a representation.

Two key aspects of ReferenceClasses are (a) that they are mutable which differs
from the standard “copy on write” semantics in the R system and (b) that methods
are primarily associated with objects rather than functions.

Their mutable state makes ReferenceClasses objects good candidates for use in
applications that require to track a “state.” Typical examples are graphical user inter-
face applications or servers. With the mutable state also comes the pass-by-reference
semantics: rather than copying the whole object (when a component changes), only
the reference to the object is copied. This is closer to how C++ and Java objects
behave. Similarly, the association of methods to the underlying objects also more
closely resembles the object-oriented design philosophies of C++ and Java.
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ReferenceClasses are still undergoing changes and more definitive documenta-
tion may be forthcoming. Because this area of R programming has not yet settled
as firmly, we will limit the discussion of Rcpp in this context to this brief overview.

4.8 The R Mathematics Library Functions

R provides a large number of mathematical and statistical functions described in
the header file Rmath.h. As documented in R Development Core Team (2012d,
Section 6.16), these functions can be used from a stand-alone library independent
of R itself. Naturally, they can also be used with the R API.

R programmers may want to access these functions from C++ code too. Rcpp
provides these via the ”Rcpp sugar” extension described below in Chap. 8 as vector-
ized functions. In order to use them on atomistic double types, the prefix Rf was
required. Starting with Rcpp release 0.10.0, these functions are also accessible via
the R namespace. By using a distinct namespace, it is possible to cleanly reuse the
same identifiers without the need for a remapping prefix such as Rf even though
the functions are provided only via a more limited C language API.

The following example illustrates this use. For a given vector X, the probability
function of the Normal distribution is computed.

1 #include <Rcpp.h>

3 extern "C" SEXP mypnorm(SEXP xx) {
Rcpp::NumericVector x(xx);

5 int n = x.size();
Rcpp::NumericVector y1(n),y2(n),y3(n);

7

for (int i=0; i<n; i++) {
9 // accessing function via remapped R header

y1[i] = ::Rf_pnorm5(x[i], 0.0, 1.0, 1, 0);
11

// or accessing same function via Rcpp’s ’namespace R’
13 y2[i] = R::pnorm(x[i], 0.0, 1.0, 1, 0);

}
15 // or using Rcpp sugar which is vectorized

y3 = Rcpp::pnorm(x);
17

return Rcpp::DataFrame::create(Rcpp::Named("R")=y1,
19 Rcpp::Named("Rf_")=y2,

Rcpp::Named("sugar")=y3);
21

}

Listing 4.13 Example use of Rmath.h functions

A vector x is instantiated, its size determined, and three return vectors are allo-
cated. Each will contain the correspondingpnorm value. On line nine, the new form
R::pnorm() is used. It is identical to the function described in the documentation
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for the R API, but provided from a distinct namespace R. Line ten shows the older
approach: a global identifier (as indicated by ::) with the prefix Rf which is effec-
tively a primitive C language attempt at creating a namespace separation when no
such feature exists in the language. Both functions operate on a single double-type
variable at a time; a loop is required to compute all elements of the vector.

However, line twelve provides a preview of “Rcpp sugar” as detailed in Chap. 8.
This version is in fact vectorized and all components of the vectory3 are assignment
in a single (vectorized) operation just as one would in R but at the speed of C++.

The R namespace contains a large number of probability, density, and quantile
functions, as well as corresponding random numbers, for a wide variety of distri-
butions: Normal, Uniform, Gamma, Beta, LogNormal, Chi-squared, F, t, Binomial,
Multinomial, Cauchy, Exponential, Geometric, Hypergeometric, Negative Binomial,
Poisson, Weibull, Non-central Beta, Non-central F, Non-central t, Studentized Range
(also known as “Tukey”), Wilcoxon Rank Sum, Wilcoxon Signed Rank, as well as
a number of related functions.

The header file Rmath.hwithin the Rcpp header directory provides full details.



Part III
Advanced Topics



Chapter 5
Using Rcpp in Your Package

Abstract This chapter provides an overview of how to use Rcpp when writing an
R package. It shows how using the function Rcpp.package.skeleton() can
create a complete and self-sufficient example of a package using Rcpp. All com-
ponents of the directory tree created by Rcpp.package.skeleton() are dis-
cussed in detail. A brief case study of an existing CRAN package concludes the
chapter.

This chapter complements the Writing R Extensions manual (R Development
Core Team 2012d) which is the authoritative source on how to extend R in general.

5.1 Introduction

Rcpp helps to extend R by offering an easy-to-use yet featureful interface between
C++ and R. Rcpp itself is distributed as an R package. However, it is somewhat
different from a traditional R package because its key component is a C++ library
along with a set of header files defining the library interface. A client package that
wants to make use of the Rcpp features must link against this library provided by
Rcpp. For most of the previously examined examples, we have relied on the inline
package to take care of the finer details of the dependencies on the Rcpp package
itself.

It should be noted that R has only limited support for C and C++-level depen-
dencies between packages (R Development Core Team 2012d). The LinkingTo
declaration in the package DESCRIPTION file allows the client package to access
the headers of the target package (here Rcpp), but support for linking against a
library is not provided by R (outside of a function registration setup more suitable
for C-only packages with a limited number of registered interface functions) and
has to be added manually.

The discussion in this chapter follows the Rcpp.package.skeleton()
function to show a recommended way of using Rcpp from a client package.
We illustrate this using a simple C++ function which will be called by an R
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function. The material in the Writing R Extensions manual (R Development Core
Team 2012d) is strongly recommended. Other documents on R package creation
(for example Leisch 2008) are helpful as well concerning the package build pro-
cess. R package creation is standardized and follows a logical pattern—but is not
all that well documented leading beginners to experience some frustration. A basic
understanding of how to create an R package helps when trying to add the additional
information needed on how to use the Rcpp package in such add-on packages.

The working example provided in the next few sections provides a complete
illustration of the process and can serve as a reference use case.

5.2 Using Rcpp.package.skeleton

5.2.1 Overview

Rcpp provides a function Rcpp.package.skeleton, modeled after the base R
function package.skeleton, which facilitates creation of a so-called skeleton
package using Rcpp. A skeleton package is a minimal package providing a working
example which can then be adapted and extended as needed by the user.
Rcpp.package.skeleton has a number of arguments documented on its

help page (and similar to those of package.skeleton). The main argument is
the first one which provides the name of the package one aims to create by invoking
the function. An illustration of a call using the argument mypackage is provided
below.

R> Rcpp.package.skeleton( "mypackage" )
2 Creating directories ...
Creating DESCRIPTION ...

4 Creating NAMESPACE ...
Creating Read-and-delete-me ...

6 Saving functions and data ...
Making help files ...

8 Done.
Further steps are described in

10 ’./mypackage/Read-and-delete-me’.

12 Adding Rcpp settings
>> added Depends: Rcpp

14 >> added LinkingTo: Rcpp
>> added useDynLib directive to NAMESPACE

16 >> added Makevars file with Rcpp settings
>> added Makevars.win file with Rcpp settings

18 >> added example header file using Rcpp classes
>> added example src file using Rcpp classes

20 >> added example R file calling the C++ example
>> added Rd file for rcpp_hello_world

22 R>

Listing 5.1 A first Rcpp.package.skeleton example



5.2 Using Rcpp.package.skeleton 67

We can use the (Linux) command ls -1R to recursively list the directory and
file structure created by this command:

R> system("ls -1R mypackage")
2 mypackage:
DESCRIPTION

4 man
NAMESPACE

6 R
Read-and-delete-me

8 src

10 mypackage/man:
mypackage-package.Rd

12 rcpp_hello_world.Rd

14 mypackage/R:
rcpp_hello_world.R

16

mypackage/src:
18 Makevars
Makevars.win

20 rcpp_hello_world.cpp
rcpp_hello_world.h

22 R>

Listing 5.2 Files created by Rcpp.package.skeleton

Using Rcpp.package.skeleton() is by far the simplest approach as it
fulfills two roles. It creates the complete set of files needed for a package, and it
also includes the different components needed for using Rcpp that we discuss in the
following sections.

5.2.2 R Code

The skeleton created here contains an example R functionrcpp_hello_world()
that uses the .Call interface to invoke the C++ function rcpp_hello_world
from the package mypackage.

rcpp_hello_world <- function(){
2 .Call( "rcpp_hello_world", PACKAGE = "mypackage" )
}

Listing 5.3 R function rcpp hello world

Rcpp uses the .Call calling convention as it allows exchange of actual R
objects back and forth between the R side and the C++ side. R objects encoded as
SEXP types can be conveniently manipulated using the Rcpp API as we discussed
in the preceding chapters.
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Note that in this example, no arguments are passed from R down to the C++
layer. Doing so is straightforward (and one of the key features of Rcpp) but not
central to our discussion of the package creation mechanics and hence omitted here.

5.2.3 C++ Code

The C++ function is declared in the rcpp_hello_world.h header file:

1 #ifndef _mypackage_RCPP_HELLO_WORLD_H
#define _mypackage_RCPP_HELLO_WORLD_H

3

#include <Rcpp.h>
5

/*
7 * note : RcppExport is an alias to ‘extern "C"‘

* defined by Rcpp.
9 *

* It gives C calling convention to the rcpp_hello_world
11 * function so that it can be called from .Call in R.

* Otherwise, the C++ compiler mangles the
13 * name of the function and .Call can’t find it.

*
15 * It is only useful to use RcppExport when the function

* is intended to be called by .Call. See the thread
17 * http://thread.gmane.org/gmane.comp.lang.r.rcpp/649/focus=672

* on Rcpp-devel for a misuse of RcppExport
19 */
RcppExport SEXP rcpp_hello_world();

21

#endif

Listing 5.4 C++ header file rcpp hello world.h

The header includes the Rcpp.h file which is the sole header file that needs
to be included in order to use Rcpp. The function itself is implemented in the file
rcpp_hello_world.cpp.

#include "rcpp_hello_world.h"
2

SEXP rcpp_hello_world(){
4 using namespace Rcpp ;

6 CharacterVector x = CharacterVector::create( "foo", "bar");
NumericVector y = NumericVector::create( 0.0, 1.0 );

8 List z = List::create( x, y );

10 return z ;
}

Listing 5.5 C++ source file rcpp hello world.cpp
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The function creates an R list that contains a character vector and a numeric
vector using Rcpp classes. At the R level, we will therefore receive a list of length
two containing these two vectors:

1 R> rcpp_hello_world( )
[[1]]

3 [1] "foo" "bar"
[[2]]

5 [1] 0 1
R>

Listing 5.6 Calling R function rcpp hello world

5.2.4 DESCRIPTION

The skeleton generates an appropriate DESCRIPTION file, using both Depends:
and LinkingTo: for Rcpp:

Package: mypackage
2 Type: Package
Title: What the package does (short line)

4 Version: 1.0
Date: 2012-11-10

6 Author: Who wrote it
Maintainer: Who to complain to <yourfault@somewhere.net>

8 Description: More about what it does (maybe more than
one line)

10 License: What Licence is it under ?
LazyLoad: yes

12 Depends: Rcpp (>= 0.9.13)
LinkingTo: Rcpp

Listing 5.7 DESCRIPTION file for skeleton package

Rcpp.package.skeleton() adds the three last lines to the DESCRIPTION
file. The Depends declaration indicates R-level dependency between the client
package and Rcpp. The LinkingTo declaration indicates that the client package
needs to use header files exposed by Rcpp.

5.2.5 Makevars and Makevars.win

Unfortunately, and notwithstanding its name, the LinkingTo declaration in itself
is not enough to link to the user C++ library of Rcpp. Until more explicit sup-
port for libraries is added to R, we need to manually add the Rcpp library to the
PKG LIBS variable in the Makevars and Makevars.win files. Rcpp provides
the unexported function Rcpp:::LdFlags() to ease the process:
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1 ## Use the R_HOME indirection to support
## installations of multiple R version

3 PKG_LIBS=‘$(R_HOME)/bin/Rscript -e "Rcpp:::LdFlags()"‘

5 ## As an alternative, one can also add this code in a
## file ’configure’

7 ##
## PKG_LIBS=‘${R_HOME}/bin/Rscript -e

9 ## "Rcpp:::LdFlags()"‘
##

11 ## sed -e "s|@PKG_LIBS@|${PKG_LIBS}|" \
## src/Makevars.in > src/Makevars

13 ##
## which together with the following file

15 ## ’src/Makevars.in’
##

17 ## PKG_LIBS = @PKG_LIBS@
##

19 ## can be used to create src/Makevars dynamically. This
## scheme is more powerful and can be expanded to also

21 ## check for and link with other libraries. It should
## be complemented by a file ’cleanup’

23 ##
## rm src/Makevars

25 ##
## which removes the autogenerated file src/Makevars.

27 ##
## Of course, autoconf can also be used to write

29 ## configure files. This is done by a number of
## packages, but recommended only for more advanced

31 ## users comfortable with autoconf and its related
## tools.

Listing 5.8 Makevars file for skeleton package

The file Makevars.win is the equivalent version targeting Windows. This
version uses an additional variable to call the architecture-dependent variant of
Rscript in order to create the correct arguments for 32-bit or 64-bit versions of
Windows.

## Use the R_HOME indirection to support
2 ## installations of multiple R version
PKG_LIBS = $(shell

4 "${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe"
-e "Rcpp:::LdFlags()")

Listing 5.9 Makevars.win file for skeleton package
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5.2.6 NAMESPACE

The Rcpp.package.skeleton() function also creates a file NAMESPACE
with the content shown here.

1 useDynLib(mypackage)
exportPattern("ˆ[[:alpha:]]+")

Listing 5.10 NAMESPACE file for skeleton package

This file serves two purposes. First, it ensures that the dynamic library contained
in the package we are creating via Rcpp.package.skeleton()will be loaded
and thereby made available to the newly created R package. Second, it declares
which identifiers, that is functions or data sets, should be globally visible from the
namespace of this package. As a reasonable default, we export all functions via a
regular expression covering all identifiers starting with a letter.

5.2.7 Help Files

Also created is a directory man containing two help files. One is for the package
itself, the other for the (single) R function being provided and exported. Writing
a help file is an important step in fully documenting a package. The Writing R
Extensions manual (R Development Core Team 2012d) provides the complete doc-
umentation on how to create suitable content for help files.

5.2.7.1 mypackage-package.Rd

The help file mypackage-package.Rd is used to describe the new package.

\name{mypackage-package}
2 \alias{mypackage-package}
\alias{mypackage}

4 \docType{package}
\title{

6 What the package does (short line)
}

8 \description{
More about what it does (maybe more than one line)

10 ˜˜ A concise (1-5 lines) description of the package ˜˜
}

12 \details{
\tabular{ll}{

14 Package: \tab mypackage\cr
Type: \tab Package\cr

16 Version: \tab 1.0\cr
Date: \tab 2012-11-10\cr

18 License: \tab What license is it under?\cr
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LazyLoad: \tab yes\cr
20 }

˜˜ An overview of how to use the package, including
22 the most important functions ˜˜
}

24 \author{
Who wrote it

26

Maintainer: Who to complain to <yourfault@somewhere.net>
28 }
\references{

30 ˜˜ Literature or other references for background
information ˜˜

32 }
˜˜ Optionally other standard keywords, one per line,

34 from file KEYWORDS in the R documentation directory ˜˜
\keyword{ package }

36 \seealso{
˜˜ Optional links to other man pages, e.g. ˜˜

38 ˜˜ \code{\link[<pkg>:<pkg>-package]{<pkg>}} ˜˜
}

40 \examples{
%% ˜˜simple examples of the most important functions˜˜

42 }

Listing 5.11 Manual page mypackage-package.Rd for skeleton package

5.2.7.2 rcpp hello world.Rd

The help file rcpp_hello_world.Rd serves as documentation for the example
R function.

\name{rcpp_hello_world}
2 \alias{rcpp_hello_world}
\docType{package}

4 \title{
Simple function using Rcpp

6 }
\description{

8 Simple function using Rcpp
}

10 \usage{
rcpp_hello_world()

12 }
\examples{

14 \dontrun{
rcpp_hello_world()

16 }
}

Listing 5.12 Manual page rcpp hello world.Rd for skeleton package
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5.3 Case Study: The wordcloud Package

An interesting package which uses Rcpp in what may be the simplest possible way
is wordcloud (Fellows 2012).

The wordcloud package has one main function creating word clouds, a com-
mon illustration depicting relative word frequency in a text corpus. The package
initially provided this functionality via an R solution. However, the performance of
iteratively finding placements of words on a two-dimensional plane such that the
placement is tight yet not overlapping was seen as limiting. So the key determi-
nation of whether there is overlap between boxes, which executes a loop over the
potentially large list of key words assigned to boxes, was then reimplemented in a
short C++ function which is shown in Listing 5.13.

1

#include "Rcpp.h"
3

/*
5 * Detect if a box at position (x11,y11), with width sw11

* and height sh11 overlaps with any of the boxes in boxes1
7 */
using namespace Rcpp;

9

RcppExport SEXP is_overlap(SEXP x11,SEXP y11,SEXP sw11,
11 SEXP sh11,SEXP boxes1){

double x1 = as<double>(x11);
13 double y1 =as<double>(y11);

double sw1 = as<double>(sw11);
15 double sh1 = as<double>(sh11);

Rcpp::List boxes(boxes1);
17 Rcpp::NumericVector bnds;

double x2, y2, sw2, sh2;
19 bool overlap= true;

for (int i=0;i < boxes.size();i++) {
21 bnds = boxes(i);

x2 = bnds(0);
23 y2 = bnds(1);

sw2 = bnds(2);
25 sh2 = bnds(3);

if (x1 < x2)
27 overlap = (x1 + sw1) > x2;

else
29 overlap = (x2 + sw2) > x1;

31

if (y1 < y2)
33 overlap = (overlap && ((y1 + sh1) > y2));

else
35 overlap = (overlap && ((y2 + sh2) > y1));

37 if(overlap)
return Rcpp::wrap(true);

39 }
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41 return Rcpp::wrap(false);
}

Listing 5.13 Function is overlap from the wordcloud package

The package has no other external dependencies and requires only the files cre-
ated by Rcpp.package.skeleton() as discussed above.

5.4 Further Examples

There are now over 100 packages on the CRAN sites which use Rcpp, and which
therefore provided working examples which can be studied—just like the word-
cloud package in the previous section.

Among the CRAN packages using Rcpp are

• RcppArmadillo (François et al. 2012);
• RcppEigen (Bates et al. 2012);
• RcppBDT (Eddelbuettel and François 2012b); and,
• RcppGSL (François and Eddelbuettel 2010)

all of which not only follow the guidelines described in this chapter but are also
discussed in the remainder of the book.

These packages, as well as other packages on CRAN, can serve as examples
on how to get data to and from C++ routines and can be considered templates for
how to use Rcpp. A complete list of packages using Rcpp can always found at the
CRAN page of the package.



Chapter 6
Extending Rcpp

Abstract This chapter provides an overview of the steps programmers should follow
to extend Rcpp for use with their own classes and class libraries. The packages
RcppArmadillo, RcppEigen, and RcppGSL provide working examples of how
to extend Rcpp to work with, respectively, the Armadillo and Eigen C++ class
libraries as well as the GNU Scientific Library.

The chapter ends with an illustration of how the RcppBDT package connects the
date types of R with those of the Boost Date Time library by extending Rcpp.

6.1 Introduction

As discussed in the preceding chapters, Rcpp facilitates data interchange between
R and C++ through the templated function Rcpp::as<>()which convert objects
from R to C++, and the function Rcpp::wrap() which converts from C++ to
R. In doing so, these function transform data from the representation in the so-
called S Expression Pointers (the type SEXP of the R API) to a corresponding
(templated) C++ type, and vice versa. The corresponding function declarations for
Rcpp::as() and Rcpp::wrap() are as follows:

1 // conversion from R to C++
template <typename T> T as(SEXP m_sexp);

3

// conversion from C++ to R
5 template <typename T> SEXP wrap(const T& object);

Listing 6.1 as and wrap declarations

These converters are often used implicitly, as in the following example:

1 code <- ’
// we get a list from R

3 List input(inputS) ;

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
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5 // pull std::vector<double> from R list
// achieved through an implicit call to Rcpp::as

7 std::vector<double> x = input["x"] ;

9 // return an R list
// achieved through implicit call to Rcpp::wrap

11 return List::create(_["front"] = x.front(),
_["back"] = x.back());

13 ’

15 fx <- cxxfunction(signature(inputS = "list"),
body=code, plugin = "Rcpp")

17 input <- list( x = seq(1, 10, by = 0.5) )
fx( input )

Listing 6.2 Implicit use of as and wrap

In this example, a list object (containing a vector x defined as a sequence from
1 to 10) is created in R and passed to the C++ code where a Rcpp::List object
is instantiated. A list element named x is then extracted by name and assigned to a
C++ vector object. For the return, we also create a list with two named components
for the first and last element, respectively, which are named “front” and “back” just
like the STL-style accessor function used to extract the corresponding elements.

This example shows how Rcpp::as and Rcpp::wrap can be used to convert
standard R and C++ types. These two converter functions have been designed to
be extensible to user-defined types and third-party types. The next sections discuss
how to apply Rcpp::wrap and Rcpp::as to user-supplied types.

6.2 Extending Rcpp::wrap

The Rcpp::wrap converter is extensible in essentially two ways: a more intrusive
approach (which modifies the header files defining the class to be made known to
wrap) and via two nonintrusive variants that do not require changes to the class
being wrapped. We discuss all three approaches below.

6.2.1 Intrusive Extension

When extending Rcpp with your own data type, the recommended way is to imple-
ment a conversion to SEXP. This lets Rcpp::wrap know about the new data type.
The template meta-programming (or TMP) dispatch is able to recognize that a type
is convertible to a SEXP and Rcpp::wrap will then use that conversion.
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The caveat is that the type must be declared before the main header file Rcpp.h
is included.

#include <RcppCommon.h>
2

class Foo {
4 public:

Foo();
6

// this operator enables implicit Rcpp::wrap
8 operator SEXP();
}

10

#include <Rcpp.h>

Listing 6.3 Intrusive extension for wrap

This is called intrusive because the conversion to the SEXP operator has to be
declared within the class that we want to use with Rcpp. This means we have to add
the header RcppCommon.h before the class declaration: this makes SEXP known
in the context of our class Foo. By adding the header Rcpp.h later, we ensure that
Rcpp knows about the conversion from SEXP to foo. And, of course, the actual
code for the operator SEXP() has to be supplied as well in a corresponding
source file.

6.2.2 Nonintrusive Extension

It is often desirable to offer automatic conversion to third-party types over which
the developer has no control. Lack of control, or access to source code, or maybe
even design and policy reasons not to alter an existing code base or library may all
preclude us from including a conversion to SEXP operator in the class definition as
in the previous section.

So to provide automatic conversion from C++ to R, one must declare a special-
ization of the Rcpp::wrap template between the includes of RcppCommon.h
and Rcpp.h.

1 #include <RcppCommon.h>

3 // third party library that declares class Bar
#include <foobar.h>

5

// declaring the specialization
7 namespace Rcpp {

template <> SEXP wrap( const Bar& );
9 }

11 // this must appear after the specialization, else
// the specialization will not be seen by Rcpp types

13 #include <Rcpp.h>

Listing 6.4 Nonintrusive extension for wrap
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It should be noted that only the declaration is required. The implementation can
appear after the Rcpp.h file is included and can therefore take full advantage of
the Rcpp type system.

6.2.3 Templates and Partial Specialization

It is also perfectly valid to declare a partial specialization for the Rcpp::wrap
template using the templated typename T and a templated use of our class. The
compiler will identify the appropriate overload:

1 #include <RcppCommon.h>

3 // third party library declarings template class Bling<T>
#include <foobar.h>

5

// declaring the partial specialization
7 namespace Rcpp {

namespace traits {
9 template <typename T> SEXP wrap( const Bling<T>& );

}
11 }

13 // this must appear after the specialization, else
// the specialization will not be seen by Rcpp types

15 #include <Rcpp.h>

Listing 6.5 Partial specialization for wrap

6.3 Extending Rcpp::as

Conversion from R to C++ using as<>() is also possible in both intrusive and
nonintrusive ways.

6.3.1 Intrusive Extension

As part of its template meta-programming dispatch logic, Rcpp::as will attempt
to use the constructor of the target class taking a SEXP.

1 #include <RcppCommon.h>

3 class Foo{
public:

5 Foo() ;
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7 // this constructor enables implicit Rcpp::as
Foo(SEXP) ;

9 }

11 #include <Rcpp.h>

Listing 6.6 Intrusive extension for as

Taking this intrusive route, this constructor can then be implemented in the
sources defining class Foo.

6.3.2 Nonintrusive Extension

It is also possible to fully specialize Rcpp::as to enable nonintrusive implicit
conversion capabilities.

1 #include <RcppCommon.h>

3 // third party library that declares class Bar
#include <foobar.h>

5

// declaring the specialization
7 namespace Rcpp {

template <> Bar as( SEXP ) throw(not_compatible);
9 }

11 // this must appear after the specialization, else
// the specialization will not be seen by Rcpp types

13 #include <Rcpp.h>

Listing 6.7 Nonintrusive extension for as

6.3.3 Templates and Partial Specialization

The signature of Rcpp::as does not allow partial specialization. So when ex-
posing a templated class to Rcpp::as, the programmer must specialize the tem-
plate class Rcpp::traits::Exporter. The TMP dispatch will recognize that
a specialization of Exporter is available and delegate the conversion to this class.
Rcpp defines the Rcpp::traits::Exporter template class as follows:

1 namespace Rcpp {
namespace traits {

3

template <typename T> class Exporter{
5 public:

Exporter( SEXP x ) : t(x){}
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7 inline T get(){ return t; }

9 private:
T t;

11 } ;
}

13 }

Listing 6.8 Partial specialization via Exporter

This is the reason why the default behavior of Rcpp::as is to invoke the con-
structor of the type T taking a SEXP.

Since partial specialization of class templates is allowed, we can expose a set of
classes as follows:

1 #include <RcppCommon.h>

3 // third party library that declares template class Bling<T>
#include <foobar.h>

5

// declaring the partial specialization
7 namespace Rcpp {

namespace traits {
9 template <typename T> class Exporter< Bling<T> >;

}
11 }

13 // this must appear after the specialization, else
// the specialization will not be seen by Rcpp types

15 #include <Rcpp.h>

Listing 6.9 Partial specialization of as via Exporter

Using this approach, the requirements for the Exporter< Bling<T> > class
are twofold. It should have

• A constructor taking a SEXP type.
• A method called get which returns an instance of the Bling<T> type.

6.4 Case Study: The RcppBDT Package

The package RcppBDT (Eddelbuettel and François 2012b) interfaces some of the
Date Time classes of the Boost C++ library collection.

To do so, it contains Rcpp::as() and Rcpp::wrap() implementations to
convert from one representation to the other. The case discussed in this section is
straightforward and concerns the conversion for actual date types which are repre-
sented internally as (unsigned) integers.

It does, however, illustrate the general principle of receiving a SEXP type and
converting to a type from the to-be-wrapped library via the templated function
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as<>() in order to convert to a new type, and conversely returning a SEXP via
the wrap() function which converts from a new type.

The following specialization includes the actual code along with the declarations.

1 // define template specializations for as and wrap
namespace Rcpp {

3 template <> boost::gregorian::date as( SEXP dtsexp ) {
Rcpp::Date dt(dtsexp);

5 return boost::gregorian::date(dt.getYear(),
dt.getMonth(),

7 dt.getDay());
}

9

template <> SEXP wrap(const boost::gregorian::date &d) {
11 boost::gregorian::date::ymd_type ymd =

d.year_month_day(); // convert to y/m/d struct
13 return Rcpp::wrap(Rcpp::Date( ymd.year,

ymd.month,
15 ymd.day ));

}
17 }

Listing 6.10 RcppBDT definitions of as and wrap

In the case of as, the SEXP is first converted to a Rcpp::Date type. Its
accessors for day, month, and year are then used to instantiate a Boost Gregorian
date type. The wrap function here simply does the inverse and deploys the year,
month, and date accessors of such a Boost Gregorian date type to access one of the
constructor of the Rcpp::Date class.

These two converter functions are then used to pass values between the R repre-
sentation and the representation used by Boost Date Time.

As an example, consider the implementation of the function

1 Rcpp::Date Date_firstDayOfWeekAfter(boost::gregorian::date *d,
int weekday, SEXP date) {
boost::gregorian::first_day_of_the_week_after fdaf(weekday);

3 boost::gregorian::date dt =
Rcpp::as<boost::gregorian::date>(date);

5 return Rcpp::wrap(fdaf.get_date(dt));
}

Listing 6.11 RcppBDT use of as and wrap

As detailed in Chap. 7, the first argument of function using a so-called “Rcpp
Module” has to be a pointer to the object being wrapped, here the class date in the
namespace boost::gregorian. The next two arguments are the requested day
of the week (encoded as an integer, or using one of constants Mon, Tue, . . ., Sun
defined in the package) and a date for which the next matching weekday has to be
determined.

The function first instantiates a first_day_of_the_week_after object
utilizing the Boost functionality. Next, the Rcpp::as() converter is used to pass
the date obtained from R as a SEXP variable into a date variable, here dt, for
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Boost. Finally, Rcpp::wrap() is used to convert the result obtained from com-
puting the “first day of the week after” functionality on the given date dt, returned
also as a date object—which Rcpp::wrap converts into a SEXP type from
which an Rcpp::Date can be derived implicitly.

This functionality can be illustrated with a simple usage example in which we
compute the date of the first Monday after New Year 2020:

R> getFirstDayOfWeekAfter(Mon, as.Date("2020-01-01"))
2 [1] "2020-01-06"
R>

Listing 6.12 RcppBDT example for getFirstDayOfWeekAfter

Working with Rcpp modules is detailed in the next chapter.

6.5 Further Examples

The packages RcppArmadillo (François et al. 2012), RcppEigen (Bates et al.
2012), and RcppGSL (François and Eddelbuettel 2010) provide concrete examples
in the context of vector and matrix classes.



Chapter 7
Modules

Abstract This chapter discusses Rcpp modules which allow programmers to expose
C++ functions and classes to R with relative ease. Rcpp modules are inspired
from the Boost.Python C++ library which provides similar features for integrat-
ing Python and C++. Furthermore, Rcpp modules also offer the ability to extend
C++ classes exposed to R directly from the R side. This chapter discusses modules
in detail and ends on an applied case study featuring the RcppCNPy package.

7.1 Motivation

Exposing C++ functionality to R is greatly facilitated by the Rcpp package and its
underlying C++ library. Rcpp smoothes many of the rough edges in any R and C++
integration by adding a consistent set of C++ classes to the traditional R Application
Programming Interface (API) described in “Writing R Extensions” (R Development
Core Team 2012d). The Rcpp-based approach was the focus of the earlier chapters.

These Rcpp facilities offer a lot of assistance to the programmer wishing to inter-
face R and C++. At the same time, they are limited as they operate on a function-by-
function basis. The programmer has to implement a .Call() compatible function
(to conform to the R API) using classes of the Rcpp API as we briefly review in the
next section.

7.1.1 Exposing Functions Using Rcpp

Exposing existing C++ functions to R through Rcpp usually involves several steps.
One approach is to write an additional wrapper function that is responsible for

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
DOI 10.1007/978-1-4614-6868-4 7, © The Author 2013

83



84 7 Modules

converting input objects to the appropriate types, calling the actual worker function
and converting the results back to the only suitable type that can be returned to R
via the .Call() interface: the SEXP.

As a concrete example, consider the norm function below:

1 double norm( double x, double y ) {
return sqrt( x*x + y*y );

3 }

Listing 7.1 A simple norm function in C++

This simple function does not meet the requirements imposed by the .Call
interface, so it cannot be called directly by R. Exposing the function involves writing
a simple wrapper function that does match the .Call interface. Rcpp makes this
easy.

1 using namespace Rcpp;
RcppExport SEXP norm_wrapper(SEXP x_, SEXP y_) {

3 // step 0: convert input to C++ types
double x = as<double>(x_), y = as<double>(y_);

5

// step 1: call the underlying C++ function
7 double res = norm( x, y );

9 // step 2: return the result as a SEXP
return wrap( res );

11 }

Listing 7.2 Calling the norm function

We use the (templated) Rcpp converter as() which can transform from a SEXP
to a number of different C++ and Rcpp types; here we used it to assign two scalar
double types. The Rcpp function wrap() offers the opposite functionality and
converts many known types to a SEXP; here we use it to return the double scalar
result.

This process is simple enough and is widely used by a number of CRAN pack-
ages. However, it requires direct involvement from the programmer, which becomes
laborious when many functions are involved. Rcpp modules provides a much more
elegant and unintrusive way to expose C++ functions such as the norm function
shown above to R.

7.1.2 Exposing Classes Using Rcpp

Exposing C++ classes or structs is even more of a challenge because it requires
writing glue code for each member function that is to be exposed.

Consider the simple Uniform class below:

1 class Uniform {
public:

3 Uniform(double min_, double max_) :
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min(min_), max(max_) {}
5

NumericVector draw(int n) {
7 RNGScope scope;

return runif( n, min, max );
9 }

11 private:
double min, max;

13 };

Listing 7.3 A simple class Uniform

This class enables us to draw a number of uniformly distributed random numbers,
and it uses two internal state variables to store the lower and upper bound of the
range from which the draws are taken.

To use this class from R, we at least need to expose the constructor and the
draw method. External pointers (R Development Core Team 2012d) are a suitable
mechanism for this, and we can use the Rcpp:::XPtr template to expose the
class with these two functions:

1 using namespace Rcpp;

3 /// create an external pointer to a Uniform object
RcppExport SEXP Uniform__new(SEXP min_, SEXP max_) {

5 // convert inputs to appropriate C++ types
double min = as<double>(min_), max = as<double>(max_);

7

// create a pointer to an Uniform object and wrap it
9 // as an external pointer

Rcpp::XPtr<Uniform> ptr( new Uniform( min, max ), true );
11

// return the external pointer to the R side
13 return ptr;
}

15

/// invoke the draw method
17 RcppExport SEXP Uniform__draw( SEXP xp, SEXP n_ ) {

// grab the object as a XPtr (smart pointer) to Uniform
19 Rcpp::XPtr<Uniform> ptr(xp);

21 // convert the parameter to int
int n = as<int>(n_);

23

// invoke the function
25 NumericVector res = ptr->draw( n );

27 // return the result to R
return res;

29 }

Listing 7.4 Exposing two member functions for Uniform class



86 7 Modules

However, it is generally considered a bad idea to expose external pointers “as is.”
Rather, we prefer to have them wrapped as a slot of a corresponding S4 class.

1 R> setClass("Uniform",
+ representation( pointer = "externalptr" ) )

3 [1] "Uniform"
R> # helper

5 R> Uniform_method <- function(name) {
+ paste( "Uniform", name, sep = "__" )

7 + }
R> # syntactic sugar to allow object$method( ... )

9 R> setMethod( "$", "Uniform", function(x, name ) {
+ function(...) .Call(Uniform_method(name),

11 + x@pointer, ... )
+ } )

13 R> # syntactic sugar to allow new( "Uniform", ... )
R> setMethod("initialize",

15 + "Uniform", function(.Object, ...) {
+ .Object@pointer <-

17 + .Call(Uniform_method("new"), ... )
+ .Object

19 + } )
[1] "initialize"

21 R> u <- new( "Uniform", 0, 10 )
R> u$draw( 10L )

23 [1] 4.325224 0.269805 9.990058 7.137135 6.335477
[5] 6.833734 1.385790 8.850125 1.243403 4.070396

Listing 7.5 Using the Uniform class from R

7.2 Rcpp Modules

The design of Rcpp modules has been influenced by Python modules which are
generated by the Boost.Python library (Abrahams and Grosse-Kunstleve 2003).
Rcpp modules provide a convenient and easy-to-use way to expose C++ functions
and classes to R, grouped together in a single entity.

An Rcpp module is created in a cpp file using the RCPP MODULE macro, which
then provides declarative code of what the module exposes to R.

7.2.1 Exposing C++ Functions Using Rcpp Modules

Consider the norm function from the previous section. We can expose it to R using
a single line of code inside the RCPP MODULE macro:

using namespace Rcpp;
2

double norm( double x, double y ) {
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4 return sqrt( x*x + y*y );
}

6

RCPP_MODULE(mod) {
8 function( "norm", &norm );
}

Listing 7.6 Exposing the norm function via modules

The code creates an Rcpp module called mod that exposes the norm function.
Rcpp automatically deduces the conversions that are needed for input and output.
This alleviates the need for a wrapper function using either Rcpp or the R API.

On the R side, the module is retrieved by using the Module() function from
Rcpp:

1 R> require( Rcpp )
R> mod <- Module( "mod" )

3 R> mod$norm( 3, 4 )

Listing 7.7 Using norm function exposed via modules

A module can contain any number of calls to function to register many in-
ternal functions to R. For example, consider these six functions covering a range of
input and return arguments:

1 std::string hello() { return "hello"; }

3 int bar( int x) { return x*2; }

5 double foo( int x, double y) { return x * y; }

7 void bla( ) { Rprintf( "hello\\n" ); }

9 void bla1( int x) {
Rprintf( "hello (x = %d)\\n", x );

11 }

13 void bla2( int x, double y) {
Rprintf( "hello (x = %d, y = %5.2f)\\n", x, y );

15 }

Listing 7.8 A module example with six functions

They can all be exposed to R with the following minimal code:

1 RCPP_MODULE(yada) {
using namespace Rcpp;

3

function( "hello" , &hello );
5 function( "bar" , &bar );

function( "foo" , &foo );
7 function( "bla" , &bla );

function( "bla1" , &bla1 );
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9 function( "bla2" , &bla2 );
}

Listing 7.9 Modules example interface

We can now use them from R as follows:

R> require( Rcpp )
2 R> yada <- Module( "yada" )
R> yada$bar( 2L )

4 R> yada$foo( 2L, 10.0 )
R> yada$hello()

6 R> yada$bla()
R> yada$bla1( 2L)

8 R> yada$bla2( 2L, 5.0 )

Listing 7.10 Modules example use from R

The requirements for a function to be exposed to R via Rcpp modules are as
follows:

• The function has to take between 0 and 65 parameters.
• Each input parameter must be manageable by the templated Rcpp::as conver-

sion function.
• The return type of the function must be either void or any type that can be

managed by the Rcpp::wrap template conversion function.
• The function name itself has to be unique in the module. In other words, no two

functions with the same name but different signatures are allowed. While C++
allows overloading functions, Rcpp modules relies on named identifiers for the
lookup and cannot allow two identical identifiers.

7.2.1.1 Documentation for Exposed Functions Using Rcpp Modules

In addition to the name of the function and the function pointer, it is possible to pass
a short description of the function as the third parameter of function.

using namespace Rcpp;
2

double norm( double x, double y ) {
4 return sqrt( x*x + y*y );
}

6

RCPP_MODULE(mod) {
8 function("norm", &norm,

"Provides a simple vector norm" );
10 }

Listing 7.11 Modules example with function documentation
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The description is used when displaying the function to the R prompt:

R> mod <- Module( "mod", getDynLib( fx ) )
2 R> show( mod$norm )
internal C++ function <0x2477630>

4 docstring : Provides a simple vector norm
signature : double norm(double, double)

Listing 7.12 Output for modules example with function documentation

7.2.1.2 Formal Arguments Specification

Using function, we can specify the formal arguments of the R function that en-
capsulates the C++ function by passing a Rcpp::List after the function pointer
and before the (also optional) documentation entry:

1 using namespace Rcpp;

3 double norm( double x, double y ) {
return sqrt( x*x + y*y );

5 }

7 RCPP_MODULE(mod_formals) {
function("norm",

9 &norm,
List::create(_["x"] = 0.0, _["y"] = 0.0),

11 "Provides a simple vector norm");
}

Listing 7.13 Modules example with documentation and formal arguments

A simple usage example is provided below:

R> norm <- mod$norm
2 R> norm()
[1] 0

4 R> norm( y = 2 )
[1] 2

6 R> norm( x = 2, y = 3 )
[1] 3.605551

8 R> args( norm )
function (x = 0, y = 0)

10 NULL

Listing 7.14 Output for modules example with documentation and formal arguments

To set formal arguments without default values, simply omit the right-hand side.

using namespace Rcpp;
2

double norm( double x, double y ) {
4 return sqrt( x*x + y*y );
}
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6

RCPP_MODULE(mod_formals2) {
8 function( "norm", &norm,

List::create(_["x"], _["y"] = 0.0),
10 "Provides a simple vector norm");
}

Listing 7.15 Modules example with documentation and formal arguments without defaults

This can be used as follows:

1 R> norm <- mod$norm
R> args( norm )

3 function (x, y = 0)
NULL

Listing 7.16 Usage of modules example with documentation and formal arguments

The ellipsis (...) can be used to denote that additional arguments are optional;
it does not take a default value.

using namespace Rcpp;
2

double norm( double x, double y ) {
4 return sqrt( x*x + y*y );
}

6

RCPP_MODULE(mod_formals3) {
8 function( "norm", &norm,

List::create( _["x"], _["..."] ),
10 "documentation for norm");
}

Listing 7.17 Modules example with ellipis argument

This now shows the ellipsis in the documentation output.

1 R> norm <- mod$norm
R> args( norm )

3 function (x, ...)
NULL

Listing 7.18 Output of modules example with ellipis argument

7.2.2 Exposing C++ Classes Using Rcpp Modules

Rcpp modules also provide a mechanism for exposing C++ classes, based on the
Reference Classes which were first introduced in R release 2.12.0.
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7.2.2.1 Initial Example

A class is exposed using the class keyword (and the trailing underscore is
required as we cannot use the C++ language keyword class). The Uniform
class may be exposed to R as follows:

using namespace Rcpp;
2 class Uniform {
public:

4 Uniform(double min_, double max_) :
min(min_), max(max_) {}

6

NumericVector draw(int n) const {
8 RNGScope scope;

return runif( n, min, max );
10 }

12 double min, max;
};

14

double uniformRange( Uniform* w) {
16 return w->max - w->min;
}

18

RCPP_MODULE(unif_module) {
20

class_<Uniform>( "Uniform" )
22

.constructor<double,double>()
24

.field( "min", &Uniform::min )
26 .field( "max", &Uniform::max )

28 .method( "draw", &World::draw )
.method( "range", &uniformRange )

30 ;

32 }

Listing 7.19 Exposing Uniform class using modules

A short example follows and shows how to use this class:

R> Uniform <- unif_module$Uniform
2 R> u <- new( Uniform, 0, 10 )
R> u$draw( 10L )

4 [1] 3.7950482 6.9525034 0.5783621 5.7234278 0.6869314
[6] 5.6403064 2.3408875 6.5695670 1.8821565 8.8553301

6 R> u$range()
[1] 10

8 R> u$max <- 1
R> u$range()

10 [1] 1
R> u$draw( 10 )
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12 [1] 0.1987632 0.7598329 0.7276362 0.3101182 0.2300929
[6] 0.7121408 0.1005060 0.4007011 0.1643178 0.2252207

Listing 7.20 Using Uniform class via modules

Here, class is templated by the C++ class or struct that is to be exposed to R.
The parameter of the class <Uniform> constructor is the name we will use on
the R side. It often makes sense to use the same name as the class name. While this
is not enforced, it might be useful when exposing a class generated from a template.

Then a single constructor, two fields and two methods are exposed to complete
the simple example. Of the two methods, one accesses a class member function
(draw), whereas the other uses a free function (uniformRange).

7.2.2.2 Exposing Constructors Using Rcpp Modules

Public constructors that take from zero and seven parameters can be exposed to the
R level using the .constuctor template method of .class .

Optionally, .constructor can take a description as the first argument.

1 .constructor<double, double>(
"sets the min and max value of the distribution")

Listing 7.21 Constructor with a description

Also, the second argument can be a function pointer (called validator) matching
the following type :

typedef bool (*ValidConstructor)(SEXP*, int);

Listing 7.22 Constructor with a validator function pointer

The validator can be used to implement dispatch to the appropriate constructor,
when multiple constructors taking the same number of arguments are exposed. The
default validator always accepts the constructor as valid if it is passed the appropriate
number of arguments. For example, with the call above, the default validator accepts
any call from R with two double arguments (or arguments that can be cast to
double).

7.2.2.3 Exposing Fields and Properties

class has three ways to expose fields and properties, as illustrated in the example
below:

1 using namespace Rcpp;
class Foo {

3 public:
Foo( double x_, double y_, double z_ ):

5 x(x_), y(y_), z(z_) {}
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7 double x;
double y;

9

double get_z() { return z; }
11 void set_z( double z_ ) { z = z_; }

13 private:
double z;

15 };

17 RCPP_MODULE(mod_foo) {
class_<Foo>( "Foo" )

19

.constructor<double,double,double>()
21

.field( "x", &Foo::x )
23 .field_readonly( "y", &Foo::y )

25 .property( "z", &Foo::get_z, &Foo::set_z )
;

27 }

Listing 7.23 Exposing fields and properties for modules

The .field method exposes a public field with read/write access from R;
field also accepts an extra parameter to give a short description of the field:

1 .field( "x", &Foo::x, "documentation for x" )

Listing 7.24 Field with documentation

The .field readonly method exposes a public field with read-only access
from R . It also accepts the description of the field.

1 .field_readonly( "y", &Foo::y, "documentation for y" )

Listing 7.25 Readonly-field with documentation

The .property method allows indirect access to fields through a getter and
a setter function. The setter is optional, and the property is considered read-only if
the setter is not supplied. As before, an optional documentation string can also be
supplied to describe the property:

1 // with getter and setter
.property("z", &Foo::get_z, &Foo::set_z,

3 "Documentation for z" )

5 // with only a getter
.property( "z", &Foo::get_z, "Documentation for z" )

Listing 7.26 Property with getter and setter, or getter-only
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The type of the field (T) is deduced from the return type of the getter, and if a
setter is given, its unique parameter should be of the same type.

Getters can be member functions taking no parameters and returning a T (e.g.,
get z above), or a free function taking a pointer to the exposed class and returning
a T, for example:

double z_get( Foo* foo ) { return foo->get_z(); }

Listing 7.27 Example of using a getter

Setters can be either a member function taking a T and returning void, such as
set z above, or a free function taking a pointer to the target class and a T :

1 void z_set( Foo* foo, double z ) { foo->set_z(z); }

Listing 7.28 Example of using a setter

Using properties gives more flexibility in case field access has to be tracked or
has an impact on other fields. For example, this class keeps track of how many times
the x field is read and written.

1 class Bar {
public:

3

Bar(double x_) : x(x_), nread(0), nwrite(0) {}
5

double get_x( ) {
7 nread++;

return x;
9 }

11 void set_x( double x_) {
nwrite++;

13 x = x_;
}

15

IntegerVector stats() const {
17 return IntegerVector::create(

_["read"] = nread,
19 _["write"] = nwrite

);
21 }

23 private:
double x;

25 int nread, nwrite;
};

27

RCPP_MODULE(mod_bar) {
29 class_<Bar>( "Bar" )

31 .constructor<double>()
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33 .property( "x", &Bar::get_x, &Bar::set_x )
.method( "stats", &Bar::stats )

35 ;
}

Listing 7.29 Example code for properties

Here is a simple usage example:

R> Bar <- mod_bar$Bar
2 R> b <- new( Bar, 10 )
R> b$x + b$x

4 [1] 20
R> b$stats()

6 read write
2 0

8 R> b$x <- 10
R> b$stats()

10 read write
2 1

Listing 7.30 Example using properties

7.2.2.4 Exposing Methods Using Rcpp Modules

class has several overloaded and templated .method functions allowing the
programmer to expose a method associated with the class.

A legitimate method to be exposed by .method can be:

• A public member function of the class, either const or non-const, that returns
void or any type that can be handled by Rcpp::wrap, and that takes between 0
and 65 parameters whose types can be handled by Rcpp::as. ; or

• A free function that takes a pointer to the target class as its first parameter, fol-
lowed by 0 or more (up to 65) parameters that can be handled by Rcpp::as
and returning a type that can be handled by Rcpp::wrap or void.

Documenting Methods

.method can also include a short documentation of the method, after the method
(or free function) pointer.

1 .method( "stats", &Bar::stats,
"vector indicating the number of times"

3 "x has been read and written" )

Listing 7.31 Example documenting a method

Note that the documentation string is really only one argument as there is no
comma separating the two pieces.
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Const and Non-const Member Functions

method is able to expose both const and non-const member functions of a
class. There are, however, situations where a class defines two versions of the same
method, differing only in their signature by the const-ness. This is, for example,
the case of the member functions back of the std::vector template from the
STL.

1 reference back ( );
const_reference back ( ) const;

Listing 7.32 Const and non-const member functions

To resolve the ambiguity, it is possible to use either the const method or the
nonconst method instead of method in order to restrict the candidate methods.

Special Methods

Rcpp considers the methods [[ and [[<- special and promotes them to indexing
methods on the R side.

7.2.2.5 Object Finalizers

The .finalizer member function of class can be used to register a finalizer.
A finalizer is a free function that takes a pointer to the target class and returns void.
The finalizer is called before the destructor and so operates on a valid object of the
target class. It can be used to perform suitable operations such as releasing resources,
or summarizing and logging behavior.

The finalizer is called automatically when the R object that encapsulates the C++
object is garbage-collected.

7.2.2.6 S4 Dispatch

When a C++ class is exposed by the class template, a new S4 class is registered
as well. The name of the S4 class is obfuscated in order to avoid name clashes (i.e.,
two modules exposing the same class).

This allows for the implementation of R-level (S4) dispatch. For example, one
might implement the show method for C++ World objects:

setMethod("show", yada$World,
2 function(object) {

msg <- paste("World object with message :",
4 object$greet() )

writeLines( msg )
6 } )

Listing 7.33 Example of S4 dispatch
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7.2.2.7 Full Example

The following example illustrates how to use Rcpp modules to expose the class
std::vector<double> from the STL.

// convenience typedef
2 typedef std::vector<double> vec;

4 // helpers
void vec_assign( vec* obj, Rcpp::NumericVector data ) {

6 obj->assign( data.begin(), data.end() );
}

8

void vec_insert(vec* obj, int position,
10 Rcpp::NumericVector data) {

vec::iterator it = obj->begin() + position;
12 obj->insert( it, data.begin(), data.end() );
}

14

Rcpp::NumericVector vec_asR( vec* obj ) {
16 return Rcpp::wrap( *obj );
}

18

void vec_set( vec* obj, int i, double value ) {
20 obj->at( i ) = value;
}

22

RCPP_MODULE(mod_vec) {
24 using namespace Rcpp;

26 // we expose the class std::vector<double>
// as "vec" on the R side

28 class_<vec>( "vec")

30 // exposing constructors
.constructor()

32 .constructor<int>()

34 // exposing member functions
.method( "size", &vec::size)

36 .method( "max_size", &vec::max_size)
.method( "resize", &vec::resize)

38 .method( "capacity", &vec::capacity)
.method( "empty", &vec::empty)

40 .method( "reserve", &vec::reserve)
.method( "push_back", &vec::push_back )

42 .method( "pop_back", &vec::pop_back )
.method( "clear", &vec::clear )

44

// specifically exposing const member functions
46 .const_method( "back", &vec::back )

.const_method( "front", &vec::front )
48 .const_method( "at", &vec::at )
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50 // exposing free functions taking a
// std::vector<double>* as their first argument

52 .method( "assign", &vec_assign )
.method( "insert", &vec_insert )

54 .method( "as.vector", &vec_asR )

56 // special methods for indexing
.const_method( "[[", &vec::at )

58 .method( "[[<-", &vec_set )

60 ;
}

Listing 7.34 Complete example of exposing std::vector<double>

The R usage is as follows:

1 R> vec <- mod_vec$vec
R> v <- new( vec )

3 R> v$reserve( 50L )
R> v$assign( 1:10 )

5 R> v$push_back( 10 )
R> v$size()

7 R> v$capacity()
R> v[[ 0L ]]

9 R> v$as.vector()

Listing 7.35 R use of std::vector<double> modules example

7.3 Using Modules in Other Packages

7.3.1 Namespace Import/Export

7.3.1.1 Import All Functions and Classes

When using Rcpp modules in a package, the client package needs to import Rcpp’s
namespace. This is achieved by adding the following line to the NAMESPACE file.

1 import( Rcpp )

Listing 7.36 R NAMESPACE import of Rcpp for modules

Loading the module must happen after the dynamic library of the package is
loaded. There are two approaches. The older one uses the .onLoad() hook.

1 # grab the namespace
NAMESPACE <- environment()

3

.onLoad <- function(libname, pkgname) {
5 ## load the module and store it in our namespace
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yada <- Module( "yada" )
7 populate( yada, NAMESPACE )
}

Listing 7.37 R .onLoad() code for module

The call to populate installs all functions and classes from the module into
the namespace of package.

7.3.1.2 Import All Modules in a Package

There is also a convenience function loadRcppModules() that loops over all
modules declared in the DESCRIPTION file. The loadRcppModules() func-
tion has a single argument direct with a default value of TRUE implying that
all (exported) identifiers in the module are directly populated into the namespace
of the module. Otherwise, only the module is exposed and its functions need to be
addressed indirectly (as, for example, via v$size()).

The loadRcppModules() function has to be called from the .onLoad()
function as well.

7.3.1.3 Using loadModule

A separate function loadModule() has been available since release 0.9.11 of
Rcpp. It can be used in any .R function in a package (and not just in .onLoad()).
Its first argument is the module name. The second argument can be used to detail
which parts of a module should be loaded; the special value TRUE signals that all
objects with valid names are exported.

As an example, RcppBDT uses loadModule("bdtDtMod", TRUE) to
load all components of the bdtDtMod module. Similarly, the RcppCNPy pack-
age uses loadModule("cnpy", TRUE) to load its sole module cnpy.

7.3.2 Support for Modules in Skeleton Generator

The Rcpp.package.skeleton() function has been extended to facilitate the
use of Rcpp modules. When the module argument is set to TRUE, the skeleton
generator installs code that uses a simple module.

R> Rcpp.package.skeleton( "testmod", module = TRUE )

Listing 7.38 Package skeleton support for modules

This provides the easiest way to create a new package containing Rcpp modules
code.
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7.3.3 Module Documentation

Rcpp defines a prompt() method for the Module class, allowing generation of
a skeleton of an Rd file containing some information about the module.

1 R> yada <- Module( "yada" )
R> prompt( yada, "yada-module.Rd" )

Listing 7.39 Use of prompt for documentation skeleton

7.4 Case Study: The RcppCNPy Package

Modules are a very powerful tool. They are suited to exposing code from existing
class libraries as the RcppBDT package discussed in the previous section illustrates.
The Rcpp attributes system uses modules to easily connect the wrappers it generates
for the user-supplied code.

Modules can be used to provide simple wrappers to external libraries. A simple
example is provided by the RcppCNPy package (Eddelbuettel 2012a). It uses a
small stand-alone library provided in a single header and source files in order to
access NumPy files used by this popular Python extension.

In the package, two functions npyLoad() and npySave() are defined. They
simply transfer data between a given file name and R by relying on the external
library provided by the source files cnpy.cpp and cnpy.h.

Listing 7.40 shows simplified versions of these two functions. We have omitted
several aspects to keep the exposition shorter: the special case of transposing, the
additional layer of transparently dealing with gzip-compressed files, the support
for long long types, as well as the support for different underlying data types
concentratic on just numeric.

Rcpp::RObject npyLoad(const std::string & filename,
2 const std::string & type) {

cnpy::NpyArray arr;
4 arr = cnpy::npy_load(filename);

6 std::vector<unsigned int> shape = arr.shape;
SEXP ret = R_NilValue;

8 if (shape.size() == 1) {
if (type == "numeric") {

10 double *p = reinterpret_cast<double*>(arr.data);
ret = Rcpp::NumericVector(p, p + shape[0]);

12 } else {
arr.destruct();

14 Rf_error("Unsupported type in npyLoad");
}

16 } else if (shape.size() == 2) {
if (type == "numeric") {

18 ret = Rcpp::NumericMatrix(shape[0], shape[1],
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reinterpret_cast<double*>(arr.data));
20 } else {

arr.destruct();
22 Rf_error("Unsupported type in npyLoad");

}
24 } else {

arr.destruct();
26 Rf_error("Unsupported dimension in npyLoad");

}
28 arr.destruct();

return ret;
30 }

32 void npySave(std::string filename, Rcpp::RObject x,
std::string mode) {

34 if (::Rf_isMatrix(x)) {
if (::Rf_isNumeric(x)) {

36 Rcpp::NumericMatrix mat =
transpose(Rcpp::NumericMatrix(x));

38 std::vector<unsigned int> shape =
Rcpp::as<std::vector<unsigned int> >(

40 Rcpp::IntegerVector::create(mat.ncol(),
mat.nrow()));

42

cnpy::npy_save(filename, mat.begin(),
44 &(shape[0]), 2, mode);

} else {
46 Rf_error("Unsupported matrix type\n");

}
48 } else if (::Rf_isVector(x)) {

if (::Rf_isNumeric(x)) {
50 Rcpp::NumericVector vec(x);

std::vector<unsigned int> shape =
52 Rcpp::as<std::vector<unsigned int> >(

Rcpp::IntegerVector::create(vec.length()));
54 cnpy::npy_save(filename, vec.begin(),

&(shape[0]), 1, mode);
56 } else {

Rf_error("Unsupported vector type\n");
58 }

} else {
60 Rf_error("Unsupported type\n");

}
62 }

Listing 7.40 NumPy load and save functions defined in RcppCNPy

The following module declaration is all it takes to make the functions known to R
along with some standard declaration done by the rest of the package, and provided
by helper functions like Rcpp.package.skeleton() when the modules=
TRUE option is selected.
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2 RCPP_MODULE(cnpy){

4 using namespace Rcpp;

6 // name of the identifier at the R level
function("npyLoad",

8 // function pointer to helper function defined above
&npyLoad,

10 // function arguments including default value
List::create( Named("filename"),

12 Named("type") = "numeric",
Named("dotranspose") = true),

14 "read an npy file into a numeric vector or matrix");

16 // name of the identifier at the R level
function("npySave",

18 // function pointer to helper function defined above
&npySave,

20 // function arguments including default value
List::create( Named("filename"),

22 Named("object"),
Named("mode") = "w"),

24 "save an R object to an npy file");

26 }

Listing 7.41 Example of module declaration in RcppCNPy

7.5 Further Examples

Several packages on CRAN now use Rcpp modules. As of late 2012, the list
comprises the packages GUTS (Albert and Vogel 2012), RSofia (King and Diaz
2011), RcppBDT (Eddelbuettel and François 2012b), RcppCNPy (Eddelbuet-
tel 2012a), cda (Auguie 2012a), highlight (François 2012a), maxent (Jurka and
Tsuruoka 2012), parser (François 2012b), planar (Auguie 2012b), and transmis-
sion (Thomas and Redd 2012).



Chapter 8
Sugar

Abstract This chapter describes Rcpp sugar which brings a higher level of
abstraction to C++ code written using the Rcpp API. Rcpp sugar is based on ex-
pression templates and provides some “syntactic sugar” facilities directly in Rcpp.
In this chapter, we will introduce many of the very useful Rcpp sugar features. As
our focus is firmly on using Rcpp sugar, we will do so without venturing too deeply
into the template meta programming approach used to implement it. Some technical
details are provided at the end, and this section can be skipped by users who are
interested primarily in using, rather than extending, Rcpp sugar. A brief simulation
example using Rcpp sugar concludes the chapter.

8.1 Motivation

Rcpp facilitates development of compiled code to extend R via either inline code or
an R package by abstracting low-level details of the R API (R Development Core
Team 2012d) into a consistent set of C++ classes.

Code written using Rcpp classes is easier to read, write, and maintain, without
losing performance. Consider the following code example which provides a function
foo as a C++ extension to R by using the Rcpp API:

RcppExport SEXP foo( SEXP xs, SEXP ys) {
2 Rcpp::NumericVector xv(xs);

Rcpp::NumericVector yv(ys);
4 int n = xv.size();

Rcpp::NumericVector res( n );
6 for (int i=0; i<n; i++) {

double x = xv[i];
8 double y = yv[i];

if( x < y ) {
10 res[i] = x * x;

} else {

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
DOI 10.1007/978-1-4614-6868-4 8, © The Author 2013
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12 res[i] = -( y * y);
}

14 }
return res;

16 }

Listing 8.1 A simple C++ function operating on vectors

The goal of the function foo code is simple. We pass two numeric vectors
passed from R (as SEXP types) and create two Rcpp vectors. We then create a third
one of the same length as x, fill it, and return it to R (and let us ignore for a moment
that the actual transformation from xv and yv into the results vector res is not
all that meaningful). This function shows typical low-level C++ code that could
be written much more concisely in R, thanks to vectorization as shown in the next
example.

R> foo <- function(x, y){
2 + ifelse( x < y, x*x, -(y*y) )
+ }

Listing 8.2 A simple R function operating on vectors

Put succinctly, the motivation of Rcpp sugar is to bring a subset of the high-level
R syntax to C++. Hence, with Rcpp sugar, the C++ version of foo now becomes

1 RcppExport SEXP foo( SEXP xs, SEXP ys){
Rcpp::NumericVector x(xs) ;

3 Rcpp::NumericVector y(ys) ;
return ifelse( x < y, x*x, -(y*y) ) ;

5 }

Listing 8.3 A simple C++ function using sugar operating on vectors

which is only about a third as long as the initial version. More importantly, it permits
us to collapse explicit loops (which are common in C++ but we note that, for
example, the STL offers alternatives) into vectorized expressions just as it would
in R.

Apart from the fact that we need to assign the two objects we obtain from R—
which is a simple statement each thanks to the template magic in Rcpp, and as
previously discussed also a lightweight operation copying only a pointer—and the
need for an explicit return statement, the code is now identical between highly
vectorized R and C++. So Rcpp sugar enables us to express a vectorized expression
in C++ just as easily as in R.

Rcpp sugar is written using expression templates and lazy evaluation techniques
(Abrahams and Gurtovoy 2004; Vandevoorde and Josuttis 2003). This not only
allows for a much nicer high-level syntax but also makes it rather efficient as we
detail further in Sects. 8.4 and 8.6 below.
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8.2 Operators

Rcpp sugar takes advantage of C++ operator overloading. The next few sections
discuss several examples.

8.2.1 Binary Arithmetic Operators

Rcpp sugar defines the usual binary arithmetic operators: +, -, *, /.

1 // two numeric vectors of the same size
NumericVector x;

3 NumericVector y;

5 // expressions involving two vectors
NumericVector res = x + y;

7 NumericVector res = x - y;
NumericVector res = x * y; // NB element-wise multiplication

9 NumericVector res = x / y;

11 // one vector, one single value
NumericVector res = x + 2.0;

13 NumericVector res = 2.0 - x;
NumericVector res = y * 2.0;

15 NumericVector res = 2.0 / y;

17 // two expressions
NumericVector res = x * y + y / 2.0;

19 NumericVector res = x * ( y - 2.0 );
NumericVector res = x / ( y * y );

Listing 8.4 Binary arithmetic operators for sugar

The left-hand side (lhs) and the right-hand side (rhs) of each binary arithmetic
expression must be of the same type (e.g., they should be both numeric expres-
sions).

The lhs and the rhs can either have the same size or one of them could be a
primitive value of the appropriate type, for example adding a NumericVector
and a double. This is different from R which uses a recycling rule for its operation.
When a shorter vector, say, of length four is added to a longer vector of length eight,
the recycling operation can succeed as an integer multiple (here: two) of the shorter
vector’s length (here: four) is equal to the longer vector’s length (here: eight). This
behavior is not emulated in Rcpp sugar where either the two operants have to be of
the same length or one has to be a single primitive C++ type such as double.
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8.2.2 Binary Logical Operators

Binary logical operators create a logical sugar expression, from either two sugar
expressions of the same type or one sugar expression and a primitive value of the
associated type.

// two integer vectors of the same size
2 NumericVector x;
NumericVector y;

4

// expressions involving two vectors
6 LogicalVector res = x < y;
LogicalVector res = x > y;

8 LogicalVector res = x <= y;
LogicalVector res = x >= y;

10 LogicalVector res = x == y;
LogicalVector res = x != y;

12

// one vector, one single value
14 LogicalVector res = x < 2;
LogicalVector res = 2 > x;

16 LogicalVector res = y <= 2;
LogicalVector res = 2 != y;

18

// two expressions
20 LogicalVector res = ( x + y ) < ( x*x );
LogicalVector res = ( x + y ) >= ( x*x );

22 LogicalVector res = ( x + y ) == ( x*x );

Listing 8.5 Binary logical operators for sugar

8.2.3 Unary Operators

The unary operator- can be used to negate a (numeric) sugar expression,
whereas the unary operator! negates a logical sugar expression:

// a numeric vector
2 NumericVector x;

4 // negate x
NumericVector res = -x;

6

// use it as part of a numerical expression
8 NumericVector res = -x * ( x + 2.0 );

10 // two integer vectors of the same size
NumericVector y;

12 NumericVector z;

14 // negate the logical expression "y < z"
LogicalVector res = ! ( y < z );

Listing 8.6 Unary operators for sugar
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8.3 Functions

Rcpp sugar defines functions that closely match the behavior of R functions of the
same name.

8.3.1 Functions Producing a Single Logical Result

Given a logical sugar expression, the all function identifies if all the elements are
TRUE. Similarly, the any function identifies if any one of the elements of a given
logical sugar expression is TRUE.

1 IntegerVector x = seq_len( 1000 );
all( x*x < 3 );

3 any( x*x < 3 );

Listing 8.7 Functions returning a single boolean result

Either call to all and any creates an object of a class that has member functions
is true, is false, is na and a conversion to SEXP operator.

One important thing to highlight is that all is lazy. Unlike in R, there is no need
to fully evaluate the expression. In the example above, the result of all is fully
resolved after evaluating only the first two indices of the expression x * x < 3.
any is lazy too, so it will only need to resolve the first element of the example
above.

Another important consideration is the conversion to the bool type. In order to
respect the concept of missing values (NA) in R, expressions generated by any
or all cannot be converted directly to bool. Instead one must use is true,
is false or is na:

1 // wrong: will generate a compile error
bool res = any( x < y) );

3

// ok
5 bool res = is_true( any( x < y ) );
bool res = is_false( any( x < y ) );

7 bool res = is_na( any( x < y ) );

Listing 8.8 Using functions returning a single boolean result

8.3.2 Functions Producing Sugar Expressions

8.3.2.1 is na

Given a sugar expression of any type, is_na (just like the other functions in this
section) produces a logical sugar expression of the same length. Each element of the
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result expression evaluates to TRUE if the corresponding input is a missing value,
or FALSE otherwise.

1 IntegerVector x = IntegerVector::create( 0, 1, NA_INTEGER, 3 );

3 is_na( x );
all( is_na( x ) );

5 any( ! is_na( x ) );

Listing 8.9 Example using is na sugar function

8.3.2.2 seq along

Given a sugar expression of any type, seq along creates an integer sugar expres-
sion whose values go from 1 to the size of the input.

1 IntegerVector x = IntegerVector::create( 0, 1, NA_INTEGER, 3 );

3 seq_along( x );
seq_along( x * x * x * x * x * x * x );

Listing 8.10 Example using seq along sugar function

This is a “lazy” (in the R evaluation sense) function, as it only needs to call
the size member function of the input expression. In other words, the value of the
input expression does need not to be computed. The two examples above give the
same result with the same efficiency at run-time. The compile time will be affected
by the complexity of the second expression, since the abstract syntax tree is built at
compile time.

8.3.2.3 seq len

seq len creates an integer sugar expression whose ith element expands to i. This
makes seq len particularly useful for functions such as sapply and lapply
(which are similar to their R equivalents, and discussed below).

// 1, 2, ..., 10
2 IntegerVector x = seq_len( 10 );

4 lapply( seq_len(10), seq_len );

Listing 8.11 Example using seq len sugar function

8.3.2.4 pmin and pmax

Given two sugar expressions of the same type and size, or one expression and one
primitive value of the appropriate type, pmin (pmax) generates a sugar expression
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of the same type whose ith element expands to the lowest (highest) value between
the ith element of the first expression and the ith element of the second expression.

IntegerVector x = seq_len( 10 );
2

pmin( x, x*x );
4 pmin( x*x, 2 );

6 pmin( x, x*x );
pmin( x*x, 2 );

Listing 8.12 Example using pmin and pmax sugar function

8.3.2.5 ifelse

Given a logical sugar expression and either

• Two compatible sugar expressions (same type, same size) or
• One sugar expression and one compatible primitive.

ifelse expands to a sugar expression whose ith element is the ith element of the
first expression if the ith element of the condition expands to TRUE, or the ith of
the second expression if the ith element of the condition expands to FALSE, or the
appropriate missing value otherwise.

1 IntegerVector x;
IntegerVector y;

3

ifelse( x < y, x, (x+y)*y );
5 ifelse( x > y, x, 2 );

Listing 8.13 Example using ifelse sugar function

8.3.2.6 sapply

sapply applies a C++ function to each element of the given expression to create
a new expression. The type of the resulting expression is deduced by the compiler
from the result type of the function.

The function can be a free C++ function such as the overload generated by the
template function below:

1 template <typename T>
T square( const T& x){

3 return x * x;
}

5 sapply( seq_len(10), square<int> );

Listing 8.14 Example using sapply sugar function
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Alternatively, the function can be a functor whose type has a nested type called
result type. One way to satisfy this requirement is by inheriting from the
std::unary_function functor:

1 template <typename T>
struct square : std::unary_function<T,T> {

3 T operator()(const T& x){
return x * x;

5 }
}

7 sapply( seq_len(10), square<int>() );

Listing 8.15 Example using std::unary function functor with sapply

8.3.2.7 lapply

lapply is similar to sapply except that the result is always a list expression (an
expression of type VECSXP).

8.3.2.8 mapply

mapply is similar to sapply and lapply but permits multiple vectors as input.
This is (at least currently) limited to either two or three vectors.

We can modify the example from Listing 8.14 to illustrate how mapply can be
used to work on multiple vectors. Here, instead of computing the squared value of
each element, we “sweep” a sum of squares calculation across two vectors.

1 template <typename T>
struct sumOfSquares : std::unary_function<T,T> {

3 T operator()(const T& x, const T& y){
return x*x + y*y;

5 }
}

7

NumericVector res;
9 res = mapply(seq_len(10), seq_len(10),

sumOfSquares<double>() );

Listing 8.16 Example using std::unary function functor with mapply

8.3.2.9 sign

Given a numeric or integer expression,sign expands to an expression whose values
are one of 1, 0, −1, or NA, depending on the sign of the input expression.
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IntegerVector xx;
2

sign( xx );
4 sign( xx * xx );

Listing 8.17 Example using sign sugar function

8.3.2.10 diff

The ith element of the result of diff is the difference between the (i+1)th and the
ith element of the input expression. Supported types are integer and numeric.

IntegerVector xx;
2

diff( xx );

Listing 8.18 Example using sign sugar function

8.3.2.11 setdiff

The setdiff function returns the values of the first vector which are not contained
in the second vector; this is analogous to the R version.

1 IntegerVector xx, yy;

3 setdiff( xx, yy );

Listing 8.19 Example using setdiff sugar function

8.3.2.12 union

The union function returns the union of the two vectors. The function has to
be named with the trailing underscore in order not to conflict with the language
keyword union.

1 IntegerVector xx, yy;

3 union_( xx, yy );

Listing 8.20 Example using union sugar function
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8.3.2.13 intersect

The intersect function returns the intersection of the two vectors.

1 IntegerVector xx, yy;

3 intersect( xx, yy );

Listing 8.21 Example using intersect sugar function

8.3.2.14 clamp

The clamp function combines the application of both pmin and pmax. Calling
clamp(a, x, b) computes the same result as pmax(a, pmin(x, b)). In
other words, it returns the values of the vector x limited to a minimum value of a
and a maximum value of b.

1 IntegerVector xx;
int a, b;

3

clamp( a, xx, b );

Listing 8.22 Example using clamp sugar function

8.3.2.15 unique

The unique function returns the subset of unique values among its input vector.

IntegerVector xx;
2

unique( xx );

Listing 8.23 Example using unique sugar function

8.3.2.16 sort unique

The sort unique function combines the results from unique with a call to
sort.

8.3.2.17 table

The table function returns a named vector with counts of the occurrences of each
of the named elements in the input vector, just like the R function table.
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1 IntegerVector xx;

3 table( xx );

Listing 8.24 Example using table sugar function

8.3.2.18 duplicated

The duplicated function returns a logical vector indicated whether the element
at position i in the input vector duplicates a previous value.

1 IntegerVector xx;

3 duplicated( xx );

Listing 8.25 Example using duplicated sugar function

8.3.3 Mathematical Functions

For the following set of functions, generally speaking, the ith element of the result
of the given function (say, abs) is the result of applying that function to this ith
element of the input expression. Supported types are integer and numeric.

Some functions reduce the input vector to a scalar result. Examples such as
min(), max(), mean(), var() or sd() show that the commonly assumed
functionality is also provided by these Rcpp sugar functions.

1 NumericVector x, y;
int k;

3 double z;

5 abs(x);
exp(x);

7 floor(x);
ceil(x);

9 pow(x, z); # x to the power of z
log(x);

11 log10(x);
sqrt(x);

13 sin(x);
cos(x);

15 tan(x);
sinh(x);

17 cosh(x);
tanh(x);

19 asin(x);
acos(x);
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21 atan(x);
gamma(x);

23 lgamma(x); # log gamma
digamma(x);

25 trigamma(x);
tetragamma(x);

27 pentagamma(x);
expm1(x);

29 log1p(x);
factorial(x);

31 lfactorial(x);
choose(n, k);

33 lchoose(n, k);
beta(n, k);

35 lbeta(n, k);
psigamma(n, k);

37 trunc(x);
round(x, k);

39 signif(x, k);
mean(x);

41 var(x);
sd(x);

43 sum(x);
cumsum(x);

45 min(x);
max(x);

47 range(x);
which_min(x);

49 which_max(x);
setequal(x, y);

Listing 8.26 Examples using mathematical sugar functions

8.3.4 The d/q/p/q Statistical Functions

The framework provided by Rcpp sugar also permits easy and efficient access to
the density, distribution function, quantile and random number generation functions
used by R itself. These are also provided via the Rmath library and, as discussed in
Sect. 4.8, available via the R namespace provided by the Rcpp package for this part
of the R API.

In general, the functions provided by Rcpp sugar are vectorized for the first ele-
ment. Consequently, in the following example, the function calls work in C++ just
as they would in R:

x1 = dnorm(y1, 0, 1); // density of y1 at m=0, sd=1
2 x2 = pnorm(y2, 0, 1); // distribution function of y2
x3 = qnorm(y3, 0, 1); // quantiles of y3

4 x4 = rnorm(n, 0, 1); // ’n’ RNG draws of N(0, 1)

Listing 8.27 Examples of d/p/q/r statistical sugar functions sugar
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For x1 to x3, the resulting vector is of the same dimension as the input y1 to y3.
Similar d/q/p/r functions are provided for the most common distributions: beta,

binom, cauchy, chisq, exp, F, gamma, geom, hyper, lnorm, logis, nbeta, nbinom,
nbinom mu, nchisq, nf, norm, nt, pois, t, unif, and weibull.

One important point is that the programmer using the random number generator
functions needs to initialize the state of the random number generator as detailed
in Section 6.3 of the “Writing R Extensions” manual (R Development Core Team
2012d). To help with this, the Rcpp package offers a convenient C++ solution: A
scoped class that sets the random number generator on entry to a block and resets it
on exit. The following example uses this RNGScope class. The function defines the
code block in which the scoped variable is active; and here RNGScope is activated
upon entering the function. Therefore, the random number generator can be called
in order to assign values to x. The scoped variable is then destroyed after the core
function code terminates with the return statement. RNGScope does not have to be
the first statement. In fact, it can be placed anywhere in the function scope—but it
has to be called before the first call to the random number generator is made.

RcppExport SEXP getRGamma() {
2 RNGScope scope;

NumericVector x = rgamma( 10, 1, 1 );
4 return x;
}

Listing 8.28 Examples of using sugar RNG functions with RNGScope

As there is some computational overhead involved in using RNGScope, we are
not wrapping it automatically around each inner function generating random num-
bers. Rather, the user of these functions should place an RNGScope at the appro-
priate level of his or her code.

In cases where scalar functions of a single argument returning a single are re-
quired, these are provided via R namespace as discussed in Sect. 4.8. The interface
is identical to the one offered by the header file Rmath.h of the R installation. This
additional interface is provided as Rcpp sugar requires the original header file to be
used via a remapping through prefix Rf_, whereas the added functions can be used
directly from the new namespace cleanly separating these identifiers.

8.4 Performance

The Rcpp package contains a complete example illustrating possible performance
gains from using Rcpp sugar in the directory examples/SugarPerformance.
It compares the performance on four different R expressions between calling run-
ning it as an R expression, running it via hand-optimized C++ code, and running it
via the Rcpp sugar vectorized C++ approach. Four different expressions are eval-
uated covering any, ifelse (where we use two variants of the handwritten code
with and without checks for missing values), and sapply.
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Table 8.1 Run-time performance of Rcpp sugar compared to R and manually optimized C++

R expression Runs Manual Sugar R

any(x * y < 0) 5,000 0.00027 0.00069 6.8914
ifelse(x<y, x*x, -(y*y)) 500 1.28566 1.52103 13.8829
ifelse(x<y, x*x, -(y*y)) (noNA) 500 0.41462 1.14434 13.8537
sapply(x, square) 500 0.16721 0.19224 115.4236

As can be seen in Table 8.1, performance varies greatly. This is most dramatic
in the first example. An R expression such as any(x * y < 0) will always be
evaluated for all pairwise elements in the two vectors. The Rcpp sugar implementa-
tion, on the other hand, can take a shortcut and stop as soon as one of the expressions
swept across all pairwise elements evaluates to true. After all, the tests is only for
“at least one” rather than a full count. The combination of compiled code together
with a possible short-circuit exit makes the C++ implementation much faster. In
fact, the ratio of C++ time to R time is almost 1–10,000. Handwritten code can
still be faster than the Rcpp sugar code by a small factor.

The second and third examples illustrate the vector function introduced at the
beginning of this chapter. We show two sets of results: In the second example, a
standard implementation which, just like R itself, tests all elements for NA (which
imposes an additional performance burden); and, the third example which does not
perform these tests for NA. Here, we find a 9- and 12-fold gain, respectively, from
Rcpp sugar relative to the vectorized R code. The manually written C++ code gains
most from omitting the test for NA, whereas the default version is only marginally
slower.

The fourth and final example illustrates sweeping a function (here computing a
square of its argument) over a vector using sapply. Once again, the Rcpp sugar
variant is a lot faster than the R version; the ratio of the two measurements is about
600. The Rcpp sugar code is only marginally slower than a handwritten loop.

This section illustrates that Rcpp sugar can offer substantial performance gains.
While manually written C++ code is seen to be marginally faster, the more concise
vectorized code offered by Rcpp sugar might be easier to write and maintain making
it an attractive proposition.

8.5 Implementation

This section details some of the techniques used in the implementation of Rcpp
sugar. Note that the user need not to be familiar with the implementation details in
order to use Rcpp sugar, so this section can be skipped during an initial read of the
chapter.
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Writing Rcpp sugar functions is fairly repetitive and follows a well-structured
pattern. So once the basic concepts are mastered (which may take time given the
inherent complexities in template programming), it should be possible to extend the
set of functions further following the established pattern.

8.5.1 The Curiously Recurring Template Pattern

Expression templates such as those used by Rcpp sugar employ a technique called
the Curiously Recurring Template Pattern (CRTP).1 The general form of CRTP is:

1 // The Curiously Recurring Template Pattern (CRTP)

3 // A templated base class
template <typename T>

5 struct base {
// ...

7 };

9 // A derived class
// which is a template for the base class it inherits from

11 struct derived : base<derived> {
// ...

13 };

Listing 8.29 The Curiously Recurring Template Pattern (CRTP)

The base class is templated by the class that derives from it: derived. This
shifts the relationship between a base class and a derived class—and allows the base
class to access methods of the derived class.

8.5.2 The VectorBase Class

The CRTP is used as the basis for Rcpp sugar with the VectorBase class tem-
plate. All sugar expressions derive from one class generated by the VectorBase
template. The current definition of VectorBase is given here:

1 template <int RTYPE, bool na, typename VECTOR>
class VectorBase {

3 public:
struct r_type :

5 traits::integral_constant<int,RTYPE>{};
struct can_have_na :

7 traits::integral_constant<bool,na>{};
typedef typename

1 The Wikipedia page at http://en.wikipedia.org/wiki/Curiously_recurring_
template_pattern has a good introduction and further pointers.

http://en.wikipedia.org/wiki/Curiously_recurring_
template_pattern
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9 traits::storage_type<RTYPE>::type stored_type;

11 VECTOR& get_ref(){
return static_cast<VECTOR&>(*this);

13 }

15 inline stored_type operator[]( int i) const {
return static_cast<const VECTOR*>(this)->operator[](i);

17 }

19 inline int size() const {
return static_cast<const VECTOR*>(this)->size();

21 }

23 /* definition omitted here */
class iterator;

25

inline iterator begin() const {
27 return iterator(*this, 0);

}
29 inline iterator end() const {

return iterator(*this, size() );
31 }
}

Listing 8.30 The VectorBase class for Rcpp sugar

The VectorBase template has three parameters.

RTYPE which controls the type of the underlying SEXP expression.
na which embeds in the derived type information about whether instances may

contain missing values. Rcpp vector types (IntegerVector, . . . ) derive from
VectorBase with this parameter set to true because there is no way to know
at compile-time if the vector will contain missing values at run-time. However,
this parameter is set to false for types that are generated by sugar expressions
as these are guaranteed to produce expressions that are without missing values.
An example is the is na function. This parameter is used in several places as
part of the compile time dispatch to limit the occurrence of redundant operations.

VECTOR which is a key component of Rcpp sugar. This is the manifestation of
CRTP. The indexing operator and the sizemethod of VectorBase use a static
cast of this to the VECTOR type to forward calls to the actual method of the
derived class.

8.5.3 Example: sapply

As an example, the current implementation of sapply, supported by the template
class Rcpp::sugar::Sapply is given below in Listing 8.31.
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template <int RTYPE, bool NA, typename T, typename Function>
2 class Sapply : public VectorBase<

Rcpp::traits::r_sexptype_traits<
4 typename ::Rcpp::traits::result_of<Function>::type >::rtype,

true,
6 Sapply<RTYPE,NA,T,Function>

> {
8 public:

typedef typename ::Rcpp::traits::result_of<Function>::type;
10

const static int RESULT_R_TYPE =
12 Rcpp::traits::r_sexptype_traits<result_type>::rtype;

14 typedef Rcpp::VectorBase<RTYPE,NA,T> VEC;

16 typedef typename Rcpp::traits::r_vector_element_converter<
RESULT_R_TYPE>::type converter_type;

18

typedef typename
20 Rcpp::traits::storage_type< RESULT_R_TYPE>::type STORAGE;

22 Sapply( const VEC& vec_, Function fun_ ) :
vec(vec_), fun(fun_){}

24

inline STORAGE operator[]( int i ) const {
26 return converter_type::get( fun( vec[i] ) );

}
28

inline int size() const { return vec.size(); }
30

private:
32 const VEC& vec;

Function fun;
34 };

36 // sugar

38 template <int RTYPE, bool _NA_, typename T, typename Function>
inline sugar::Sapply<RTYPE,_NA_,T,Function>

40 sapply(const Rcpp::VectorBase<RTYPE,_NA_,T>& t, Function fun) {
return sugar::Sapply<RTYPE,_NA_, T,Function>(t, fun);

42 }

Listing 8.31 The sapply Rcpp sugar implementation
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8.5.3.1 The sapply Function

sapply is a template function that takes two arguments.

• The first argument is a sugar expression, which we recognize because of the
relationship with the VectorBase class template.

• The second argument is the function fun to apply.

The sapply function itself does not do anything. Rather, it is used to trigger
compiler detection of the template parameters that will be used in the sugar::
Sapply template.

8.5.3.2 Detection of Return Type of the Function

In order to decide what kind of expression is built, the Sapply template class
queries the template argument via the Rcpp::traits::result of template.

typedef typename
2 ::Rcpp::traits::result_of<Function>::type result_type;

Listing 8.32 Rcpp::traits::result of template

The result of type trait is implemented as follows:

template <typename T>
2 struct result_of {

typedef typename T::result_type type;
4 };

6 template <typename RESULT_TYPE, typename INPUT_TYPE>
struct result_of< RESULT_TYPE (*)(INPUT_TYPE) >{

8 typedef RESULT_TYPE type;
};

Listing 8.33 result of trait implementation

The generic definition of result of targets functors which contain a nested
result type type. The second definition is a partial specialization targeting func-
tion pointers.

8.5.3.3 Identification of Expression Type

Based on the result type of the function, the r sexptype traits trait is used to
identify the expression type.

1 const static int RESULT_R_TYPE =
Rcpp::traits::r_sexptype_traits<result_type>::rtype;

Listing 8.34 Rcpp::traits::r sexptype traits template



8.5 Implementation 121

8.5.3.4 Converter

The r vector element converter class is used to convert an object of the
function’s result type to the actual storage type suitable for the sugar expression.

typedef typename
2 Rcpp::traits::r_vector_element_converter<RESULT_R_TYPE>::type

converter_type;

Listing 8.35 r vector element converter class

8.5.3.5 Storage Type

The storage type trait is used to get access to the storage type associated with
a sugar expression type. For example, the storage type of a REALSXP expression is
double.

1 typedef typename
Rcpp::traits::storage_type<RESULT_R_TYPE>::type STORAGE;

Listing 8.36 storage type trait

8.5.3.6 Input Expression Base Type

The input expression—the expression over which sapply runs—is also defined in
a typedef for convenience:

typedef Rcpp::VectorBase<RTYPE,NA,T> VEC;

Listing 8.37 Input expression base type

8.5.3.7 Output Expression Base Type

In order to be part of the Rcpp sugar system, the type generated by the Sapply
class template must inherit from VectorBase.

1 template <int RTYPE, bool NA, typename T, typename Function>
class Sapply : public VectorBase<

3 Rcpp::traits::r_sexptype_traits<
typename ::Rcpp::traits::result_of<Function>::type>::rtype,

5 true,
Sapply<RTYPE, NA, T, Function>

7 >

Listing 8.38 Output expression base type
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Here we have three arguments. First, the expression built by Sapply depends
on the result type of the function. Second, it may contain missing values. The third
argument is the manifestation of the CRTP.

8.5.3.8 Constructor

The constructor of the Sapply class template is straightforward, it simply consists
of holding the reference to the input expression and the function.

1 Sapply( const VEC& vec_, Function fun_ ) :
vec(vec_), fun(fun_){}

3

private:
5 const VEC& vec;

Function fun;

Listing 8.39 Constructor for Sapply class template

8.5.3.9 Implementation

The indexing operator and the size member function is what the VectorBase
expects. The size of the result expression is the same as the size of the input expres-
sion and the ith element of the result is simply retrieved by applying the function
and the converter. Both these methods are inlined to maximize performance:

inline STORAGE operator[]( int i ) const {
2 return converter_type::get( fun( vec[i] ));
}

4 inline int size() const { return vec.size(); }

Listing 8.40 Implementation of Sapply

8.6 Case Study: Computing π Using Rcpp sugar

Rcpp sugar provides a large number of functions that can be used as building blocks
for other programs and applications. Rather than picking a particular example from
an existing package, this section will demonstrate how Rcpp sugar is as compact
and expressive as R itself.

To do so, we will revisit the well-known introductory example of approximat-
ing π . The algorithm uses the property that the area of a unit circle is equal to π and
repeatedly draws two uniform random numbers x and y, each between zero and one.
It then computes the distance

d =
√

x2 + y2
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to the origin and compares it to one to determine whether the point (x,y) is inside
or outside the unit circle. By summing up all the attempts less than one, dividing by
the total count N, one obtains a proportion—of the area of a quarter of the unit circle
as we constrained the initial draws to be in the first quadrant. So, consequently, our
estimate of π is provided by four times that area as an estimate for the area of the
whole unit circle.

piR <- function(N) {
2 x <- runif(N)

y <- runif(N)
4 d <- sqrt(xˆ2 + yˆ2)

return(4 * sum(d < 1.0) / N)
6 }

Listing 8.41 Simulating π in R

An equivalent program can be written in C++ thanks to Rcpp sugar with only
one more line (in the function body) to ensure the random number generator is
properly set.

2 #include <Rcpp.h>

4 using namespace Rcpp;

6 // [[Rcpp::export]]
double piSugar(const int N) {

8 RNGScope scope; // ensure RNG gets set/reset
NumericVector x = runif(N);

10 NumericVector y = runif(N);
NumericVector d = sqrt(x*x + y*y);

12 return 4.0 * sum(d < 1.0) / N;
}

Listing 8.42 Simulating π in C++

Using Rcpp attributes, we can obtain an R function of the same name piSugar
simply by passing the name of the file into the sourceCpp() function.

The complete example is shown in Listing 8.43.

library(Rcpp)
2 library(rbenchmark)

4 piR <- function(N) {
x <- runif(N)

6 y <- runif(N)
d <- sqrt(xˆ2 + yˆ2)

8 return(4 * sum(d < 1.0) / N)
}

10

# get C++ version from source file
12 sourceCpp("piSugar.cpp")

14 N <- 1e6
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16 set.seed(42)
resR <- piR(N)

18

set.seed(42)
20 resCpp <- piSugar(N)

22 ## important: check results are identical with RNG seeded
stopifnot(identical(resR, resCpp))

24

res <- benchmark(piR(N), piSugar(N), order="relative")
26

print(res[,1:4])

Listing 8.43 Simulating π in R

The result is shown in Table 8.2. Even though both versions are equally compact
and execute essentially identical vectorized code leading to identical results (as we
verified), the C++ version manages to reduce the run-time by almost half which is
a surprisingly good result.

Table 8.2 Run-time performance of Rcpp sugar compared to R for simulating π

R expression Replications Elapsed Relative

piSugar(N) 100 5.777 1.000
piR(N) 100 11.227 1.943

We should stress, though, that one should not take away from this to attempt to
rewrite each and every R expression using Rcpp sugar. Its power lies in providing us
concise expression at the C++ level. This allows the programmer to write compact
code similar to what one could achieve in R. This can complement other C++
code and is not necessarily meant to replace R as vectorized R code is typically fast
enough.
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Chapter 9
RInside

Abstract The RInside package permits direct use of R inside of a C++ application.
RInside provides an abstraction layer around the R embedding API and makes
it easier to access an R instance inside your application. Moreover, thanks to the
classes provided by Rcpp, data interchange between R and C++ becomes very
straightforward. We illustrate RInside by examining several of the many examples
included with the package.

9.1 Motivation

Rcpp has been discussed throughout this book as a package which makes it easier to
add new code to R itself. Examples for this can be stand-alone routines, accessing an
external library or a combination of both. One commonality has been that R remains
the principal interface: The aim is always to extend R with new facilities, yet the
focus is on extending R as the principal environment for statistical computing, data
analysis, and modeling.

However, there are situations where one may want to take a different view, start-
ing from a C++ program as a main executable. One might like to deploy R as an
analysis engine or service to enhance the executable. As a more concrete example,
consider the case of a (potentially large) program to control a set of simulations.
After running a number of experiments, results can be aggregated to be analyzed
further with the intent of deriving intermediate results which will influence further
simulations. Our quest is to make the intermediate analysis accessible to the outer
C++ program controlling the simulation. So at this point, one of the two common
workflows is usually deployed.

The first approach is the simplest. Data is written out to files. Standard textfiles
are common, or maybe a domain-specific or higher-performance binary format is
chosen. At this point, analysis may switch to another program for data analysis such
as R. The analysis itself maybe written out in scripts; maybe these can be executed
with a front-end such as Rscript (which is available wherever R is installed).

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
DOI 10.1007/978-1-4614-6868-4 9, © The Author 2013

127



128 9 RInside

And, in that case the main analysis program could even call Rscript itself via a
system() call. Once the data analysis has completed, the main simulation pro-
gram can resume, possibly reflecting updated parameters from the analysis.

A second approach may be to communicate with the analysis program over the
network. The Rserve package (Urbanek 2003, 2012) can listen on network sockets
and receive data as well as instructions—which makes it suitable to act as a net-
worked R analysis facility. The main program can transmit the data to be analyzed
and can then invoke the analysis script. The main program proceeds with its op-
erations once it receives the results from the analysis engine or server. Thus, this
setup loosely corresponds to the facilities from the first scripting case in that calls
are made to an external engine.

Both approaches work, yet both also have drawbacks. Calling an external pro-
gram using system() is relatively simple and somewhat robust. However, a key
problem is the difficulty of reporting errors back via the reduced interface offered
by the system() call. One can encode the respective success and error codes as
integer values which can be returned. Alternatively, results can be written out to the
standard output, or into files, which the main program then needs to parse. No other
formal mechanism exists for communication between the two programs sharing the
work. Another drawback concerning file-based communication is the possibility of
race conditions if more than one instance is running. Similarly, the networked so-
lution introduces a possible new point of failure at the network layer. This can of
course be mitigated by running the Rserve instance on the same machine, or by
adding some redundancy to the network setup.

The potential shortcomings of both approaches suggest a search for alternatives.
One possibility supported by R is to embed the interpreter in another program.
This is supported through an extensive embedding API (R Development Core Team
2012d, Chapter 8). This API is written in C and does not support higher-level ab-
stractions as in Rcpp. However, the RInside package (Eddelbuettel and François
2012d) builds on top of the standard R embedding API in a way that may seem
more natural to C++ programmers. In this chapter, we illustrate the use of RInside
via a number of examples supplied with the package itself.

9.2 A First Example: Hello, World!

Let us look at the very first of well over a dozen examples presented in the directory
examples/standard of the RInside package. It follows the long and proud
tradition of making a first program display the string “Hello, world!” on the screen:

1 #include <RInside.h>

3 int main(int argc, char *argv[]) {

5 // create an embedded R instance
RInside R(argc, argv);

7
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// assign a char* (string) to ’txt’
9 R["txt"] = "Hello, world!\n";

11 // eval the init string, ignoring any returns
R.parseEvalQ("cat(txt)");

13

exit(0);
15 }

Listing 9.1 First RInside example: Hello, World!

The program really consists of only four statements, and one single header file
(RInside.h) providing all declarations. We first instantiate an object called R of
the RInside class. The class has two arguments to deal with command-line ar-
guments; these arguments are, however, entirely optional. This is followed by an
assignment of a constant text string—the message to be displayed—to a variable
named txt which is created directly inside the R session. Next, we parse and eval-
uate an R command passed to the embedded R instances which calls the cat()
function to simply display the content of variable txt. This last parse and eval-
uation is done “quietly” (as indicated by the trailing “Q” on the member function
name) and no result is returned. The related function parseEval()which we will
see below returns the value of its last expression, much like a standard R function.
Finally, we return with error code of zero, which is a common value to indicate
successful completion.

Building this first program is straightforward provided that a Makefile
(or Makefile.win for the Windows platform) has been set up—as is the case
with the aforementioned directory examples/standard of the RInside pack-
age. The Makefile contains shell expressions which query R , Rcpp, and RInside
for relevant header and library information, and then use this information to build
the complete compile command:

1 ## comment this out if you need a different version of R,
## and set set R_HOME accordingly as an environment variable

3 R_HOME := $(shell R RHOME)

5 sources := $(wildcard *.cpp)
programs := $(sources:.cpp=)

7

9 ## include headers and libraries for R
RCPPFLAGS := $(shell $(R_HOME)/bin/R CMD config --cppflags)

11 RLDFLAGS := $(shell $(R_HOME)/bin/R CMD config --ldflags)
RBLAS := $(shell $(R_HOME)/bin/R CMD config BLAS_LIBS)

13 RLAPACK := $(shell $(R_HOME)/bin/R CMD config LAPACK_LIBS)

15 ## if you need to set an rpath to R itself, also uncomment
#RRPATH := -Wl,-rpath,$(R_HOME)/lib

17

## include headers and libraries for Rcpp interface classes
19 RCPPINCL := $(shell echo ’Rcpp:::CxxFlags()’ | \

$(R_HOME)/bin/R --vanilla --slave)
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21 RCPPLIBS := $(shell echo ’Rcpp:::LdFlags()’ | \
$(R_HOME)/bin/R --vanilla --slave)

23

## include headers and libraries for RInside embedding classes
25 RINSIDEINCL := $(shell echo ’RInside:::CxxFlags()’ | \

$(R_HOME)/bin/R --vanilla --slave)
27 RINSIDELIBS := $(shell echo ’RInside:::LdFlags()’ | \

$(R_HOME)/bin/R --vanilla --slave)
29

## compiler etc settings used in default make rules
31 CXX := $(shell $(R_HOME)/bin/R CMD config CXX)
CPPFLAGS := -Wall \

33 $(shell $(R_HOME)/bin/R CMD config CPPFLAGS)
CXXFLAGS := $(RCPPFLAGS) $(RCPPINCL) $(RINSIDEINCL) \

35 ‘$(R_HOME)"/bin/R CMD config CXXFLAGS‘
LDLIBS := $(RLDFLAGS) $(RRPATH) $(RBLAS) $(RLAPACK) \

37 $(RCPPLIBS) $(RINSIDELIBS)

Listing 9.2 Makefile for RInside examples

With a Makefile in place, we merely have to say make rinside_sample0
to build this first example, or even just make to build all examples. The equivalent
manual build commands are displayed below as the output from calling make. The
exact form will differ depending on where packages have been installed as well as
operating system-specific aspects and local system-wide compiler flags. To provide
an illustration for a Linux system, we see the following execute (with lines broken
for display purposes):

1 sh> make rinside_sample0
g++ -I/usr/share/R/include

3 -I/usr/local/lib/R/site-library/Rcpp/include
-I"/usr/local/lib/R/site-library/RInside/include"

5 -O3 -pipe -g -Wall rinside_sample0.cpp
-L/usr/lib64/R/lib -lR -lblas -llapack

7 -L/usr/local/lib/R/site-library/Rcpp/lib -lRcpp
-Wl,-rpath,/usr/local/lib/R/site-library/Rcpp/lib

9 -L/usr/local/lib/R/site-library/RInside/lib -lRInside
-Wl,-rpath,/usr/local/lib/R/site-library/RInside/lib

11 -o rinside_sample0

Listing 9.3 Using Makefile for RInside to build example

This multiline expression looks somewhat intimidating. But it really only com-
bines three sets of headers and libraries. These come from three distinct sources
which are combined into one larger compile-and-link command:

1. For compiling and linking with R as would be provided by R CMD COMPILE
and R CMD LINK.

2. For compiling and linking with Rcpp.
3. For compiling and linking with RInside.

Users can simply copy the same base components from the provided Makefile
to build their own Makefile. As an alternative, the provided Makefile is
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generic and can be reused. It will compile and link any collection of example files
into the corresponding set of executable programs. The only (current) constraint
is the one-to-one mapping between source files and executables. Multiple depen-
dencies are not currently supported though this could be added by extending the
Makefile.

Finally, on the Windows platform the corresponding Windows Makefile has to be
used. This can be accomplished most easily by supplying the -f Makefile.win
argument to the make invocation as in make -f Makefile.win.

9.3 A Second Example: Data Transfer

Several other examples are supplied with the RInside package in a directory
examples/standard. Several of these examples contain simple usage cases of
calling R functions. The example below, which is a lightly edited version of the file
rinside_sample6.cpp, shows simple data transfers for a variety of containers
around double types:

1 #include <RInside.h>

3 int main(int argc, char *argv[]) {

5 RInside R(argc, argv);

7 double d1 = 1.234; // scalar double
R["d1"] = d1;

9

std::vector<double> d2; // vector of doubles
11 d2.push_back(1.23);

d2.push_back(4.56);
13 R["d2"] = d2;

15 std::map< std::string, double > d3; // map
d3["a"] = 7.89;

17 d3["b"] = 7.07;
R["d3"] = d3;

19

std::list< double > d4; // list of doubles
21 d4.push_back(1.11);

d4.push_back(4.44);
23 R["d4"] = d4;

25 std::string txt = // now access in R
"cat(’\nd1=’, d1, ’\n’); print(class(d1));"

27 "cat(’\nd2=\n’);print(d2);print(class(d2));"
"cat(’\nd3=\n’);print(d3);print(class(d3));"

29 "cat(’\nd4=\n’);print(d4);print(class(d4));";
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R.parseEvalQ(txt);
31

exit(0);
33 }

Listing 9.4 Second RInside example: data transfer

This shows how to transfer, respectively, a single scalar floating-point number
in double precision as well as the STL containers vector, map, and list for such
floating-point numbers. Integers, characters, and logical could be passed through
accordingly.

9.4 A Third Example: Evaluating R Expressions

The third example (based on rinside_sample7.cpp) shows that accessing re-
sults from a normal evaluation (as opposed to “quiet” as in the first example) in R
is also very straightforward. We can display the results at the C++ side using C++
output operators as Rcpp has taken care of all transfers.

1 #include <RInside.h>

3 int main(int argc, char *argv[]) {

5 RInside R(argc, argv);

7 // assignment can be done directly via []
R["x"] = 10 ;

9 R["y"] = 20 ;

11 // R statement evaluation and result
R.parseEvalQ("z <- x + y");

13

// retrieval access using [] and implicit wrapper
15 int sum = R["z"];

std::cout << "10 + 20 = " << sum << std::endl ;
17

// we can also return the value directly
19 sum = R.parseEval("x + y") ;

std::cout << "10 + 20 = " << sum << std::endl ;
21

exit(0);
23 }

Listing 9.5 Third RInside example: data transfer

This third example only shows a transfer of scalar values. However, larger com-
posite objects can also be returned due to the implicit use of wrap().

This last aspect is very important as any expression in R is represented as a
SEXP, and as such SEXP objects can be transferred between R and C++ with ease
thanks to the Rcpp functions as<>() and wrap(). By using these facilities, we
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actually have a perfectly generic and extensible way of passing vectors, matrices,
data frames, and lists—or even combinations of these types—simply by relying on
the templated code in Rcpp.

9.5 A Fourth Example: Plotting from C++ via R

The fourth and last example for RInside in this section is based on the file
rinside_sample8.cpp. It shows that one can call the R function plot()
from C++ function as well.

1 #include <RInside.h>
#include <unistd.h>

3

int main(int argc, char *argv[]) {
5

// create an embedded R instance
7 RInside R(argc, argv);

9 // evaluate an R expression with curve()
// because RInside defaults to interactive=false we use a file

11 std::string cmd = "tmpf <- tempfile(’curve’); "
"png(tmpf); "

13 "curve(xˆ2, -10, 10, 200); "
"dev.off();"

15 "tmpf";
// we get the last assignment back, here the filename

17 std::string tmpfile = R.parseEval(cmd);

19 std::cout << "Could now use plot in " << tmpfile << std::endl;
unlink(tmpfile.c_str()); // cleaning up

21

// alternatively, by forcing a display we can plot to screen
23 cmd = "x11(); curve(xˆ2, -10, 10, 200); Sys.sleep(30);";

R.parseEvalQ(cmd); // parseEvalQ evals without assignment
25

exit(0);
27 }

Listing 9.6 Fourth RInside example: plotting from C++ via R

A small set of R instructions selects a temporary file to be used for Portable
Network Graphics (PNG) file. A simple curve is then plotted. Here, we remove
the temporary file but its name and location could be passed to another function
displaying it.

For completeness, we also plot onto a normal graphics device. This assumes that
such a device can be opened as in normal interactive mode. As this example shows,
the embedded R instance is capable of executing the same set of instructions as an
interactive R session.
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9.6 A Fifth Example: Using RInside Inside MPI

Besides the directory examples/standard containing the example discussed
so far in this chapter, the RInside package contains a directory examples/mpi
which shows how to use R and Rcpp in the context of the Message Passing Inter-
face (MPI). MPI is a very mature standard used particularly in scientific computing.
It enables clusters of computers to work concurrently on programming problems. A
detailed discussion of MPI is far beyond the scope of this sections; standard refer-
ences exist (Gropp et al. 1996, 1999).

A simple example rinside_mpi_sample2.cpp follows. It is based on an
earlier version which was kindly provided by Jianping Hua and which used the C
version of the MPI standard. We have updated it to the C++ variant of the MPI
API; both API variants are rather close.

1 #include <mpi.h> // mpi header
#include <RInside.h> // for the embedded R via RInside

3

int main(int argc, char *argv[]) {
5

// mpi initialization
7 MPI::Init(argc, argv);

// obtain current node rank and total nodes running
9 int myrank = MPI::COMM_WORLD.Get_rank();

int nodesize = MPI::COMM_WORLD.Get_size();
11

// create an embedded R instance
13 RInside R(argc, argv);

15 std::stringstream txt;
// node information

17 txt << "Hello from node " << myrank
<< " of " << nodesize << " nodes!" << std::endl;

19 // assign string var to R variable ’txt’
R.assign( txt.str(), "txt");

21

// show node information
23 std::string evalstr = "cat(txt)";

// eval the init string, ignoring any returns
25 R.parseEvalQ(evalstr);

27 // mpi finalization
MPI::Finalize();

29

exit(0);
31 }

Listing 9.7 Fifth RInside example: parallel computing with MPI

This program simply prints the standard “Hello, World!” greeting from each of
the nodes in an MPI cluster. It needs to build against MPI headers and libraries;
the supplied Makefile does that for the Open MPI standard implementation. It can
easily be adapted to different local deployments as well.
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A somewhat richer example rinside_mpi_sample3.cpp is available as
well and shows how to do some simple computations on each node in the MPI
cluster.

9.7 Other Examples

The examples/standard directory contains a number of additional examples
which may be of interest. Among the topics illustrated are:

• How to pass two-dimensional data structures such as matrices.
• Running a regression in R and displaying the results via C++ indicating how to

deploy R as a backend for a C++ application.
• A small portfolio management problem motivated a mailing list post.
• Conversions examples for logicals, lists, and tests for environments.
• An example demonstrating how to use Rcpp modules with RInside.

Fig. 9.1 Combining RInside with the Qt toolkit for a GUI application

The examples/qt directory shows an example of how to embed R inside of
an application using the powerful and popular Qt toolkit supporting cross-platform
applications, and in particular those with a graphical user interface (GUI) (Fig. 9.1).
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This example is fairly straightforward. Given a mixture distribution (for which
the user can alter parameter as well as the functional form), the choice of kernel
function and parameters for the density estimation directly influence the density
estimate. The application provides an opportunity to interactively experiment with
these choices. Several of the so-called widgets in the GUI toolkit return parameters.
For the selection of the estimation kernel, as well as the estimation bandwidth, this
is an integer. For the R expression denoting the generation of the data set from
which the density is estimated, we obtain a character string. These can be passed to
R rather easily using the Rcpp facilities we have studied.

From R, we then obtain an updated graphics file and the GUI toolkit covers
displaying the updated file. The remainder of the program—which is relatively short
at about two hundred lines—mostly deals with the typical code to set up a graphical
application, lay out the GUI widgets, and organize the callback events. Adding R
into the mix is straightforward, thanks to RInside.

Similarly, the examples/wt directory shows two examples which implement
a web application (corresponding to the GUI application written using Qt) by us-
ing the Wt (“web toolkit”) library. Wt is responsible for all aspects of the network
programming, provides an integrated webserver, and negotiates the best communi-
cations protocol with the webclient sending the request (Fig. 9.2).

Fig. 9.2 Combining RInside with the Wt toolkit for a web application
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The web application example is very similar to the GUI application as the Web
toolkit library Wt covers all aspects of the network communication. Similar to the
Qt example, the programmer simply has to receive the user choices on user events
and update the estimated density based on these choices. This example uses cas-
cading style sheets (CSS) to allow alteration of the appearances of the application
without requiring any code logic and supports an XML file containing widget labels
permitting similar changes to the descriptive texts without requiring an application
rebuild.



Chapter 10
RcppArmadillo

Abstract The RcppArmadillo package implements an easy-to-use interface to
the Armadillo library. Armadillo is an excellent, modern, high-level C++ library
aiming to be as expressive to use as a scripting language while offering high-
performance code due to modern C++ design including template meta- program-
ming. RcppArmadillo brings all these features to the R environment by leaning on
the Rcpp interface. This chapter introduces Armadillo and provides a motivating
example via a faster replacement function for fitting linear models before it dis-
cusses a detailed case study of implementing a Kalman filter in RcppArmadillo.

10.1 Overview

Armadillo (Sanderson 2010) is a modern C++ library with a focus on linear alge-
bra and related operations. Quoting from its homepage:

Armadillo is a C++ linear algebra library aiming towards a good balance between speed
and ease of use. The syntax is deliberately similar to Matlab. Integer, floating point and
complex numbers are supported, as well as a subset of trigonometric and statistics functions.
Various matrix decompositions are provided [. . . ].

A delayed evaluation approach is employed (during compile time) to combine several op-
erations into one and reduce (or eliminate) the need for temporaries. This is accomplished
through recursive templates and template meta-programming.

This library is useful if C++ has been decided as the language of choice (due to speed
and/or integration capabilities) [. . . ].

Its features can be illustrated with a simple example from the Armadillo web
site (which we modified slightly to fit with the style of the rest of the book).

1 #include <iostream>
#include <armadillo>

3

using namespace std;
5 using namespace arma;

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
DOI 10.1007/978-1-4614-6868-4 10, © The Author 2013
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7 int main(int argc, char** argv) {
mat A = randn<mat>(4,5);

9 mat B = randn<mat>(4,5);

11 cout << A * trans(B) << endl;

13 return 0;
}

Listing 10.1 A simple Armadillo example

Header files for both the standard input/output streams and Armadillo itself are
included to provide the required declarations. Two Armadillo matrices A and B of
size 4× 5 are then filled with random variables drawn from a N(0,1) distribution.
The randn() function is templated to the matrix type. Finally, the 4× 4 matrix
resulting from multiplying A by the transpose of B is computed and the result is
printed to the standard output.

The code is highly readable and easy to study. This is in one part due to the
global namespace import for both std and arma which shortens the function and
class names. It is also due to the sensible use of identifiers such as trans(B)
for a transpose (and the alternate form B.t() is also supported), as well as mat
as a default matrix type. This is in fact a typedef for Mat<double>, a matrix
templated to the standard floating-point type. Other matrix and vector types exist for
integers, unsigned integers, and complex numbers.

Armadillo supports a large number of functions as a look at its available docu-
mentation reveals. While many of these functions are also available within R itself,
they make Armadillo as attractive choice for the C++ programmer aiming to easily
extend functionality at the C++ source level. This, in essence, is the main attrac-
tion of Armadillo: an easy-to-use, feature-complete, well-supported modern C++
library for linear algebra. The RcppArmadillo package (François et al. 2012; Ed-
delbuettel and Sanderson 2013) integrates it into R using facilities provided by the
Rcpp package.

10.2 Motivation: FastLm

10.2.1 Implementation

Fitting linear models is a fundamental building block of data analysis. It is available
in R via the powerful lm() function which provides a vast amount of additional
functionality, as well as the more spartan lm.fit() function.

Below, we show the complete file fastLm.cpp from the src directory of the
RcppArmadillo package which implements a faster replacement function suitable
for use in extended simulations.
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extern "C" SEXP fastLm(SEXP ys, SEXP Xs) {
2

try {
4 // Rcpp and arma structure reuse original memory

Rcpp::NumericVector yr(ys);
6 Rcpp::NumericMatrix Xr(Xs);

int n = Xr.nrow(), k = Xr.ncol();
8 arma::mat X(Xr.begin(), n, k, false);

arma::colvec y(yr.begin(), yr.size(), false);
10 int df = n - k;

12 // fit model y ˜ X, extract residuals
arma::colvec coef = arma::solve(X, y);

14 arma::colvec res = y - X*coef;

16 double s2 = std::inner_product(res.begin(), res.end(),
res.begin(), 0.0)/df;

18 // std.errors of coefficients
arma::colvec sderr = arma::sqrt(s2 *

20 arma::diagvec(arma::pinv(arma::trans(X)*X)));

22 return Rcpp::List::create(Rcpp::Named("coefficients")=coef,
Rcpp::Named("stderr") =sderr,

24 Rcpp::Named("df") =df);

26 } catch( std::exception &ex ) {
forward_exception_to_r( ex );

28 } catch(...) {
::Rf_error( "c++ exception (unknown reason)" );

30 }
return R_NilValue; // -Wall

32 }

Listing 10.2 FastLm function using RcppArmadillo

As the example demonstrates, Armadillo allows us to write remarkably compact
code:

1. We start by instantiating Rcpp objects for the model matrix and dependent
variable; these are lightweight proxy objects and no data is copied.

2. The vector y and matrix X are initialized as an arma matrix and vector from
the Rcpp types using the dimension information and iterator pointing to the
beginning of the data, and again no explicit memory allocation is needed.

3. The model fit of y ∼ X is also done in one solve() statement, as is the
calculation of the residuals as y−X β̂ .

4. Similarly, the sum of squared residuals is computed in a single statement, thanks
to the STL inner_product function, and the result is divided by the degrees
of freedom n− k.

5. Now the standard errors of the estimate are extracted as the squared root of the
diagonal of (X ′X)−1, scaled by the sum of squared residuals.

6. We need one further statement to create the named list of return values.
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7. Controlling for exceptions is straightforward with a try/catch block which
passes recognized exception back to R using a helper function, or shows a default
text in case of an unrecognized exception.

The RcppArmadillo package provides access to the function above via two dif-
ferent interfaces. The simpler function fastLmPure() just transfers a given vec-
tor and matrix and executes the regression, without any other transformation (but
two tests for suitable data type and conforming dimensions). The higher-level func-
tion fastLm() provides the standard modeling interface using the common for-
mula notation.

10.2.2 Performance Comparison

As before, we can rely on inline to create a function by compiling, linking, and
loading the code below. This is made possible by a plugin provided by the RcppAr-
madillo package and used by the inline to determine the required values to instru-
ment the underlying R CMD COMPILE and R CMD SHLIB calls which execute
the build.

src <- ’
2 Rcpp::NumericMatrix Xr(Xs);

Rcpp::NumericVector yr(ys);
4 int n = Xr.nrow(), k = Xr.ncol();

arma::mat X(Xr.begin(), n, k, false);
6 arma::colvec y(yr.begin(), yr.size(), false);

int df = n - k;
8

// fit model y ˜ X, extract residuals
10 arma::colvec coef = arma::solve(X, y);

arma::colvec res = y - X*coef;
12

double s2 = std::inner_product(res.begin(), res.end(),
14 res.begin(), 0.0)/df;

// std.errors of coefficients
16 arma::colvec sderr = arma::sqrt(s2 *

arma::diagvec(arma::pinv(arma::trans(X)*X)));
18

return Rcpp::List::create(Rcpp::Named("coefficients")=coef,
20 Rcpp::Named("stderr") =sderr,

Rcpp::Named("df") =df);
22 ’
fLm <- cxxfunction(signature(Xs="numeric", ys="numeric"),

24 src, plugin="RcppArmadillo")

Listing 10.3 Basic fLm() function without formula interface

We can also time and compare the approaches. As before, we use the rbench-
mark package (Kusnierczyk 2012) which contains a function benchmark()
which makes such timing comparisons very straightforward. We use the data set
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trees which is also used in the example from the help page for the original lm()
function in R and compare computation of the linear fit via the three different ap-
proaches, each repeated one thousand times.

As intermediate approaches, we use both the fastLmPure() function imple-
mented in RcppArmadillo and a simpler fastLmPure2() used just here. We can
think of fastLmPure() as an equivalent to lm.fit() as it works directly on a
matrix and vector rather than a model formula. The function is defined as follows:

fastLmPure <- function(X, y) {
2

stopifnot(is.matrix(X))
4 stopifnot(nrow(y)==nrow(X))

6 .Call("fastLm", X, y, PACKAGE = "RcppArmadillo")
}

Listing 10.4 Basic fastLmPure() R function without formula interface

The fastLmPure2() is a copy where we removed the two stopifnot()
tests for proper types and dimensions. That is done just for this performance com-
parison and not recommended for normal production code.

Given these functions, the small performance comparison can be executed as
follows:

1 R> y <- log(trees$Volume)
R> X <- cbind(1, log(trees$Girth))

3 R> frm <- formula(log(Volume) ˜ log(Girth))
R> benchmark(fLm(X, y),

5 + fastLmPure(X, y),
+ fastLmPure2(X, y),

7 + fastLm(frm, data=trees),
+ columns = c("test", "replications",

9 + "elapsed", "relative"),
+ order="relative",

11 + replications=1000)

13 test replications elapsed relative
1 fLm(X, y) 1000 0.034 1.000000

15 3 fastLmPure2(X, y) 1000 0.040 1.176471
2 fastLmPure(X, y) 1000 0.081 2.382353

17 5 lm.fit(X, y) 1000 0.136 4.000000
4 fastLm(frm, data = trees) 1000 1.414 41.588235

Listing 10.5 FastLm comparison

Given the small size of the data set, executing the underlying regression is not
expensive at all. Hence, small code differences such as the testing for data type and
data dimension (which is done by fastLmPure() but not by fastLmPure2())
can have a disproportionate performance impact. It may appear magnified here given
the short computation time required by the minimal implementation in fLm() from
the cxxfunction() invocation above.
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The more dramatic difference is between the formula interface offered by the
RcppArmadillo package and the more direct implementation. The additional func-
tion calls needed to parse the formula and to set up the model matrix can be seen
as having a disproportionate cost especially given the small size of the data set used
here. We also see that fLm(), with its directly attached object code and pointer to it,
performs marginally faster than the simplest possible implementation in a function
using .Call() employing code from the indicated package, here RcppArmadillo.
However, this small difference is dwarfed by the cost of the (highly recommended)
tests for proper types and dimensions in fastLmPure().

Overall the example is very encouraging. We can execute one thousand calls
to the simple regression function created on the fly via the inline package in
about 34 ms. The bare bones implementation of fastLmPure from RcppAr-
madillo takes a little longer at 81 ms. By reducing fastLmPure further to just
the .Call() invocation, its time moves within twenty percent of the time of fLm
which indicates a small but noticeable overhead from the .Call() interface.

10.2.3 A Caveat

The reimplementation of lm() using Armadillo has served as a very useful ex-
ample of how to add C++ code implementing linear algebra operations. However,
there is one important difference between the numerical computing aspect and the
statistical computing side. The help page for fastLm in the RcppArmadillo pack-
age has an illustration. Numerical computing Statistical computing

It uses an artificial data set constructed such that it produces a rank-deficient
two-way layout with missing cells. Such cases require a special pivoting scheme of
“pivot only on (apparent) rank deficiency” which R contains via customized routines
based on the Linpack library. This provides the appropriate statistical computing
approach, but such pivoting is generally not contained in any conventional linear
algebra software libraries such as Armadillo.

R> ## case where fastLm breaks down
2 R> dd <- data.frame(f1 = gl(4, 6, labels=LETTERS[1:4]),
+ f2 = gl(3, 2, labels=letters[1:3]))[-(7:8),]

4 R> xtabs(˜ f2 + f1, dd) # one missing cell
f1

6 f2 A B C D
a 2 0 2 2

8 b 2 2 2 2
c 2 2 2 2

10 R> mm <- model.matrix(˜ f1 * f2, dd)
R> kappa(mm) # large, indicating rank deficiency

12 [1] 4.30923e+16
R> set.seed(1)

14 R> dd[,"y’’] <- mm %*% seq_len(ncol(mm)) +
+ rnorm(nrow(mm), sd = 0.1)

16 R> summary(lm(y ˜ f1 * f2, dd)) # detects rank deficiency
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Call:
18 lm(formula = y ˜ f1 * f2, data = dd)

20 Residuals:
Min 1Q Median 3Q Max

22 -0.122 -0.047 0.000 0.047 0.122

24 Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

26 (Intercept) 0.9779 0.0582 16.8 3.4e-09 ***
f1B 12.0381 0.0823 146.3 < 2e-16 ***

28 f1C 3.1172 0.0823 37.9 5.2e-13 ***
f1D 4.0685 0.0823 49.5 2.8e-14 ***

30 f2b 5.0601 0.0823 61.5 2.6e-15 ***
f2c 5.9976 0.0823 72.9 4.0e-16 ***

32 f1B:f2b -3.0148 0.1163 -25.9 3.3e-11 ***
f1C:f2b 7.7030 0.1163 66.2 1.2e-15 ***

34 f1D:f2b 8.9643 0.1163 77.1 < 2e-16 ***
f1B:f2c NA NA NA NA

36 f1C:f2c 10.9613 0.1163 94.2 < 2e-16 ***
f1D:f2c 12.0411 0.1163 103.5 < 2e-16 ***

38 ---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

40

Residual standard error: 0.0823 on 11 degrees of freedom
42 Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 1.86e+04 on 10 and 11 DF, p-value: <2e-16

44

R> summary(fastLm(y ˜ f1 * f2, dd)) # some huge coefficients
46

Call:
48 fastLm.formula(formula = y ˜ f1 * f2, data = dd)

50 Estimate StdErr t.value p.value
(Intercept) 2.384e-01 5.091e-01 4.680e-01 0.649605

52 f1B 5.165e+15 3.394e-01 1.522e+16 < 2e-16 ***
f1C 3.728e+00 7.200e-01 5.177e+00 0.000415 ***

54 f1D 4.697e+00 7.200e-01 6.523e+00 6.70e-05 ***
f2b 5.752e+00 7.200e-01 7.989e+00 1.19e-05 ***

56 f2c 6.632e+00 7.200e-01 9.211e+00 3.36e-06 ***
f1B:f2b -5.165e+15 5.366e-01 -9.625e+15 < 2e-16 ***

58 f1C:f2b 7.000e+00 1.018e+00 6.875e+00 4.32e-05 ***
f1D:f2b 8.262e+00 1.018e+00 8.114e+00 1.04e-05 ***

60 f1B:f2c -5.165e+15 5.366e-01 -9.625e+15 < 2e-16 ***
f1C:f2c 1.027e+01 1.018e+00 1.009e+01 1.46e-06 ***

62 f1D:f2c 1.131e+01 1.018e+00 1.111e+01 6.02e-07 ***
---

64 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Multiple R-squared: 0.996, Adjusted R-squared: 0.993

Listing 10.6 An example of a rank-deficient design matrix

The lm() function correctly detected the rank-deficiency in the model matrix
which is illustrated by the empty cell in the cross-tabulation. The corresponding
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interaction parameter has been set to zero; all other coefficients are reasonable. This
is achieved by not using the standard numerical computing approach, but by relying
on a custom pivoting implementation which R provides based on a Linpack routine.
This will necessarily be slower than the optimized BLAS Level 3 routine for QR
decomposition called by Armadillo for the faster reimplementation

Also, our faster reimplementation has no (explicit) check for rank deficiency
by computing κ , the condition number. The model fit is executed in the standard
way (as far as numerical computing is concerned), and biased coefficients ensue in
this (degenerate) case. Arguably, silently returning wrong results is worse or more
inconvenient than an outright failure. This illustrates that it may well pay to bear
a small performance penalty by running lm() (or at least lm.fit()) directly
as there may be situations when it is numerically more stable. That said, on current
computing architecture floating-point precision tends to be high enough so that such
cases are rare in practice. We admit that the example was a little contrived—but it
provides a useful illustration.

10.3 Case Study: Kalman Filter Using RcppArmadillo

The Armadillo library provides common linear algebra operations in a well-design-
ed and modern C++ framework. It permits us to write elegant and concise code that
is also very efficient.

A minor additional focus of Armadillo is that it also aims to make it easy for
programmers who are familiar with the Matlab / Octave matrix languages to get
started in C++with Armadillo. To demonstrate this aspect, we are going to discuss
a second example motivated by a discussion of how Matlab can estimate a Kalman
filter, and turn the simple program into a C++ version. While R has no comparable
tools to convert R code automatically to C or C++ , we can, however, achieve rather
decent gains by switching the code to Armadillo via the RcppArmadillo package.

The page http://www.mathworks.com/products/matlab-coder/
demos.html lists several case studies for this (commercial) code converter. One
of these examples covers the Kalman filter. It describes in some detail the original
filter, including an example data set, as well as all the steps from the initial script to
autogenerated C code.

1 % Copyright 2010 The MathWorks, Inc.
function y = kalmanfilter(z)

3 %#codegen
dt=1;

5 % Initialize state transition matrix
A=[ 1 0 dt 0 0 0;... % [x ]

7 0 1 0 dt 0 0;... % [y ]
0 0 1 0 dt 0;... % [Vx]

9 0 0 0 1 0 dt;... % [Vy]
0 0 0 0 1 0 ;... % [Ax]

11 0 0 0 0 0 1 ]; % [Ay]

http://www.mathworks.com/products/matlab-coder/demos.html
http://www.mathworks.com/products/matlab-coder/demos.html
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H = [ 1 0 0 0 0 0; 0 1 0 0 0 0 ]; % Initialize measurement
matrix

13 Q = eye(6);
R = 1000 * eye(2);

15 persistent x_est p_est % Initial state conditions
if isempty(x_est)

17 x_est = zeros(6, 1); % x_est=[x,y,Vx,Vy,Ax,Ay]’
p_est = zeros(6, 6);

19 end
% Predicted state and covariance

21 x_prd = A * x_est;
p_prd = A * p_est * A’ + Q;

23 % Estimation
S = H * p_prd’ * H’ + R;

25 B = H * p_prd’;
klm_gain = (S \ B)’;

27 % Estimated state and covariance
x_est = x_prd + klm_gain * (z - H * x_prd);

29 p_est = p_prd - klm_gain * H * p_prd;
% Compute the estimated measurements

31 y = H * x_est;
end % of the function

Listing 10.7 Basic Kalman filter in Matlab

The R code below reimplements this basic linear Kalman filter.

FirstKalmanR <- function(pos) {
2

kalmanfilter <- function(z) {
4 dt <- 1

6 A <- matrix( c( 1, 0, dt, 0, 0, 0, # x
0, 1, 0, dt, 0, 0, # y

8 0, 0, 1, 0, dt, 0, # Vx
0, 0, 0, 1, 0, dt, # Vy

10 0, 0, 0, 0, 1, 0, # Ax
0, 0, 0, 0, 0, 1), # Ay

12 6, 6, byrow=TRUE)
H <- matrix( c(1, 0, 0, 0, 0, 0,

14 0, 1, 0, 0, 0, 0),
2, 6, byrow=TRUE)

16 Q <- diag(6)
R <- 1000 * diag(2)

18

N <- nrow(pos)
20 y <- matrix(NA, N, 2)

22 ## predicted state and covariance
xprd <- A %*% xest

24 pprd <- A %*% pest %*% t(A) + Q

26 ## estimation
S <- H %*% t(pprd) %*% t(H) + R

28 B <- H %*% t(pprd)
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kalmangain <- t(solve(S, B))
30

## est. state and cov., assign to vars in parent env
32 xest <<- xprd + kalmangain %*% (z - H %*% xprd)

pest <<- pprd - kalmangain %*% H %*% pprd
34

## compute the estimated measurements
36 y <- H %*% xest

}
38

xest <- matrix(0, 6, 1)
40 pest <- matrix(0, 6, 6)

42 for (i in 1:N) {
y[i,] <- kalmanfilter(t(pos[i,,drop=FALSE]))

44 }

46 invisible(y)
}

Listing 10.8 Basic Kalman filter in R

The Matlab example uses “persistent” (or “static” for C++ programmers) vari-
ables for xest and pest. We use a different R paradigm of defining these variables
in the enclosing function. Otherwise, the code is very similar to the original exam-
ple. Figure 10.1 displays the object trajectory as well as the estimate provided by
the Kalman filter.

A slight improvement is available when the invariant code creating variables,
from the assignment of dt all the way to the initial variable setup, is also moved to
the enclosing function.

1 KalmanR <- function(pos) {

3 kalmanfilter <- function(z) {
## predicted state and covariance

5 xprd <- A %*% xest
pprd <- A %*% pest %*% t(A) + Q

7

## estimation
9 S <- H %*% t(pprd) %*% t(H) + R

B <- H %*% t(pprd)
11 ## kalmangain <- (S \ B)’

kalmangain <- t(solve(S, B))
13

## estimated state and covariance, assign to vars in
parent env

15 xest <<- xprd + kalmangain %*% (z - H %*% xprd)
pest <<- pprd - kalmangain %*% H %*% pprd

17

## compute the estimated measurements
19 y <- H %*% xest

}
21
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Fig. 10.1 Object trajectory and Kalman filter estimate

dt <- 1
23 A <- matrix( c( 1, 0, dt, 0, 0, 0, # x

0, 1, 0, dt, 0, 0, # y
25 0, 0, 1, 0, dt, 0, # Vx

0, 0, 0, 1, 0, dt, # Vy
27 0, 0, 0, 0, 1, 0, # Ax

0, 0, 0, 0, 0, 1), # Ay
29 6, 6, byrow=TRUE)

H <- matrix( c(1, 0, 0, 0, 0, 0,
31 0, 1, 0, 0, 0, 0),

2, 6, byrow=TRUE)
33 Q <- diag(6)

R <- 1000 * diag(2)
35

N <- nrow(pos)
37 y <- matrix(NA, N, 2)

39 xest <- matrix(0, 6, 1)
pest <- matrix(0, 6, 6)

41

for (i in 1:N) {
43 y[i,] <- kalmanfilter(t(pos[i,,drop=FALSE]))

}
45

invisible(y)
47 }

Listing 10.9 Basic Kalman filter in R
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When rewriting this implementation in C++, a first option would be to copy the
structure of the first example in Listing 10.8. However, just as Listing 10.9 improves
upon the first by factoring out the assignment of variables that are invariant to the
call given a particular observation, we can do something very similar in C++ by
using basic principles of object-oriented programming. By creating a class for
the Kalman filter, we can instantiate the constant variables in the class constructor
and be assured that this code will be executed exactly once. The actual estimation—
done in the R code in function kalmanfilter—can then be computed in a class
member variable.

1

using namespace arma;
3

class Kalman {
5 private:

mat A, H, Q, R, xest, pest;
7 double dt;

9 public:
// constructor, sets up data structures

11 Kalman() : dt(1.0) {
A.eye(6,6);

13 A(0,2) = A(1,3) = A(2,4) = A(3,5) = dt;
H.zeros(2,6);

15 H(0,0) = H(1,1) = 1.0;

17 Q.eye(6,6);
R = 1000 * eye(2,2);

19

xest.zeros(6,1);
21 pest.zeros(6,6);

}
23

// sole member function: estimate model
25 mat estimate(const mat & Z) {

27 unsigned int n = Z.n_rows, k = Z.n_cols;
mat Y = zeros(n, k);

29 mat xprd, pprd, S, B, kalmangain;
colvec z, y;

31

for (unsigned int i = 0; i<n; i++) {
33 colvec z = Z.row(i).t();

35 // predicted state and covariance
xprd = A * xest;

37 pprd = A * pest * A.t() + Q;

39 // estimation
S = H * pprd.t() * H.t() + R;

41 B = H * pprd.t();

43 // kalmangain = t(S \ B)
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kalmangain = trans(solve(S, B));
45

// estimated state and covariance
47 xest = xprd + kalmangain * (z - H * xprd);

pest = pprd - kalmangain * H * pprd;
49

// compute the estimated measurements
51 y = H * xest;

53 Y.row(i) = y.t();
}

55 return Y;
}

57 };

Listing 10.10 Basic Kalman filter class in C++ using Armadillo

The code itself is very close indeed to the original Matlab code. One could ar-
gue that it is easier on the eye than the R code. A simple * for matrix or vector
multiplication—which we can use as C++ permits one to overload these operators
for appropriately defined types such as matrices or vectors—is more succinct than
the %*% operator in R.

All the code in Listing 10.10 can be assigned to a variable kalmanClass for
included text which we use along with the now very simple function body to create
a function via cxxfunction:

1 kalmanSrc <- ’
mat Z = as<mat>(ZS); // passed from R

3 Kalman K;
mat Y = K.estimate(Z);

5 return wrap(Y);
’

7

KalmanCpp <- cxxfunction(signature(ZS="numeric"),
9 body=kalmanSrc,

include=kalmanClass,
11 plugin="RcppArmadillo")

Listing 10.11 Basic Kalman filter function in C++

Given the two R versions and this C++ version, we can first determine that
results are in fact identical (to numerical precision) between these variants, and then
run a benchmark example.

1 R> require(rbenchmark)
R> require(compiler)

3 R>
R> FirstKalmanRC <- cmpfun(FirstKalmanR)

5 R> KalmanRC <- cmpfun(KalmanR)
R>

7 R> stopifnot(identical(KalmanR(pos), KalmanRC(pos)),
+ all.equal(KalmanR(pos), KalmanCpp(pos)),

9 + identical(FirstKalmanR(pos), FirstKalmanRC(pos)),
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+ all.equal(KalmanR(pos), FirstKalmanR(pos)))
11 R>
R> res <- benchmark(KalmanR(pos),

13 + KalmanRC(pos),
+ FirstKalmanR(pos),

15 + FirstKalmanRC(pos),
+ KalmanCpp(pos),

17 + columns = c("test", "replications",
+ "elapsed", "relative"),

19 + order="relative",
+ replications=100)

21 R>
R> print(res)

23 test replications elapsed relative
5 KalmanCpp(pos) 100 0.087 1.0000

25 2 KalmanRC(pos) 100 5.774 66.3678
1 KalmanR(pos) 100 6.448 74.1149

27 4 FirstKalmanRC(pos) 100 8.153 93.7126
3 FirstKalmanR(pos) 100 8.901 102.3103

Listing 10.12 Basic Kalman filter timing comparison

The timing results are very satisfactory. Compared to the basic R routine, an im-
provement in run-time of around 100 times can be achieved. Even the byte-compiled
version gains only about ten percent on the basic R versions, and C++ shows an
over 90-fold improvement. The simple change of moving invariant code out of the
estimation function helps reduce run-time by about a quarter: now the C++ code
is about 74 times as fast as the R code, and 66 times as fast as the byte-compiled
variant.

10.4 RcppArmadillo and Armadillo Differences

Generally speaking, RcppArmadillo does not differ from Armadillo. The core
source code of the actual Armadillo implementation is included “as-is” and not
modified.

Armadillo is written to be used as a portable, general-purpose C++ library with
the expectation of being used with a variety of compilers and operating systems.
In our case, and for the purposes of RcppArmadillo, we have a predictable and
narrowly defined setup. We know, for example, that there always is an underlying R
installation whenever Rcpp and RcppArmadillo are used.

This enables us to simplify and standardize the use of Armadillo by making the
following definitions in a configuration header file sourced before the Armadillo
headers themselves are sources:

2 #define ARMA_USE_LAPACK

4 #define ARMA_USE_BLAS
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6 #define ARMA_HAVE_STD_ISFINITE
#define ARMA_HAVE_STD_ISINF

8 #define ARMA_HAVE_STD_ISNAN
#define ARMA_HAVE_STD_SNPRINTF

Listing 10.13 Standard defines for RcppArmadillo

We can always assume a Lapack and BLAS installation via R as R will either be
built against the system BLAS and Lapack libraries or provide its own implemen-
tation for its usage. Similarly we can make some assumptions about how complete
the C library is (though we do undefine all these values on the Solaris platform, and
undefine just one for Windows 64).

Two more definitions are more specific to R. Because R provides the “shell”
around our statistical computing, programs need to synchronize their (printed) out-
put with R which uses its own buffering. The CRAN maintainers now warn if code
uses functions which direct print such as printf, or puts, or if the C++ facility
std::cout is used. For standard printing, we can use Rprintf from the R API
which also provides REprintf for error messages. Thanks to a contributed patch,
Rcpp now wraps a special output device Rcpp::Rcout around calls to Rprintf.
By defining ARMA DEFAULT OSTREAM, all output generated by Armadillo is then
synchronized via the buffering done by R.

1 // Rcpp has its own stream object which cooperates more nicely
// with R’s i/o -- and as of Armadillo 2.4.3, we can use this

3 // stream object as well
#if !defined(ARMA_DEFAULT_OSTREAM)

5 #define ARMA_DEFAULT_OSTREAM Rcpp::Rcout
#endif

7

// R now defines NDEBUG which suppresses a number of useful
9 // Armadillo tests Users can still defined it later, and/or
// define ARMA_NO_DEBUG

11 #if defined(NDEBUG)
#undef NDEBUG

13 #endif

Listing 10.14 Standard defines for RcppArmadillo

A related matter is the definition of NDEBUG as it (among other things) typically
inhibits program halt if a call to assert results in a (logically) false condition.
This is reasonable from the point of R which can ill afford an exit in a subroutine.
However, this has side effects as it may also turn off useful testing. In the case
of Armadillo, bounds checks for vector and matrix indices are suppressed when
NDEBUG is defined. This may not be desirable during the development of new code
and is the reason why this definition is removed in the RcppArmadillo headers.
Users can still define it, or define ARMA_NO_DEBUG if they want it.



Chapter 11
RcppGSL

Abstract The RcppGSL package provides an easy-to-use interface between data
structures from the GNU Scientific Library, or GSL for short, and R by building
on facilities provided in the Rcpp package. The GSL is a well-known collection
of numerical routines for scientific computing. It is particularly useful for C and
C++ programs as it provides a standard C interface to a wide range of mathematical
routines. The chapter provides an introduction to the vector and matrix types in
RcppGSL, illustrates their use by revisiting the linear modeling example, discusses
how to deploy the RcppGSL from another package and via inline, and closes with
an extended application example.

11.1 Introduction

The GNU Scientific Library, or GSL, is a collection of routines for scientific com-
puting and numerical analysis (Galassi et al. 2010). It is a rigorously developed and
tested library providing support for a wide range of scientific or numerical tasks.
Among the topics covered in the GSL are complex numbers, roots of polynomials,
special functions, vector and matrix data structures, permutations, combinations,
sorting, BLAS support, linear algebra, fast Fourier transforms, eigensystems, ran-
dom numbers, quadrature, random distributions, quasi-random sequences, Monte
Carlo integration, N-tuples, differential equations, simulated annealing, numeri-
cal differentiation, interpolation, series acceleration, Chebyshev approximations,
root-finding, discrete Hankel transforms least-squares fitting, minimization, phys-
ical constants, basis splines, and wavelets.

Support for C programming with the GSL is readily available. The GSL itself
is written in C (just like R) and provides a C-language Application Programming
Interface (API). Several scripting languages have interfaces to the GSL library; the
CRAN network for R also contains a package gsl providing access to GSL func-
tionality for R users.

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
DOI 10.1007/978-1-4614-6868-4 11, © The Author 2013
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As a C-language API is provided, access from C++ is also possible, albeit not at
the abstraction level that can be offered by dedicated C++ implementations.1

The GSL is somewhat unique among numerical libraries. Its combination of
broad coverage of scientific topics, serious implementation effort, and the use of
an Open Source license have led to a fairly wide usage of the library. A number of
CRAN packages use the GSL directly; and (as of late 2012) nine packages use the
CRAN package gsl (Hankin 2011) which exposes some parts of the GSL to R. This
is an indication that the GSL is popular among programmers using either the C or
C++ language for solving problems in applied science.

At the same time, the Rcpp package offers a higher-level abstraction between R
and underlying C++ (or C) code. Rcpp permits R objects such as vectors, matrices,
lists, functions, environments, . . ., to be manipulated directly at the C++ level, which
alleviates the needs for complicated and error-prone parameter passing and memory
allocation. It also permits compact vectorized expressions similar to what can be
written in R, but written directly at the C++ level.

The RcppGSL package aims to help close the gap between R and the GSL.
It tries to offer access to GSL functions, in particular via the vector and matrix
data structures used throughout the GSL, while staying closer to the “whole object
model” familiar to the R programmer.

The rest of the chapter is organized as follows. The next section shows a motivat-
ing example of a fast linear model fit routine using GSL functions. The following
section discusses support for GSL vector types, which is followed by a section on
matrices. We close with a case study using B-splines provided by the GSL from R.

11.2 Motivation: FastLm

As discussed in Chap. 10, fitting linear models is a key building block of analyzing
data and model building. R has a very complete and feature-rich function in lm(). It
can provide a model fit as well as a number of diagnostic measures, either directly or
via the corresponding summary() method for linear model fits. The lm.fit()
function also provides a faster alternative (which is, however, recommended only
for advanced users) which provides estimates only and fewer statistics for inference.
This sometimes leads to user requests for a routine which is both fast and featureful
enough.

The fastLm routine shown in Listing 11. 1 provides such an implementation
(and it preceded the routine based on RcppArmadillo from Chap. 10). It uses the
GSL for the least-squares fitting functions and therefore provides a nice example
for GSL integration with R, and a direct comparison to the Armadillo-based variant
introduced in Chap. 10.

1 Several C++ wrappers for the GSL have been written over the years, yet none reached a state
of completion comparable to the GSL itself. Three such wrapping library are http://cholm.
home.cern.ch/cholm/misc/gslmm/, http://gslwrap.sourceforge.net/, and
http://code.google.com/p/gslcpp/.

http://cholm.home.cern.ch/cholm/misc/gslmm/
http://cholm.home.cern.ch/cholm/misc/gslmm/
http://gslwrap.sourceforge.net/
http://code.google.com/p/gslcpp/
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1 #include <RcppGSL.h>
#include <gsl/gsl_multifit.h>

3 #include <cmath>

5 extern "C" SEXP fastLm(SEXP ys, SEXP Xs) {

7 try {
RcppGSL::vector<double> y = ys; // gsl data str. via SEXP

9 RcppGSL::matrix<double> X = Xs;

11 int n = X.nrow(), k = X.ncol();
double chisq;

13

RcppGSL::vector<double> coef(k); // hold the coef vector
15 RcppGSL::matrix<double> cov(k,k); // and covariance matrix

17 // the actual fit req. working memory we allocate and free
gsl_multifit_linear_workspace *work =

19 gsl_multifit_linear_alloc (n, k);
gsl_multifit_linear (X, y, coef, cov, &chisq, work);

21 gsl_multifit_linear_free (work);

23 // extract the diagonal as a vector view
gsl_vector_view diag = gsl_matrix_diagonal(cov) ;

25

// currently no direct interface in Rcpp::NumericVector
27 // that uses wrap(), so we have to do it in two steps

Rcpp::NumericVector std_err ; std_err = diag;
29 std::transform(std_err.begin(), std_err.end(),

std_err.begin(), sqrt);
31

Rcpp::List res =
33 Rcpp::List::create(Rcpp::Named("coefficients") = coef,

Rcpp::Named("stderr") = std_err,
35 Rcpp::Named("df") = n - k);

37 // free all the GSL vectors and matrices -- as these are
// really C data structures we cannot take advantage of

39 // automatic C++ memory management
coef.free(); cov.free(); y.free(); X.free();

41

return res; // return the result list to R
43

} catch( std::exception &ex ) {
45 forward_exception_to_r( ex );

} catch(...) {
47 ::Rf_error( "c++ exception (unknown reason)" );

}
49 return R_NilValue; // -Wall
}

Listing 11.1 FastLm function using RcppGSL
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We first initialize a RcppGSL vector and matrix, each templated to the standard
numeric type double (and the GSL supports other types ranging from lower pre-
cision floating point to signed and unsigned integers as well as complex numbers).
Next, we reserve another vector and matrix to hold the resulting coefficient esti-
mates as well as the estimate of the covariance matrix. We then allocate workspace
using a GSL routine, fit the linear model, and free the workspace. This is followed
by extraction of the diagonal element from the covariance matrix. We then employ
a so-called iterator—a common C++ idiom from the Standard Template Library
(STL)—to iterate over the vector of diagonal and transforming it by applying the
square root function to compute our standard error of the estimate. Finally, we create
a named list with the return value before we free temporary memory allocation. This
last step is required because the underlying objects are really C objects conforming
to the GSL interface. Hence, they do have the automatic memory management we
could have with C++ vector or matrix structures as used through the Rcpp package.
Finally, we return the result to R.

As seen in the previous chapter, RcppArmadillo (François et al. 2012)
implements a matching fastLm function using the Armadillo library by Sander-
son (2010) and can do so with more compact code due to C++ features.

11.3 Vectors

This section details the different vector representations, starting with their definition
inside the GSL itself. We then discuss our layering before showing how the two
types map to each other. A discussion of read-only “vector view” classes concludes
the section.

11.3.1 GSL Vectors

GSL defines various vector types to manipulate one-dimensional data, similar to
R arrays. For example, the gsl_vector and gsl_vector_int structs are de-
fined as:

typedef struct{
2 size_t size;

size_t stride;
4 double *data;

gsl_block *block;
6 int owner;
} gsl_vector;

8

typedef struct {
10 size_t size;

size_t stride;
12 int *data;
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gsl_block_int *block;
14 int owner;
} gsl_vector_int;

Listing 11.2 Definition of gsl vector and gsl vector int

A typical use of the gsl_vector struct is given below:

1 int i;
// allocate a gsl_vector of size 3

3 gsl_vector * v = gsl_vector_alloc (3);

5 // fill the vector
for (i = 0; i < 3; i++) {

7 gsl_vector_set (v, i, 1.23 + i);
}

9

// access elements
11 double sum = 0.0 ;
for (i = 0; i < 3; i++) {

13 sum += gsl_vector_get( v, i ) ;
}

15

// free the memory
17 gsl_vector_free (v);

Listing 11.3 Example use of gsl vector

11.3.2 RcppGSL::vector

RcppGSL defines the template RcppGSL::vector<T>. It can manipulate point-
ers to gsl vector objects by taking advantage of C++ templates. With this new
type, the previous example becomes:

1 int i;
// allocate a gsl_vector of size 3

3 RcppGSL::vector<double> v(3);

5 // fill the vector
for (i = 0; i < 3; i++) {

7 v[i] = 1.23 + i ;
}

9

// access elements
11 double sum = 0.0 ;
for (i = 0; i < 3; i++) {

13 sum += v[i] ;
}

15

// free the memory
17 v.free() ;
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Listing 11.4 Example use of RcppGSL::vector<T>

The class RcppGSL::vector<double> implements a smart pointer which
can be used anywhere in place of a raw pointer to gsl_vector. Examples are the
gsl_vector_set and gsl_vector_get functions above.

Beyond the convenience of a nicer syntax for allocation and release of memory,
the RcppGSL::vector template facilitates the interchange of GSL vectors with
Rcpp objects, and hence R objects. The following example defines a .Call()
compatible function called sum_gsl_vector_int that operates on a gsl_-
vector_int through the RcppGSL::vector<int> template specialization:

1 RCPP_FUNCTION_1(int, sum_gsl_vector_int,
RcppGSL::vector<int> vec) {

3 int res = std::accumulate(vec.begin(), vec.end(), 0);
vec.free(); // we need to free vec after use

5 return res;
}

Listing 11.5 Example RcppGSL::vector<T> function

The macro RCPP FUNCTION 1 expands its arguments to a single-parameter func-
tion. The generated function returns the type given as the first macro argument,
has the function name provided by the second macro argument, and takes the third
macro argument as the function argument.

Hence, the function can then be called from R as:

R> .Call( "sum_gsl_vector_int", 1:10 )
2 [1] 55

Listing 11.6 Example call of RcppGSL::vector<T> function

A second example shows a simple function that grabs elements of an R list as
gsl_vector objects using implicit conversion mechanisms of Rcpp

RCPP_FUNCTION_1(double, gsl_vector_sum_2,
2 Rcpp::List data ) {

// grab "x" as a gsl_vector through
4 // the RcppGSL::vector<double> class

RcppGSL::vector<double> x = data["x"] ;
6

// grab "y" as a gsl_vector through
8 // the RcppGSL::vector<int> class

RcppGSL::vector<int> y = data["y"] ;
10 double res = 0.0 ;

for( size_t i=0; i< x->size; i++){
12 res += x[i] * y[i] ;

}
14

// we need to explicitly free the memory
16 x.free() ;
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y.free() ;
18

// return the result
20 return res ;
}

Listing 11.7 Second example RcppGSL::vector<T> function

which can be called from R as follows:

1 R> .Call( "gsl_vector_sum_2", data )
[1] 36.66667

Listing 11.8 Example call of second RcppGSL::vector<T> function

11.3.3 Mapping

Table 11.1 shows the mapping between types defined by the GSL and their corre-
sponding types in the RcppGSL package.

Table 11.1 Correspondence between GSL vector types and templates defined in RcppGSL

gsl vector RcppGSL (with RcppGSL:: prefix)

gsl vector vector<double>
gsl vector int vector<int>
gsl vector float vector<float>
gsl vector long vector<long>
gsl vector char vector<char>
gsl vector complex vector<gsl complex>
gsl vector complex float vector<gsl complex float>
gsl vector complex long double vector<gsl complex long double>
gsl vector long double vector<long double>
gsl vector short vector<short>
gsl vector uchar vector<unsigned char>
gsl vector uint vector<unsigned int>
gsl vector ushort vector<insigned short>
gsl vector ulong vector<unsigned long>

11.3.4 Vector Views

Several GSL algorithms return GSL vector views as their result type. RcppGSL
defines the template class RcppGSL::vector view to handle vector views us-
ing C++ syntax.
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extern "C" SEXP test_gsl_vector_view(){
2 int n = 10 ;

RcppGSL::vector<double> v(n) ;
4 for( int i=0 ; i<n; i++){

v[i] = i ;
6 }

RcppGSL::vector_view<double> v_even =
8 gsl_vector_subvector_with_stride(v,0,2,n/2);

RcppGSL::vector_view<double> v_odd =
10 gsl_vector_subvector_with_stride(v,1,2,n/2);

12 List res = List::create(
_["even"] = v_even,

14 _["odd" ] = v_odd
) ;

16 v.free() ; // we only free v, views do not own data
return res ;

18 }

Listing 11.9 Example of a vector view class

As with vectors, C++ objects of type RcppGSL::vector view can be
converted implicitly to their associated GSL view type. Table 11.2 displays the
pairwise correspondence so that the C++ objects can be passed to compatible GSL
algorithms. Note that the vector view<gsl complex long double> vari-
ant has been omitted for typesetting reasons.

Table 11.2 Correspondence between GSL vector view types and templates defined in RcppGSL

gsl vector views RcppGSL (with RcppGSL:: prefix)

gsl vector view vector view<double>
gsl vector view int vector view<int>
gsl vector view float vector view<float>
gsl vector view long vector view<long>
gsl vector view char vector view<char>
gsl vector view complex vector view<gsl complex>
gsl vector view complex float vector view<gsl complex float>
gsl vector view long double vector view<long double>
gsl vector view short vector view<short>
gsl vector view uchar vector view<unsigned char>
gsl vector view uint vector view<unsigned int>
gsl vector view ushort vector view<insigned short>
gsl vector view ulong vector view<unsigned long>

The vector view class also contains a conversion operator to automatically trans-
form the data of the view object to a GSL vector object. This enables the use of
vector views where GSL would expect a vector.
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11.4 Matrices

The GSL also defines a set of matrix data types : gsl matrix, gsl matrix int
etc., for which RcppGSL defines a corresponding convenience C++ wrapper gen-
erated by the RcppGSL::matrix template.

11.4.1 Creating Matrices

The RcppGSL::matrix template exposes three constructors.

// convert an R matrix to a GSL matrix
2 matrix( SEXP x) throw(::Rcpp::not_compatible)

4 // encapsulate a GSL matrix pointer
matrix( gsl_matrix* x)

6

// create a new matrix with the
8 // given number of rows and columns
matrix( int nrow, int ncol)

Listing 11.10 Example use RcppGSL matrix class

11.4.2 Implicit Conversion

RcppGSL::matrix defines implicit conversion of a pointer to the associated
GSL matrix type, as well as dereferencing operators, making the class RcppGSL
::matrix look and feel like a pointer to a GSL matrix type.

1 gsltype* data ;
operator gsltype*(){ return data ; }

3 gsltype* operator->() const { return data; }
gsltype& operator*() const { return *data; }

Listing 11.11 Implicit conversion for RcppGSL matrix class

11.4.3 Indexing

Indexing of elements of GSL matrices is usually done using the getter func-
tions gsl matrix get, gsl matrix int get, etc. and the setter functions
gsl matrix set, gsl matrix int set, etc. As C functions, these have to
supply the row and column indices individually.
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RcppGSL takes advantage of both operator overloading and templates to make
indexing a GSL matrix much more convenient and closer to our common mathe-
matical notation as shown in the next example.

// create a matrix of size 10x10
2 RcppGSL::matrix<int> mat(10,10);

4 // fill the diagonal
for( int i=0; i<10: i++) {

6 mat(i,i) = i ;
}

Listing 11.12 Indexing for RcppGSL matrix class

11.4.4 Methods

The RcppGSL::matrix type also defines the following member functions:

nrow() to extract the number of rows
ncol() to extract the number of columns
size() to extract the number of elements
free() to release the memory

11.4.5 Matrix Views

Similar to the vector views discussed above, the RcppGSL also provides an implicit
conversion operator which returns the underlying matrix stored in the matrix view
class.

11.5 Using RcppGSL in Your Package

The RcppGSL package contains a complete example providing a single function
colNorm which computes a norm for each column of a supplied matrix. This ex-
ample adapts a matrix example from the GSL manual that has been chosen merely
as a means for showing how to set up a package to use RcppGSL.

Needless to say, we could compute such a matrix norm easily in R using ex-
isting facilities. One such possibility is a simple expression as in Listing 11. 13
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which is also shown on the corresponding help page in the example package inside
RcppGSL.

1 apply(M, 2, function(x) sqrt(sum(xˆ2)))

Listing 11.13 Matrix norm in R

One point in favor of using the GSL code is that it employs BLAS functions.
On sufficiently large matrices, and with suitable BLAS libraries installed, this vari-
ant could be faster due to the optimized code in high-performance BLAS libraries
and/or the inherent parallelism a multi-core BLAS variant which compute the vec-
tor norm in parallel. On all “reasonable” matrix sizes, however, the performance
differences should be negligible.

11.5.1 The configure Script

11.5.1.1 Using autoconf

Using RcppGSL means employing both the GSL and R. We may need to find
the location of the GSL headers and library, and this can be done easily from
a configure source script which autoconf generates from a configure.in
source file such as the following:

1 AC_INIT([RcppGSLExample], 0.1.0)

3 ## Use gsl-config to find arguments for compiler + linker flags
##

5 ## Check for non-standard programs: gsl-config(1)
AC_PATH_PROG([GSL_CONFIG], [gsl-config])

7 ## If gsl-config was found, let’s use it
if test "${GSL_CONFIG}" != ""; then

9 # Use gsl-config for header and linker arguments
# (without BLAS which we get from R)

11 GSL_CFLAGS=‘${GSL_CONFIG} --cflags‘
GSL_LIBS=‘${GSL_CONFIG} --libs-without-cblas‘

13 else
AC_MSG_ERROR([gsl-config not found, is GSL installed?])

15 fi

17 ## Use Rscript to query Rcpp for compiler and linker flags
## link flag providing library as well as path to library,

19 ## and optionally rpath
RCPP_LDFLAGS=‘${R_HOME}/bin/Rscript -e ’Rcpp:::LdFlags()’‘

21

# Now substitute these variables
23 # in src/Makevars.in to create src/Makevars
AC_SUBST(GSL_CFLAGS)

25 AC_SUBST(GSL_LIBS)
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AC_SUBST(RCPP_LDFLAGS)
27

AC_OUTPUT(src/Makevars)

Listing 11.14 Autoconf script for RcppGSL use

Such a source configure.in gets converted into a script configure by
invoking the autoconf program.

11.5.1.2 Using Functions Provided by RcppGSL

RcppGSL provides R functions that allow one to retrieve the same information.
Therefore, the configure script can also be written as:

#!/bin/sh
2

GSL_CFLAGS=‘${R_HOME}/bin/Rscript -e "RcppGSL:::CFlags()"‘
4 GSL_LIBS=‘${R_HOME}/bin/Rscript -e "RcppGSL:::LdFlags()"‘
RCPP_LDFLAGS=‘${R_HOME}/bin/Rscript -e "Rcpp:::LdFlags()"‘

6

sed -e "s|@GSL_LIBS@|${GSL_LIBS}|" \
8 -e "s|@GSL_CFLAGS@|${GSL_CFLAGS}|" \

-e "s|@RCPP_LDFLAGS@|${RCPP_LDFLAGS}|" \
10 src/Makevars.in > src/Makevars

Listing 11.15 Shell script configuration script for RcppGSL use

Similarly, the configure.win for windows can be written as:

RSCRIPT="${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe"
2 GSL_CFLAGS=‘${RSCRIPT} -e "RcppGSL:::CFlags()"‘
GSL_LIBS=‘${RSCRIPT} -e "RcppGSL:::LdFlags()"‘

4 RCPP_LDFLAGS=‘${RSCRIPT} -e "Rcpp:::LdFlags()"‘

6 sed -e "s|@GSL_LIBS@|${GSL_LIBS}|" \
-e "s|@GSL_CFLAGS@|${GSL_CFLAGS}|" \

8 -e "s|@RCPP_LDFLAGS@|${RCPP_LDFLAGS}|" \
src/Makevars.in > src/Makevars.win

Listing 11.16 Windows shell script configuration script for RcppGSL use

11.5.2 The src Directory

The C++ source file takes the matrix supplied from R and applies the GSL function
to each column.

1

#include <RcppGSL.h>
3 #include <gsl/gsl_matrix.h>
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#include <gsl/gsl_blas.h>
5

extern "C" SEXP colNorm(SEXP sM) {
7

try {
9 // create gsl data structures from SEXP

RcppGSL::matrix<double> M = sM;
11 int k = M.ncol();

Rcpp::NumericVector n(k); // for results
13

for (int j = 0; j < k; j++) {
15 RcppGSL::vector_view<double> colview =

gsl_matrix_column (M, j);
17 n[j] = gsl_blas_dnrm2(colview);

}
19 M.free() ;

return n; // return vector
21

} catch( std::exception &ex ) {
23 forward_exception_to_r( ex );

25 } catch(...) {
::Rf_error( "c++ exception (unknown reason)" );

27 }
return R_NilValue; // -Wall

29 }

Listing 11.17 Vector norm function for RcppGSL

The Makevars.in file governs the compilation and uses the values supplied
by configure during build-time:

1

# set by configure
3 GSL_CFLAGS = @GSL_CFLAGS@
GSL_LIBS = @GSL_LIBS@

5 RCPP_LDFLAGS = @RCPP_LDFLAGS@

7 # combine with standard arguments for R
PKG_CPPFLAGS = $(GSL_CFLAGS)

9 PKG_LIBS = $(GSL_LIBS) $(RCPP_LDFLAGS)

Listing 11.18 Makevars.in for RcppGSL example

The variables surrounded by @ will be filled by configure during package
build-time with values determined by the configure code shown above.

11.5.3 The R Directory

The R source is very simple: a single matrix is passed to C++:
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1 colNorm <- function(M) {
stopifnot(is.matrix(M))

3 res <- .Call("colNorm", M, PACKAGE="RcppGSLExample")
}

Listing 11.19 R function for RcppGSL example

11.6 Using RcppGSL with inline

As we have seen throughout the book, the inline package (Sklyar et al. 2012) is very
helpful for prototyping code in C, C++, or Fortran as it takes care of code compi-
lation, linking and dynamic loading directly from R. It is being used extensively by
Rcpp, for example, in the numerous unit tests.

The example below shows how inline can be deployed with RcppGSL. We im-
plement the same column norm example, but this time as an R script which is com-
piled, linked, and loaded on-the-fly. Compared to standard use of inline, we have to
make sure to add a short section declaring which header files from GSL we need to
use; the RcppGSL then communicates with inline to tell it about the location and
names of libraries used to build code against GSL.

R> require(inline)
2 R> inctxt=’
+ #include <gsl/gsl_matrix.h>

4 + #include <gsl/gsl_blas.h>
+ ’

6 R> bodytxt=’
+ // create gsl data structures from SEXP

8 + RcppGSL::matrix<double> M = sM;
+ int k = M.ncol();

10 + Rcpp::NumericVector n(k); // for results
+

12 + for (int j = 0; j < k; j++) {
+ RcppGSL::vector_view<double> colview =

14 + gsl_matrix_column (M, j);
+ n[j] = gsl_blas_dnrm2(colview);

16 + }
+ M.free() ;

18 + return n; // return vector
+ ’

20 R> foo <- cxxfunction(
+ signature(sM="numeric"),

22 + body=bodytxt, inc=inctxt, plugin="RcppGSL")
R> ## see Section 8.4.13 of the GSL manual:

24 R> ## create M as a sum of two outer products
R> M <- outer(sin(0:9), rep(1,10), "*") +

26 + outer(rep(1, 10), cos(0:9), "*")
R> foo(M)



11.7 Case Study: GSL-Based B-Spline Fit Using RcppGSL 169

28 [1] 4.314614 3.120504 2.193159 3.261141 2.534157
[6] 2.572810 4.204689 3.652017 2.085236 3.073134

Listing 11.20 Using RcppGSL with inline

The RcppGSL inline plugin supports creation of a package skeleton based on
the inline function.

1 R> package.skeleton( "mypackage", foo )

Listing 11.21 Using package.skeleton with inline result

This creates a skeleton package, similar to what we have seen in Chap. 5, based
on the function produced by cxxfunction() and assigned to the function object
foo() as per the code example in Listing 11.20.

11.7 Case Study: GSL-Based B-Spline Fit Using RcppGSL

The GSL and R both overlap in a number of areas. In that sense the following
example is contrived as we could compute it entirely in R. However, as the GSL is
a well-established numerical library in its own right, it is of interest to show how
examples from GSL can be deployed together with R.

In this section, we illustrate this using an example from Section 39.7 of the GSL
reference manual. We generate data from

y(x) = e−x/10 cos(x) with x ∈ [0,15]

and fit this data using weighted least squares using a cubic B-spline basis function
with uniform breakpoints. Again, we are not interested as much in the statistical
aspect of this problem as we are in exploring how to let R use code from the GSL.

The original program follows in Listing 11.22.

1 #include <stdio.h>
#include <stdlib.h>

3 #include <math.h>
#include <gsl/gsl_bspline.h>

5 #include <gsl/gsl_multifit.h>
#include <gsl/gsl_rng.h>

7 #include <gsl/gsl_randist.h>
#include <gsl/gsl_statistics.h>

9

/* number of data points to fit */
11 #define N 200

13 /* number of fit coefficients */
#define NCOEFFS 12

15

/* nbreak = ncoeffs + 2 - k = ncoeffs - 2 since k = 4 */
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17 #define NBREAK (NCOEFFS - 2)

19 int main (void) {
const size_t n = N;

21 const size_t ncoeffs = NCOEFFS;
const size_t nbreak = NBREAK;

23 size_t i, j;
gsl_bspline_workspace *bw;

25 gsl_vector *B;
double dy;

27 gsl_rng *r;
gsl_vector *c, *w;

29 gsl_vector *x, *y;
gsl_matrix *X, *cov;

31 gsl_multifit_linear_workspace *mw;
double chisq, Rsq, dof, tss;

33

gsl_rng_env_setup();
35 r = gsl_rng_alloc(gsl_rng_default);

37 /* allocate a cubic bspline workspace (k = 4) */
bw = gsl_bspline_alloc(4, nbreak);

39 B = gsl_vector_alloc(ncoeffs);

41 x = gsl_vector_alloc(n);
y = gsl_vector_alloc(n);

43 X = gsl_matrix_alloc(n, ncoeffs);
c = gsl_vector_alloc(ncoeffs);

45 w = gsl_vector_alloc(n);
cov = gsl_matrix_alloc(ncoeffs, ncoeffs);

47 mw = gsl_multifit_linear_alloc(n, ncoeffs);

49 printf("#m=0,S=0\n");
/* this is the data to be fitted */

51

for (i = 0; i < n; ++i) {
53 double sigma;

double xi = (15.0 / (N - 1)) * i;
55 double yi = cos(xi) * exp(-0.1 * xi);

57 sigma = 0.1 * yi;
dy = gsl_ran_gaussian(r, sigma);

59 yi += dy;

61 gsl_vector_set(x, i, xi);
gsl_vector_set(y, i, yi);

63 gsl_vector_set(w, i, 1.0 / (sigma * sigma));

65 printf("%f %f\n", xi, yi);
}

67

/* use uniform breakpoints on [0, 15] */
69 gsl_bspline_knots_uniform(0.0, 15.0, bw);
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71 /* construct the fit matrix X */
for (i = 0; i < n; ++i) {

73 double xi = gsl_vector_get(x, i);

75 /* compute B_j(xi) for all j */
gsl_bspline_eval(xi, B, bw);

77

/* fill in row i of X */
79 for (j = 0; j < ncoeffs; ++j) {

double Bj = gsl_vector_get(B, j);
81 gsl_matrix_set(X, i, j, Bj);

}
83 }

85 /* do the fit */
gsl_multifit_wlinear(X, w, y, c, cov, &chisq, mw);

87

dof = n - ncoeffs;
89 tss = gsl_stats_wtss(w->data, 1, y->data, 1, y->size);

Rsq = 1.0 - chisq / tss;
91

fprintf(stderr, "chisq/dof = %e, Rsq = %f\n", chisq / dof,
Rsq);

93

/* output the smoothed curve */
95 {

double xi, yi, yerr;
97

printf("#m=1,S=0\n");
99 for (xi = 0.0; xi < 15.0; xi += 0.1) {

gsl_bspline_eval(xi, B, bw);
101 gsl_multifit_linear_est(B, c, cov, &yi, &yerr);

printf("%f %f\n", xi, yi);
103 }

}
105

gsl_rng_free(r);
107 gsl_bspline_free(bw);

gsl_vector_free(B);
109 gsl_vector_free(x);

gsl_vector_free(y);
111 gsl_matrix_free(X);

gsl_vector_free(c);
113 gsl_vector_free(w);

gsl_matrix_free(cov);
115 gsl_multifit_linear_free(mw);

117 return 0;
} /* main() */

Listing 11.22 B-spline fit example from the GSL

This original GSL example provides a stand-alone program with a single main()
function. First, the data is generated and written out to the standard output. Next, the
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cubic B-spline is set up and fit, and the result is written out. In the original documen-
tation it is then suggested to use an external plotting program to visualize data and
fit. We can of course easily do the second step in R by reading the input, subsetting
it into input data (of which there are 200 lines) and results data (151 lines for the
grid from 0.0 to 15.0 in increments of 0.1.

In order to use this functionality from R, we will decompose the program into
two parts: data generation and data fitting. Each part will be addressed by a single
C++ function which executes just its part.

We use “Rcpp attributes” (described in Sect. 2.6) to provide access to this C++
code from R itself.

// [[Rcpp::depends(RcppGSL)]]
2 #include <RcppGSL.h>

4 #include <gsl/gsl_bspline.h>
#include <gsl/gsl_multifit.h>

6 #include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>

8 #include <gsl/gsl_statistics.h>

10 const int N = 200; // number of data points to fit
const int NCOEFFS = 12; // number of fit coefficients

12 const int NBREAK = (NCOEFFS - 2); // nbreak=ncoeffs-2 since k = 4

Listing 11.23 Beginning of C++ file with B-spline fit for R

This first declares a dependency on RcppGSL implying that R will use both
the header files and library from the GSL—by using the plugin discussed above.
Several header files are then included to declare the types used by RcppGSL (and
Rcpp) as well as for the GSL functionality needed.

We can then define the first function to generate the data.

// [[Rcpp::export]]
2 Rcpp::List genData() {

4 const size_t n = N;
size_t i;

6 double dy;
gsl_rng *r;

8 RcppGSL::vector<double> w(n), x(n), y(n);

10 gsl_rng_env_setup();
r = gsl_rng_alloc(gsl_rng_default);

12

//printf("#m=0,S=0\n");
14 /* this is the data to be fitted */

16 for (i = 0; i < n; ++i) {
double sigma;

18 double xi = (15.0 / (N - 1)) * i;
double yi = cos(xi) * exp(-0.1 * xi);

20
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sigma = 0.1 * yi;
22 dy = gsl_ran_gaussian(r, sigma);

yi += dy;
24

gsl_vector_set(x, i, xi);
26 gsl_vector_set(y, i, yi);

gsl_vector_set(w, i, 1.0 / (sigma * sigma));
28

//printf("%f %f\n", xi, yi);
30 }

32 Rcpp::DataFrame res =
Rcpp::DataFrame::create(Rcpp::Named("x") = x,

34 Rcpp::Named("y") = y,
Rcpp::Named("w") = w);

36

x.free();
38 y.free();

w.free();
40 gsl_rng_free(r);

42 return(res);
}

Listing 11.24 Data generation for GSL B-spline fit for R

Similarly, the second function used to fit the data can be defined as well.

1 // [[Rcpp::export]]
Rcpp::List fitData(Rcpp::DataFrame ds) {

3

const size_t ncoeffs = NCOEFFS;
5 const size_t nbreak = NBREAK;

7 const size_t n = N;
size_t i, j;

9

Rcpp::DataFrame D(ds); // construct data.frame
11 RcppGSL::vector<double> y = D["y"]; // access columns by name

RcppGSL::vector<double> x = D["x"]; // assigning GSL vectors
13 RcppGSL::vector<double> w = D["w"];

15 gsl_bspline_workspace *bw;
gsl_vector *B;

17 gsl_vector *c;
gsl_matrix *X, *cov;

19 gsl_multifit_linear_workspace *mw;
double chisq, Rsq, dof, tss;

21

// allocate a cubic bspline workspace (k = 4)
23 bw = gsl_bspline_alloc(4, nbreak);

B = gsl_vector_alloc(ncoeffs);
25

X = gsl_matrix_alloc(n, ncoeffs);
27 c = gsl_vector_alloc(ncoeffs);
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cov = gsl_matrix_alloc(ncoeffs, ncoeffs);
29 mw = gsl_multifit_linear_alloc(n, ncoeffs);

31 // use uniform breakpoints on [0, 15]
gsl_bspline_knots_uniform(0.0, 15.0, bw);

33

// construct the fit matrix X
35 for (i = 0; i < n; ++i) {

double xi = gsl_vector_get(x, i);
37

// compute B_j(xi) for all j
39 gsl_bspline_eval(xi, B, bw);

41 // fill in row i of X
for (j = 0; j < ncoeffs; ++j) {

43 double Bj = gsl_vector_get(B, j);
gsl_matrix_set(X, i, j, Bj);

45 }
}

47

// do the fit
49 gsl_multifit_wlinear(X, w, y, c, cov, &chisq, mw);

51 dof = n - ncoeffs;
tss = gsl_stats_wtss(w->data, 1, y->data, 1, y->size);

53 Rsq = 1.0 - chisq / tss;

55 // output the smoothed curve
Rcpp::NumericMatrix M(150,2);

57 double xi, yi, yerr;
for (xi = 0.0, i=0; xi < 15.0; xi += 0.1, i++) {

59 gsl_bspline_eval(xi, B, bw);
gsl_multifit_linear_est(B, c, cov, &yi, &yerr);

61 M(i,0) = xi;
M(i,1) = yi;

63 }

65 gsl_bspline_free(bw);
gsl_vector_free(B);

67 gsl_matrix_free(X);
gsl_vector_free(c);

69 gsl_matrix_free(cov);
gsl_multifit_linear_free(mw);

71

return(Rcpp::List::create(
73 Rcpp::Named("M")=M,

Rcpp::Named("chisqdof")=Rcpp::wrap(chisq/dof),
75 Rcpp::Named("rsq")=Rcpp::wrap(Rsq)));
}

Listing 11.25 Data fit for GSL B-spline with R

Finally, we can generate the compiled functions, generate the data, and fit the
spline model. This fit is illustrated in a chart shown in Fig. 11.1.
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2 # compile two functions
sourceCpp("bSpline.cpp")

4

# generate the data
6 dat <- genData()

8 # fit the model, returns matrix and gof measures
fit <- fitData(dat)

10 M <- fit[[1]]

12 # plot
op <- par(mar=c(3,3,1,1))

14 plot(dat[,"x"], dat[,"y"], pch=19, col="#00000044")
lines(M[,1], M[,2], col="orange", lwd=2)

16 par(op)

Listing 11.26 R side of GSL B-spline example
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Fig. 11.1 Artificial data and B-spline fit



Chapter 12
RcppEigen

Abstract The RcppEigen package provides an interface to the Eigen library.
Eigen is a featureful C++ library which deploys modern template meta-programming
techniques. It is similar to Armadillo but provides an even more granular application-
programming interface (API). This chapter provides an introduction to the Rcpp
Eigen package by introducing the core data structures, illustrating some of the avail-
able matrix decomposition methods and concludes with a case study of particular
C++ implementation (providing what is called a “factory” pattern) for different
matrix decomposition approaches in order to provide a faster reimplementation of
the lm method.

12.1 Introduction

Eigen is a modern C++ library for linear algebra, similar in scope as Armadillo
(which was discussed in Chap. 10), but with an even more fine-grained application-
programming interface (API). Eigen (Guennebaud et al. 2012) started as a
sub-project to KDE (a popular Linux desktop environment), initially focusing on
fixed-size matrices to represent rotations, projections, or affine transformations in a
visualization application. Eigen grew from there and has over the course of about
a decade produced three major releases with “Eigen3” being the current major ver-
sion. Eigen is now widely used in a number of projects, including ceres, a large-
scale nonlinear least-squares solver released by Google.1

And just like Armadillo, Eigen has been prepared for use with Rcpp by pro-
viding appropriate conversion functions as<>() and wrap() in the RcppEigen
package (Bates and Eddelbuettel 2013). The next section introduces some of the key
data types in Eigen, as well as the corresponding converters accessible from Rcpp.

1 See https://code.google.com/p/ceres-solver/.

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
DOI 10.1007/978-1-4614-6868-4 12, © The Author 2013
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12.2 Eigen Classes

12.2.1 Fixed-Size Vectors and Matrices

The earliest version of Eigen aimed at supporting visualizations and projections in
computational chemistry. For this task, fixed-size matrices and vectors are appropri-
ate and are still supported in the current version.

C++ meta-template programming (Abrahams and Gurtovoy 2004) is used ex-
tensively throughout Eigen. When dimensions are known at compile-time, opera-
tions which would commonly involve loops at run-time can in fact be converted at
compile-time. Consider this simple example:

Eigen::Vector3d x(1,2,3);
2 Eigen::Vector3d y(4,5,6);

4 Eigen::Matrix3d m1 = x * y.transpose();
double m2 = x.transpose() * y;

6

Rcpp::Rcout << "Outer:\n" << m1 << std::endl;
8 Rcpp::Rcout << "Inner:\n" << m2 << std::endl;

Listing 12.1 A simple Eigen example using fixed-size vectors and matrices

The length of the two vectors is fixed at size three in the definition of the vector
classes. The (square) matrix is also of size three.

The prime reason for creating the fixed-size variants is efficiency. Through the
use of templates, this library lets the compiler create a more efficient implementation
for the inner and outer products which, essentially, replaces the loop constructs with
a constant assignment. We will show just how dramatic the difference can be below.

Conceptually, the representation in Eigen is of the following type (where we
limit ourselves to dimension three, but variants for dimension two and four exist, as
do variants for types float and complex not shown here):

typedef Matrix<int, 3, 1> Vector3i;
2 typedef Matrix<double, 3, 1> Vector3d;

4 typedef Matrix<int, 1, 3> RowVector3i;
typedef Matrix<int, 3, 1> ColVector3i;

6 typedef Matrix<double, 1, 3> RowVector3d;
typedef Matrix<double, 3, 1> ColVector3d;

8

typedef Matrix<int, 3, 3> Matrix3i;
10 typedef Matrix<double, 3, 3> Matrix3d;

Listing 12.2 Eigen fixed-size vector and matrix representation

However, because data types in R are essentially always dynamic and can be
resized at any moment, no accessors or conversion functions exist between the
fixed-size representation in Eigen and the representation in R. All of the interfaces
discussed in this chapter use the dynamically sized vectors and matrices introduced
next.
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12.2.2 Dynamic-Size Vectors and Matrices

Work with data must accommodate changing data sizes, particularly when used in-
teractively or with varying inputs. The core data type for R work with Eigen is
therefore the type defined as follows:

typedef Matrix<double, Dynamic, 1> VectorXd;
2 typedef Matrix<double, Dynamic, Dynamic> MatrixXd;

4 typedef Matrix<int, Dynamic, 1> VectorXi;
typedef Matrix<int, Dynamic, Dynamic> MatrixXi;

Listing 12.3 Eigen dynamic-size vector and matrix representation

with additional variants for rows and column vectors, as well as different underly-
ing scalar representations for complex and float. The core R access functions
involve the types VectorXd and MatrixXd.

We can revisit the example from the previous section where we now use dynamic
vectors and matrices. Note how the initialization is now at run-time using the over-
loaded << operator.

1 Eigen::VectorXd u(3); u << 1,2,3;
Eigen::VectorXd v(3); v << 4,5,6;

3

Eigen::MatrixXd m3 = u * v.transpose();
5 double m4 = u.transpose() * v;

7 Rcpp::Rcout << "Outer:\n" << m3 << std::endl;
Rcpp::Rcout << "Inner:\n" << m4 << std::endl;

Listing 12.4 A simple Eigen example using dynamic-size vectors and matrices

The result is of course the same. What about performance differences? More
recent versions of Rcpp contain a simple helper class Timer. It has to be included
explicitly as shown below. We can then continue the example and create simple
timed loops:

// include header file for timer
2 #include <Rcpp/Benchmark/Timer.h>

4 // start the timer
const int n = 1000000;

6 Rcpp::Timer timer;
for(int i=0; i<n; i++) {

8 m1 = x * y.transpose();
m2 = x.transpose() * y;

10 }
timer.step("fixed") ;

12

for(int i=0; i<n; i++) {
14 m3 = u * v.transpose();

m4 = u.transpose() * v;
16 }
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timer.step("dynamic");
18

for(int i=0; i<n; i++) { } // empty loop
20 timer.step( "empty loop" ) ;

22 Rcpp::NumericVector res(timer);
for (int i=0; i<res.size(); i++) {

24 res[i] = res[i] / n;
}

26 Rcpp::Rcout << res << std::endl;

Listing 12. 5 Comparing performance of simple operations between dynamic and fixed size
vectors

The result of this comparison of making one million matrix multiplication of
an inner and outer product of two short vectors is rather astounding. The Timer
class keeps the data in nanoseconds (provided the operating system supports it). By
dividing the results by the number of iterations n, we obtain the cost per iteration:

fixed dynamic empty loop
2 0.001129 135.464204 0.000256

Listing 12.6 Timing results simple operations betweem dynamic and fixed size vectors

The templated code for fixed-size vectors and matrices is barely slower than the
empty loop. Without having inspected the generated machine-language code, we
assume that the assignment of the nine elements of the outer-product matrix plus the
tenth result from the inner-product scalar are replaced by constant assignments—
whereas the loop using dynamic data types takes 135 ns per iteration which is in
relatively terms much more than the operation implemented with fixed-size data
types.

This example, while unrealistic in its simplicity, shows that modern optimizing
compilers, combined with template logic, can result in very efficient code as they
essentially factor out invariants.

12.2.3 Arrays for Per-Component Operations

C++ matrix libraries overload the operator * such that (conforming) vectors and
matrices can by multiplied. This is very useful for the focus on linear algebra and
matrix operations and decompositions. However, programmers also often need per-
element operations (as is done in R when doing, say, c(1:3) * c(2:4)).

Eigen supports these operations via the Array template classes. In general,
there is a one-to-one mapping between the Matrix and Vector classes, and their
Array counterparts as shown in Table 12.1.

Where Vector denotes a single dimension, Array uses one X or digit. For
Matrix types, two digits are used to fixed-size objects, and XX denotes variable
size arrays. The trailing letter still denotes the storage type.
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Table 12.1 Mapping between Eigen matrix and vector types, and corresponding array types

Vector or Matrix object type Array object type

VectorXd ArrayXd
Vector3d Array3d
MatrixXd ArrayXXd
Matrix3d Array33d

Conversion between Matrix / Vector and Array are done, respectively, with
the array() method for the former, and the matrix() method for the latter.

12.2.4 Mapped Vectors and Matrices and Special Matrices

The previous sections illustrated the basic vector and matrix representations in
Eigen, providing either fixed or dynamically sized storage. To interfacing external
libraries, or C and C++ arrays, Eigen provides another class: Map. This approach
fits perfectly with the design of Rcpp which operates via proxy classes that access
the SEXP type of the underlying R object. Using such a “mapped object” requires
no additional copy upon construction, allowing for efficient passage of objects from
R to code using Eigen in the same way that the Rcpp classes are lightweight.

In general, one uses the desired representation as a template argument for the
Map classes, leading to, for example, Eigen::Map< Eigen::MatriXd> > in
the case of a dynamically sized matrix of type double. By deploying the using
directive to import either the full namespace or selected identifiers, this can be re-
duced to Map<MatrixXd>. It is good practice to declare such mapped object as
const to prevent accidental changes to the memory content of a mapped variable.

Moreover, Eigen also supports operations on sparse matrices. The core class is
SparseMatrixwhich offers high performance executing yet low memory usage.
It is based on a variant of the Compressed Column (or Row) Storage scheme used
by other software libraries operating on sparse matrices. The internal representation
uses four compact arrays:

Values stores the coefficient values of the nonzero elements.
InnerIndices stores the row (or column) indices of the nonzero elements.
OuterStarts stores for each column (or row) the index of the first nonzero in the

previous two arrays.
InnerNNZs stores the number of nonzeros of each column (or row).

Here “inner” refers to column vector for a column-major matrix (or a row vector for
a row-major matrix) and “outer” refers to the other direction.

Eigen also supports matrices with particular known structure such as symmetric
matrices (provided as either a lower- or upper-triangular matrix) or banded matrices.
In general, these are provided as “views” which means that while the full size is
used, only the relevant portion is accessed during operations.
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12.3 Case Study: Kalman Filter Using RcppEigen

Section 10.3 above discussed a simple Kalman filter example and showed its imple-
mentation in a simple C++ class using Armadillo. For comparison, we can also
implement it using Eigen.

#include <RcppEigen.h>
2

using namespace Rcpp;
4 using namespace Eigen;

6 class Kalman {
private:

8 MatrixXd A, H, Q, R, xest, pest;

10 public:
// constructor, sets up data structures

12 Kalman() {

14 const double dt = 1.0;
A.setIdentity(6,6);

16 A(0,2) = A(1,3) = A(2,4) = A(3,5) = dt;

18 H.setZero(2,6);
H(0,0) = H(1,1) = 1.0;

20

Q.setIdentity(6,6);
22 R = 1000 * R.Identity(2,2);

24 xest.setZero(6,1);
pest.setZero(6,6);

26 }

28 // sole member function: estimate model
MatrixXd estimate(const MatrixXd & Z) {

30 unsigned int n = Z.rows(), k = Z.cols();
MatrixXd Y = MatrixXd::Zero(n,k);

32 MatrixXd xprd, pprd, S, B, kalmangain;
VectorXd z, y;

34

for (unsigned int i = 0; i<n; i++) {
36 z = Z.row(i).transpose();

38 // predicted state and covariance
xprd = A * xest;

40 pprd = A * pest * A.transpose() + Q;

42 // estimation
S = H * pprd.transpose() * H.transpose() + R;

44 B = H * pprd.transpose();

46 kalmangain = S.ldlt().solve(B).transpose();
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48 // estimated state and covariance
xest = xprd + kalmangain * (z - H * xprd);

50 pest = pprd - kalmangain * H * pprd;

52 // compute the estimated measurements
y = H * xest;

54 Y.row(i) = y.transpose();
}

56 return Y;
}

58 };

Listing 12.7 Basic Kalman filter class in C++ using Eigen

Listing 12.7 provides a straightforward adaptation of the previous implementa-
tion. The switch from Armadillo to Eigen consists mostly of

• An obvious change in the header file that is included.
• Switching declarations from mat to MatrixXd, and from vec to VectorXd.
• Changing member functions zero(), identity() and t() to setZero(),
setIdentity() and transpose(), respectively.

• Selecting a robust Cholesky decomposition with pivoting matrix decomposition
method via the ldlt() member function to use the solve() method.

The code is slightly more verbose than the variant in Listing 10.10. And while Eigen
has a reputation for providing fast-running code, it turns out that for these (arguably
rather naı̈ve) implementations, Armadillo holds a considerable speed gain of more
than 60 % over Eigen using the code shown in Listings 10.10 and 12.7.2

12.4 Linear Algebra and Matrix Decompositions

12.4.1 Basic Solvers

Eigen has very substantial support for linear algebra operations and a number of
matrix decompositions. Bates and Eddelbuettel (2013) provide a thorough discus-
sion, so rather than enumerating these again, we will highlight a few key elements.
The case study in Sect. 12.5 also deploys a number of these in order to evaluate their
relative performance in a reimplementation of a linear model estimator. Useful doc-
umentation for these methods is provided by the corresponding tutorial section of
the Eigen documentation (Guennebaud et al. 2012)3 from which we have taken the
following examples.

2 A comment from another R / Eigen developer confirming this ratio is gratefully acknowledged.
3 The Eigen tutorial can be accessed via http://eigen.tuxfamily.org/dox, and more
detailed documentation about matrix decompositions is at http://eigen.tuxfamily.org/
dox/TopicLinearAlgebraDecompositions.html.

http://eigen.tuxfamily.org/dox
http://eigen.tuxfamily.org/dox/TopicLinearAlgebraDecompositions.html
http://eigen.tuxfamily.org/dox/TopicLinearAlgebraDecompositions.html
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The solvers example can be adapted quite easily to code to be called from R.

R> src <- ’
2 const Map<MatrixXd> A(as<Map<MatrixXd> >(As));

const Map<VectorXd> b(as<Map<VectorXd> >(bs));
4 VectorXd x = A.colPivHouseholderQr().solve(b);

return wrap(x);’
6 R> solveEx <- cxxfunction(signature(As = "mat", bs = "vec"),
+ body=src, plugin="RcppEigen")

8 R> A <- matrix(c(1,2,3, 4,5,6, 7,8,10), 3,3, byrow=TRUE)
R> b <- c(3, 3, 4)

10 R> solveEx(A, b)
[1] -2 1 1

12 R>

Listing 12.8 Using a basic Eigen solver from R

In this example, we pass a matrix and vector from R, and the R data types are
used to instantiate the corresponding Eigen objects. As discussed in the previous
section, a Map type permits us to reuse the R memory without an additional copy of
data, and we use the dynamically sized type with double precision. In the example,
the matrix A is decomposed using a column-pivoting Householder QR decomposi-
tion after which the linear equation

Ax = b

is solved for a given b.

12.4.2 Eigenvalues and Eigenvectors

Eigenvalues and eigenvector calculation are also available. The following example
uses a self-adjoint solver suitable for symmetric matrices in which only one triangle
of the corresponding matrix is used, while the other is inferred. Alternate solvers
classes EigenSolver and ComplexEigenSolver are also available.

R> src <- ’
2 + using namespace Eigen;
+ const Map<MatrixXd> A(as<Map<MatrixXd> >(As));

4 + SelfAdjointEigenSolver<MatrixXd> es(A);
+ if (es.info() != Success) stop("Problem with Matrix");

6 + return List::create(Named("values") = es.eigenvalues(),
+ Named("vectors") = es.eigenvectors());’

8 R> eigEx <- cxxfunction(signature(As = "mat"), body=src,
+ plugin="RcppEigen")

10 R> A <- matrix(c(1,2, 2,3), 2,2, byrow=TRUE)
R> eigEx(A)

12 $values
[1] -0.236068 4.236068

14

$vectors
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16 [,1] [,2]
[1,] -0.850651 -0.525731

18 [2,] 0.525731 -0.850651

20 R>
R> eigEx(matrix(c(1,NA,NA,1),2,2))

22 Error: Problem with Matrix
R>

Listing 12.9 Computing eigenvalues using Eigen

Line four shows how a member function of the solver can be queried for success
or failure; we then use the stop()wrapper around the Rcpp exception handlers to
return to R with an appropriate error message. Lines 21 and 22 illustrate this with
a degenerate matrix. As expected, control is returned to R with the error message
specified in line four.

12.4.3 Least-Squares Solvers

Listing 12.7 in Sect. 12.3 already showed the use of the ldlt() member function
for solving linear systems. The following example uses a basic SVD approach. The
next section will revisit this problem in more detail.

1 R> src <- ’
+ using namespace Eigen;

3 + const Map<MatrixXd> X(as<Map<MatrixXd> >(Xs));
+ const Map<VectorXd> y(as<Map<VectorXd> >(ys));

5 + VectorXd x = X.jacobiSvd(ComputeThinU|ComputeThinV).solve(y);
+ return wrap(x);’

7 R> lsEx <- cxxfunction(signature(Xs = "matrix", ys = "vector"),
+ body=src, plugin="RcppEigen")

9 R> data(cars)
R> X <- cbind(1, log(cars[,"speed"]))

11 R> y <- log(cars[,"dist"])
R> lsEx(X, y)

13 [1] -0.729669 1.602391
R>

Listing 12.10 Computing least-squares using Eigen

We use the standard R data set cars for the well-known regression example of
fitting the logarithm of distance to a constant and the logarithm of speed.

12.4.4 Rank-Revealing Decompositions

The Eigen library also supports a number of rank-revealing decompositions which
can compute the rank of the matrix they are operating on. Such methods tend to be
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best-behaved in the case of matrices of less than full rank, as, for example, singular
matrices in the case of squared dimensions. The reference in footnote 3 on page 183
provides the full details about all available methods.

R> src <- ’
2 + using namespace Eigen;
+ const Map<MatrixXd> A(as<Map<MatrixXd> >(As));

4 + FullPivLU<MatrixXd> lu_decomp(A);
+ return List::create(Named("rank") = lu_decomp.rank(),

6 + Named("nullSpace") = lu_decomp.kernel(),
+ Named("colSpace") = lu_decomp.image(A));

’
8 R> rrEx <- cxxfunction(signature(As = "mat"), body=src, plugin="

RcppEigen")
R> A <- matrix(c(1,2,5, 2,1,4, 3,0,3),3,3,byrow=TRUE)

10 R> rrEx(A)
$rank

12 [1] 2

14 $nullSpace
[,1]

16 [1,] 0.5
[2,] 1.0

18 [3,] -0.5

20 $colSpace
[,1] [,2]

22 [1,] 5 1
[2,] 4 2

24 [3,] 3 3

26 R>

Listing 12.11 Rank-revelaing decompositions using Eigen

The example discussed in this section illustrates how fine-grained the Eigen API
is: a variety of basic decompositions (SVD, LU, QR, . . . ) can be deployed, and piv-
oting schemes are available for several of them. The vignette in package RcppEigen
also provides more detail. The next section provides a more in-depth discussing
about how to use these in order to estimate linear models.

12.5 Case Study: C++ Factory for Linear Models in RcppEigen

The RcppEigen package continues a theme started by RcppArmadillo (François
et al. 2012) and RcppGSL (François and Eddelbuettel 2010). It consists of taking
the venerable linear model estimation as the basis for comparison between different
linear algebra implementations. Doug Bates took this a step further with RcppEigen
by providing a complete “factory” for linear models.
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A “factory,” in software engineering parlance, is a set of code, frequently imple-
mented as functions, that produces objects given a set of parameters. Often these
objects stem from classes which are related by class inheritances. This is commonly
implemented with a base, or top-level, class from which the various models derive.
One or more parameters are then used to select and initiate the type of object desired.

In our context, this provides an excellent illustration for both a set of more ad-
vanced C++ code and an opportunity to detail more of the components of Eigen
and RcppEigen. The lm class in Listing 12. 12 is the base class from which the
factory methods derive.

namespace lmsol {
2 using Eigen::ArrayXd;

using Eigen::Map;
4 using Eigen::MatrixXd;

using Eigen::VectorXd;
6

class lm {
8 protected:

Map<MatrixXd> m_X; // model matrix
10 Map<VectorXd> m_y; // response vector

MatrixXd::Index m_n; // number of rows of X
12 MatrixXd::Index m_p; // number of columns of X

MatrixXd::VectorXd m_coef; // coefficient vector
14 int m_r; // comp. rank or NA_INTEGER

MatrixXd::VectorXd m_fitted; // vector of fitted values
16 MatrixXd::VectorXd m_se; // standard errors

MatrixXd::RealScalar m_prescribedThreshold;
18 // user specified tolerance

bool m_usePrescribedThreshold;
20

public:
22 lm(const Map<MatrixXd>&, const Map<VectorXd>&);

24 ArrayXd Dplus(const ArrayXd& D);
MatrixXd I_p() const {

26 return MatrixXd::Identity(m_p, m_p);
}

28 MatrixXd XtX() const;

30 // setThreshold + threshold based on ColPivHouseholderQR
RealScalar threshold() const;

32 const VectorXd& se() const {return m_se;}
const VectorXd& coef() const {return m_coef;}

34 const VectorXd& fitted() const {return m_fitted;}
int rank() const {return m_r;}

36 lm& setThreshold(const RealScalar&);
};

38

// ..
40 }

Listing 12.12 Core of definition of lm class in Eigen
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The implementation of the non-inlined member functions is provided in the pack-
age RcppEigen as the source file fastLm.cpp. We will omit these functions here
due to space constraints.

With the declarations of the basic linear model class lm, we can define special-
izations providing the various decompositions. As these classes all inherit from lm,
they share all its member functions and variables shown in Listing 12.12 yet each
add their own specific decomposition function—simply by instantiating the corre-
sponding class from Eigen.

In the implementation shown below in Listing 12.13, the classes deriving from
the lm class shown above all instantiate an Eigen object of the same name. This
is made possible by the different namespaces. The Eigen namespace is used by
the Eigen package (and we have omitted a number of statements such as using
Eigen::Llt which permit use of the Llt class without the namespace prefix),
and the lmsol namespace is used for the “linear model solutions” implemented in
this example from the RcppEigen package.

So to take the first example, the ColPivQR class in thelmsol namespace inher-
its from lm in the same namespace and provides access to the Eigen::ColPivQR
class from RcppEigen. We sometimes prefer to write this explicitly—and the two
forms lmsol::ColPivQR and Eigen::ColPivQRmake the provenance more
explicit.

class ColPivQR : public lm {
2 public:

ColPivQR(const Map<MatrixXd>&, const Map<VectorXd>&);
4 };

6 class Llt : public lm {
public:

8 Llt(const Map<MatrixXd>&, const Map<VectorXd>&);
};

10

class Ldlt : public lm {
12 public:

Ldlt(const Map<MatrixXd>&, const Map<VectorXd>&);
14 };

16 class QR : public lm {
public:

18 QR(const Map<MatrixXd>&, const Map<VectorXd>&);
};

20

class GESDD : public lm {
22 public:

GESDD(const Map<MatrixXd>&, const Map<VectorXd>&);
24 };

26 class SVD : public lm {
public:

28 SVD(const Map<MatrixXd>&, const Map<VectorXd>&);
};

30
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class SymmEigen : public lm {
32 public:

SymmEigen(const Map<MatrixXd>&, const Map<VectorXd>&);
34 };

Listing 12.13 Derived classes of lm providing specializations

With these declarations (and the actual implementations which are included in
the RcppEigen package as file fastLm.cpp), we can show the implementation of
the C++ part of the fastLm() function. But before we go there, we will illustrate
two of the different constructors.

1 QR::QR(const Map<MatrixXd> &X,
const Map<VectorXd> &y) : lm(X, y) {

3 HouseholderQR<MatrixXd> QR(X);
m_coef = QR.solve(y);

5 m_fitted = X * m_coef;
m_se = QR.matrixQR().topRows(m_p).

7 triangularView<Upper>().
solve(I_p()).rowwise().norm();

9 }

11 Llt::Llt(const Map<MatrixXd> &X,
const Map<VectorXd> &y) : lm(X, y) {

13 LLT<MatrixXd> Ch(XtX().selfadjointView<Lower>());
m_coef = Ch.solve(X.adjoint() * y);

15 m_fitted = X * m_coef;
m_se = Ch.matrixL().solve(I_p()).colwise().norm();

17 }

Listing 12.14 Implementation of two subclass constructors for lm model fit

These two examples show that particular aspects of the respective Eigen classes
are used. For the QR decomposition variant of the linear model, the coefficients are
provided via solve() to obtain the parameter vector. Fitted values are then just a
multiplication with the original design matrix, and standard errors can be computed
exploiting properties of the QR decomposition. This is similar for the Llt approach;
the full source of fastLm.cpp in the package RcppEigen provides the full detail.

Before we can address the implementation of the actual linear model fit, we first
define an inlined helper function. It creates the corresponding object given the ma-
trix X, vector y, and a variable named type to select the given “type” of decompo-
sition used for the model fit:

1 static inline lm do_lm(const Map<MatrixXd> &X,
const Map<VectorXd> &y,

3 int type) {
switch(type) {

5 case ColPivQR_t:
return ColPivQR(X, y);

7 case QR_t:
return QR(X, y);

9 case LLT_t:
return Llt(X, y);
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11 case LDLT_t:
return Ldlt(X, y);

13 case SVD_t:
return SVD(X, y);

15 case SymmEigen_t:
return SymmEigen(X, y);

17 case GESDD_t:
return GESDD(X, y);

19 }
throw invalid_argument("invalid type");

21 return ColPivQR(X, y); // -Wall
}

Listing 12.15 Selection of subclasses for lm model fit

Note that as the do_lm function is in the lmsol namespace, it does instantiate
the subclasses of lm declared in Listing 12. 13 rather than the Eigen classes they
provide access to.

Finally, the actual linear model function called from R :

extern "C" SEXP fastLm(SEXP Xs, SEXP ys, SEXP type) {
2 try {

const Map<MatrixXd> X(as<Map<MatrixXd> >(Xs));
4 const Map<VectorXd> y(as<Map<VectorXd> >(ys));

Index n = X.rows();
6 if ((Index)y.size() != n)

throw invalid_argument("size mismatch");
8

// Select and apply the least squares method
10 lm ans(do_lm(X, y, ::Rf_asInteger(type)));

12 // Copy coefficients and install names, if any
NumericVector coef(wrap(ans.coef()));

14 List dimnames(NumericMatrix(Xs).attr("dimnames"));
if (dimnames.size() > 1) {

16 RObject colnames = dimnames[1];
if (!(colnames).isNULL())

18 coef.attr("names") = clone(CharacterVector(colnames));
}

20

VectorXd resid = y - ans.fitted();
22 int rank = ans.rank();

int df = (rank == ::NA_INTEGER) ? n - X.cols() : n - rank;
24 double s = resid.norm() / std::sqrt(double(df));

// Create the standard errors
26 VectorXd se = s * ans.se();

28 return List::create(_["coefficients"] = coef,
_["se"] = se,

30 _["rank"] = rank,
_["df.residual"] = df,

32 _["residuals"] = resid,
_["s"] = s,

34 _["fitted.values"] = ans.fitted());
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} catch( std::exception &ex ) {
36 forward_exception_to_r( ex );

} catch(...) {
38 ::Rf_error( "c++ exception (unknown reason)" );

}
40 return R_NilValue; // -Wall
}

Listing 12.16 Actual fastLm function in RcppEigen package

Here the ans object is instantiated with the return from the do_lm function from
the preceding listing. This ans object then provides the appropriate solutions given
the type of decomposition chosen. Together, this implements a very elegant setup
providing a large number of different approaches (which can then be compared)
with a minimal amount of code repetition. This illustrates nicely how C++ design
choices enable us to provide code very effectively from R while also computing
efficiently thanks to the advanced features in Eigen.

The package vignette (Bates et al. 2012) has the complete details, but we can
restate the result of the comparison computed with the help of the code listings
shown above (as well as the rest not shown here but available in the RcppEigen
package).

All solutions referenced in Table 12.2 refer to the corresponding Eigen classes
as implemented in the fastLm function in the RcppEigen package. Exceptions
are “arma” and “GSL” for the corresponding fastLm functions from the RcppAr-
madillo and RcppGSL packages, and “lm.fit” for the base R function.

Table 12.2 lmBenchmark results for the RcppEigen example

Method Relative Elapsed User Sys

LDLt 1.000 4.423 4.388 0.020
LLt 1.003 4.438 4.389 0.032
SymmEig 2.629 11.629 10.253 1.320
QR 5.117 22.631 21.205 1.340
arma 5.215 23.068 77.020 15.045
PivQR 5.502 24.335 22.477 1.772
lm.fit 6.086 26.919 45.143 50.951
GESDD 9.582 42.379 126.832 39.782
SVD 33.932 150.082 145.781 3.753
GSL 115.522 510.955 601.682 701.116

The timings are from a desktop computer running the default size, 100,000×40,
full-rank model matrix running 100 repetitions for each method. Times (Elapsed,
User and Sys) are in seconds. The BLAS in use is the version of the OpenBLAS
library included with Ubuntu 12.10. The processor used for these timings is a 4-core
processor but almost all the methods are single-threaded and not affected by the
number of cores. Only the arma, lm.fit, GESDD, and GSL methods benefit from
the multi-threaded BLAS implementation provided by OpenBLAS.
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What we can take away from these results is that methods based on forming and
decomposing X�X (LDLt, LLt and SymmEig) are considerably faster.

The pivoted QR method is marginally times faster than lm.fit (from R ) on this
test and provides nearly the same information as lm.fit (which has improved its
performance relative to older versions of R). Methods based on the singular value
decomposition (SVD and GSL) are much slower, which is presumably caused at
least in part by X having many more rows than columns. Also, the GSL method
from the GNU Scientific Library uses an older algorithm for the SVD and is clearly
not competitive in this comparison.

We also note that GESDD implements an interesting hybrid approach by using
Eigen classes, but calling out to the LAPACK routine dgesdd for the actual SVD
calculation. This leads to better performance compared to using the SVD implemen-
tation of Eigen which, while not as bad as the GSL, is still not a particularly fast
SVD method.

This example, developed by Doug Bates and implemented as an example in the
RcppEigen package, provided a nice illustration about the potential for a Rcpp-
based solution to accelerate computations done in R. Rcpp permits us to connect
to modern linear algebra libraries such as Armadillo (Sanderson 2010) and Eigen
(Guennebaud et al. 2012) with ease. As can be seen from Table 12.2, a sizeable
improvement can be achieved even against the fastest and purest solution offered by
R, even if that solution is already fairly efficient and itself implemented mostly in
compiled code as is the case with lm.fit(), the core function underlying linear
model estimation in R.

As of early 2013, over 100 on CRAN and 10 packages on BioConductor use
Rcpp and offer a wide variety of different choices of how to enhance R seamlessly
with C++. The rcpp-devel mailing list is vibrant, development of Rcpp con-
tinues at a rapid pace, and we look forward to more exciting activity in seamlessly
bridging R and C++.
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Appendix A
C++ for R Programmers

Abstract The short appendix offers a very basic introduction to the C++ language
to someone already (at least somewhat) familiar with R programming. Introducing
all of C++ in just a few pages is not really possible. Countless books have been
written about the C++ language since its inception in the early 1990s (and we will
list a few at the end in a section on further readings).

A.1 Compiled Not Interpreted

One of the key differences between R and C++ is that R is interpreted. It was
designed for interactive exploration, visualization, and modeling. The flexibility that
such a goal aspires to is most naturally reflected in a language with features common
to those held by R. This includes “computing on the language” with objects which
modify other objects, or functions and more.

C++, on the other hand, came after C and has always been compiled. This means
that we take a file containing source code and convert it into object code with a com-
piler. A linker then creates an executable out of the object code as well as potentially
further libraries on the system. We should also note that R itself now ships with a
(byte-code) compiler, but that is slightly different as it generates an intermediate
level of parsed expressions, rather than machine code in object files as a standard
compiler for a language such as C or C++ would.

Let us consider a concrete example. If the code below

1 #include <cstdio>

3 int main(void) {
printf("Hello, World!\n");

5 }

Listing A.1 Simple C++ example: Hello, World!

is saved in a file ex1.cpp, then the commands

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, Use R! 64,
DOI 10.1007/978-1-4614-6868-4 13, © The Author 2013
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1 sh> g++ -c ex1.cpp
sh> g++ -o ex1 ex1.o

Listing A.2 Compiling and linking simple C++ example: Hello, World!

first compile the source file into the object file ex1.o as requested by the -c
command-line option. Next, the resulting object file is linked into the executable
ex1 as specified by the -o command-line argument.

This can also be achieved in a single operation via

sh> g++ ex1.cpp -o ex1

Listing A.3 Compiling and linking simple C++ example in one step: Hello, World!

The resulting program ex1 can now be executed. It displays the text that is ever
so common for first examples by calling the C-level function printf which may
be somewhat familiar to R programmers via the related R function sprintfwhich
uses similar formatting rules to print into a character variable. Notice how we also
specified a so-called include file in the first line; it contains a number of function
declarations related to input and output such as printf.

These operations would be the same on any operating system on which g++ has
been installed, in particular Windows, OS X, or Linux. The file extensions used for
object files or executable may differ, the compile commands remain the same. As
an aside, such portability of tools across operating system is a very useful attribute
which the R software system shares.

Other compilers can also be used for as long as they are supported by R itself. As
noted in Chap. 2 above, this excludes the Microsoft family of compilers, but may
include the (commercial) Intel Compiler on several platforms, the Sun compiler
if installed on Solaris or Linux, and older Unix compilers such as the IBM AIX
compiler and the HP UX compiler. However, as such operating systems are less
commonly used, we will concentrate on g++.

An important second aspect of compilation concerns how to build upon other
projects via their libraries (providing code) and header files (providing declarations).
For example, the R environment provides a stand-alone library with several of the
mathematical, probability, and random-number functions used in R (R Development
Core Team 2012d, Section 16.6).

Consider the following example which uses the R stand-alone mathematics
library to compute the 95% percentile of the N(0,1) distribution.

1 #include <cstdio>
#include <Rmath.h>

3

int main(void) {
5 printf("N(0,1) 95th percentile %9.8f\n",

qnorm(0.95, 0.0, 1.0, 1, 0));
7 }

Listing A.4 Simple C++ example using Rmath

We can build this program via
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1 sh> g++ -c ex2.cpp -DMATHLIB_STANDALONE -I/usr/include
sh> g++ -o ex2 ex2.o -L/usr/lib -lRmath

Listing A.5 Compiling and linking simple C++ example using Rmath

which shows two new aspects in the compile step. First, we inform the compiler
where to find the header file Rmath.h (which contains the declarations) by using
the -I/usr/include switch. We define a variable MATHLIB_STANDALONE to
enable the stand-alone use of the library outside of its normal deployment with the
R engine. Next, for the linking step, the -L/usr/lib switch points to the library
location whereas -lRmath enables linking with the R mathematics library from
the file libRmath.so (or libRmath.a in case of static linking). In this partic-
ular case both the header file location and the library location actually correspond
to system defaults. This means we could have omitted them both; however, it is in-
structive to show them in case the location does need to be specified as would be the
case, say, with a local installation in the home directory of the user.

Understanding compiling and linking options and common error messages is of
some importance when working with compiled code. For most of our cases, R helps
by providing complete wrappers via sub-commands such as R CMD COMPILE or
R CMD LINK. However, it is helpful to understand basic compiling and linking in
order to examine or debug possible build issues.

A.2 Statically Typed

A second key difference between R and C++ concerns the difference between
dynamic and static typing. In R, an expression determines the type it is assigned
to. In other words, in

R> x <- rnorm(10)
2 R> x <- "some text"

Listing A.6 Simple R example of dynamic types

the variable x is first assigned a numeric (or floating-point) vector of size ten as
returned from the rnorm function. This value in x is then replaced by characters
as a fixed text is assigned. This is completely valid R code where the result of the
expression determines the type of variable it is assigned to: dynamic typing.

Statically typed languages such as C or C++ are different. Variables have to be
declared first which assigns the name of a variable to a particular type. That type
is then fixed for as long as this variable is in scope which may be as long as the
program runs, or just a fraction of a second until the current scope (typically defined
by a pair of curly braces) is exited. A certain number of assignments from one type
to another are possible. For example, assigning a floating number such as 3.1415
to an integer truncates (rather than rounds) its value to 3. Assigning it back to a
floating-point variable would then make it 3.0. In other words, the assignment may
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(or may not) be losing precision, and it depends on the type of variable assigned to
and from.

Standard variable types in C++ are

• Integer of different sizes and hence supported ranges of values; int and long
are most common; they can also be qualified as unsignedwhich excludes neg-
ative values and thereby doubles the range of positive values.

• Floating point numbers of lower (float) and higher (double) precision.
• Logical values such as bool.
• Character values as char but these are individual letters or symbols, not com-

pounds such as strings as there is no base type for strings (but see below for the
STL strings).

Another key difference is that all these types are scalar. Vectors can be created
statically with size fixed at compile time, or dynamically as in C. That is, however,
a feature which can be avoided almost entirely by relying on STL types as discussed
below.

A.3 A Better C

C++ can also be seen as better C. In fact, Meyers (2005) argues in his first of 55
“items” that C++ should be seen as a federation of four languages, with C being
one of these. Hence, we need to review a few core language elements which are
actually fairly similar to the R language.

Control Structures

C++ contains several control structures which are similar to those in R:

• for loops are very common; they contain three components initialization, com-
parison for termination, and incrementing. So in

for (int i=0; i<10; i++) {
2 // some code here

}

Listing A.7 Simple R example of dynamic types

the loop body will be entered ten times with the variable i ranging from zero to
nine. Once the expression i < 10 no longer evaluates to true, the code resumes
after the end of the for block.

• while loops are also similar with a top-level boolean expression and a loop
body that is entered for as long as the condition is true; a related but much less
used variant starts with the do keyword and the loop body and the test at the end;
lastly, keywords break and next exist to exit the loop body and skip to the
next iterations, respectively.
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• if statements are very similar to what one uses in R with optional else blocks
and nesting; very little is different here.

• switch statements are an alternative to “ladders” of if/else as a single state-
ment evaluates and the matching condition, represented by a case label, is exe-
cuted, or else a default value is chosen.

Functions

Functions also share some similarities with their R equivalents. Functions can be
defined to take a number of arguments. Argument matching is always by position;
passing arguments by name as in R is not permitted. All listed function arguments
have to be supplied. An example of this was the qnorm function above which we
had to call with all five arguments. Its R version also has up to five arguments,
but if called as qnorm(0.95), default values for mean, standard deviation, lower
tail, and logarithmic use apply. In C++, we explicitly list all five arguments (though
default arguments can be supplied as well in a function definition).

Because the language is statically typed, functions are differentiated by both their
names and argument types. That means that these two function declarations

1 int min(int a, int b);
double min(double a, double b);

Listing A.8 Simple C++ function example

are in fact distinct. The compiler will call the corresponding ones for min(4, 5)
and min(4.0, 5.0). Templates, discussed below, offer an approach to write
more generic functions that apply to several variable types.

Pointers and Memory Management

Pointers and memory management is an important advanced topic, particularly for
C programming. In C++, use of pointers can in many cases be avoided, diverting
one frequent case of criticism.

There are two very common use cases for pointers. The first one concerns
dynamic memory allocation. In C, the only approach to reserve a vector or array
(of, say, type double) of a size given only at run-time is to declare a pointer to
double. At run-time, when the required size is known, this pointer is then assigned
a dynamic memory allocation of the appropriate size determined as the number of
required elements times the size of a double. After use, the memory has to be freed
or else it leaks which means it is allocated but not used; a waste of system resources.
This process sounds manual and error-prone, and it is. But with C++ and facilities
such as the Standard Template Library (STL) discussed below, we do not need to
resort to this approach to have dynamically sized vectors or arrays.
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The second aspect concerns how arguments are passed to functions. There are
two approaches in C and by extension C++. The first is call-by-value in which a
copy is passed to the subroutine. It can be modified at will and changes will not
affect the calling function and its value. That is safe yet occasionally inefficient
(as larger compound data types will be copied in full) or even inapplicable. The
second use case is call-by-reference. Here, a pointer is passed and one can access the
original memory location. This is frequently more efficient, and also the only way
to alter an object. C++ improves upon this setup by offering a call-by-reference
without pointers.

#include <cstdio>
2

void abs(double & x) {
4 if (x < 0)

x = -x;
6 }

8 int main(void) {
double x = -3.4;

10 printf("%f\n", x);
abs(x);

12 printf("%f\n", x);
}

Listing A.9 Simple C++ function call example

Here a function which changes its argument to its absolute value is defined and
tested. The output is first negative, and then positive. No pointers are used, yet the
value is changed as the variable is passed by reference, indicated by the & in the
function signature. (The example is contrived, typically we write a function for an
absolute value as returning the modified value, rather than changing the argument.)

A.4 Object-Oriented (But Not Like S3 or S4)

The second of the four languages “federated inside Cpp” according to Meyers
(2005) is object-oriented C++. There is an enormous amount of complexity around
both the how and why of object-oriented programming, both in general and specif-
ically in C++ which is arguably a fairly complex language. That said, some high-
level concepts are easy enough to express in a few paragraphs, and we will concen-
trate on such a higher-level approach here.

The basic composite type in C++ is a struct, which is inherited from C. It
offers the most basic form of composition as it permits to group several variables
inside a newly defined type.

1 struct Date {
unsigned int year

3 unsigned int month;
unsigned int date;
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5 };

7 struct Person {
char firstname[20];

9 char lastname[20];
struct Date birthday;

11 unsigned long id;
};

Listing A.10 Simple C++ data structure using struct

Here, we define a Date type containing year, month, and date as separate un-
signed integers. That structure is then reused in the Person structure. So far, so
good. What is not to like? First, all data elements are by default public meaning
every piece of code having access to the structure has the ability to change values.
Second, the structure really only holds data but no code.

The class data type overcomes both by associating methods (which are class-
specific functions) with the class. Moreover, data can now be public (visible to all),
private (visible only to methods of the class), or protected (a refinement having to
do with inheritance we can ignore here).

A possible sketch of a class declaration for a Date could be

class Date {
2 private:

unsigned int year
4 unsigned int month;

unsigned int date;
6 public:

void setDate(int y, int m, int d);
8 int getDay();

int getMonth();
10 int getYear();
}

Listing A.11 Simple C++ data structure using class

This class contains a few changes as discussed above. Date fields are now private:
data cannot be accessed directly from outside the class. To do so, we now have
accessor functions. The first sets the date—and, in doing so, can ascertain that the
date supplied is actually a valid date. This is followed by three more functions which
access the date components. The implementation of the function bodies would then
be supplied in a matching cpp file complementing the declaration from a header
file.

A.5 Generic Programming and the STL

The STL provides the third distinct language aspect within the “federation of four
languages” view described by Meyers (2005). The STL has become a staple of
C++ programming for efficient and generic programming (Austen 1999). In this
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context, generic means a consistent interface that is provided irrespective of the
chosen data type.

As one illustrative example, consider the so-called sequence container types
vector, deque, and list. Each of these supports common functions such as

push back() to insert at the end
pop back() to remove from the front
begin() returning an iterator to the first element
end() returning an iterator to just after the last element
size() for the number of elements

and more similar functions. However, list offers different performance guaran-
tees and implementation details than vector so it can also offer complementary
functions such as push_front() and pop_front() which a vector does not
have. On the other hand, v[i] can access the element with index i in the vector
(which offers random access), whereas a list has to be traversed. The deque class
provides aspects of both vector and lists and can be seen as a compromise or
superset of both features sets.

Other commonly used container types are associative:

set for collections of objects where both key and value are the same; it provides
set-theoretic operations such as union and intersect.

multiset which extends set by allowing several instances of the same key/-
value.

map which is pair associative container linking a key to a value; both can be of
different types mapping, e.g., a numeric index (e.g., a zip or postal code repre-
sented as an integer) to a character vector or string type with the name of the
municipality.

multimap which extends map by allowing an unlimited number of values for a
given key.

as well as hashed versions of these types. In the original SGI implementation of the
STL these are named hash_* but the name ordered_*was chosen in the current
TR1 implementation of the upcoming C++ standard.

One commonality of both sequence and associative containers is the traversal
via iterators. Consider this example for the vector class where we use the
const_iterator variant which indicates that it accesses elements read-only but
never modifies:

1 std::vector<double>::const_iterator si;
for (si=s.begin(); si != s.end(); si++) {

3 std::cout << *si << std::endl;
}

Listing A.12 Simple C++ example using iterators on vector

We can use the exact same for loop simply by modifying the iterator to be a list
type
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std::list<double>::const_iterator si;

Listing A.13 Simple C++ example using const iterators on list

or change it to the deque type

1 std::deque<double>::const_iterator si;

Listing A.14 Simple C++ example using const iterators on deque

which illustrates the generic nature of STL operators.
The STL also contains a number of algorithms. A simple one is accumulate

which can be used as

1 std::cout << "Sum is "
<< std::accumulate(s.begin(), s.end(), 0)

3 << std::endl;

Listing A.15 Simple C++ example using accumulate algorithm

and this is irrespective of what class the object s is instantiated from for as long as
it supports iterator access as well as begin() and end(). The third argument is
the initial value of the summation which we set to zero.

Other popular STL algorithms are

find which finds the first element equal to the supplied value, if any.
count which counts the number of elements match the given condition.
transform which applies a supplied unary or binary function to each element.
for each which also sweeps over all elements but does not alter elements.
inner product which can be used to compute the inner product of two vec-

tors, or a sum of squares of a single vector.

The key insight here is that these algorithms and iterators can be applied to the
different data structures—sequential containers as well as associative containers—
with very minimal change. It is in this sense that programming with the STL is
“generic.”

Many more algorithms are available and described, for example, in Meyers
(2001). A final note is that with the STL now being part of the language standard,
the use of the term “STL” which refers to what was once an external library is no
longer entirely correct. The Standard C++ Library is more appropriate. However, it
is still common to refer to these parts of the library as STL reflecting their historical
source of having been an extension to the then-smaller standard library.

A.6 Template Programming

Template programming provides the fourth and last language federated within C++
as per Meyers (2005). It is arguably the most complex aspect and the one in which
C++ differs most from other related languages such as Java or C#.
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Templates programming and its use can range from the very simple to the
very complex. Examples for the more complex end of template use are provided
by the template meta-programming technique. It is at the core of both Armadillo
(Sanderson 2010), Eigen (Guennebaud et al. 2012), and Rcpp sugar discussed in
Chap. 8.

This section, however, will focus on simpler uses of templates. An example above
considered different min functions for integers and doubles. A more general solu-
tion uses templates:

1 template <typename T>
const T& min(const T& x, const T& y) {

3 return y < x ? y : x;
}

Listing A.16 Simple C++ template example

This returns a constant reference of the templated type T which is also used for
the input types. The sole expression uses the standard C comparison operator to
return the smaller of the two arguments x and y.

A simple example of template use was already shown in Sect. 2.5.2. That section
illustrates how to combine the inline package with short text and code snippets
similar to header files. As a concrete example, the following templated class that
squares its input was shown:

template <typename T>
2 class square : public std::unary_function<T,T> {
public:

4 T operator()( T t) const {
return t*t;

6 }
};

Listing A.17 Another C++ template

Templates are used throughout the Rcpp sources. Key components of Rcpp such
as the conversion function as<>() are implemented using templates. The as<>()
conversion function accepts a template type and converts a SEXP provided as input
to this type (provided the conversion is suitable; else an exception is thrown). How-
ever, the inverse operation, provided by wrap, is a standard function which does
not use templates: the dispatch is done on the basis of the main argument type.

Template programming is a more advanced form of C++ use. It can get rather
complicated rather quickly; so we will not dive deeper into templates but refer the
reader to the literature.

A.7 Further Reading on C++

A standard reference and introduction to C++ is provided by the creator of the lan-
guage in Stroustrup (1997). This book is generally not recommended as a first book
on C++ for which Lippman et al. (2005) is more frequently listed. Meyers (2005,
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1995, 2001) is a highly recommended and readable series of “items” suggesting best
practices for C++ and STL use.

As C++ is a popular and widely used programming language, several good re-
sources exist on the Internet as well. The Wikipedia page1 provides a very good
start with numerous further references. Brokken (2012) is a recommended and freely
downloadable text introducing C++ which has been maintained and extended since
1994. Also, good introductions to template programming are provided by Abrahams
and Gurtovoy (2004) and Vandevoorde and Josuttis (2003).

Finally, among C++ projects, Boost (at http://www.boost.org) stands
out and deserves special mention. Boost is a collection of several dozen rigorously
developed and peer-reviewed libraries. Some of the Boost libraries will be included
in the next version of the C++ standard.

1 See http://en.wikipedia.org/wiki/C++.

http://www.boost.org
http://en.wikipedia.org/wiki/C++
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